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Table S1.  Sequences of the primers used for the generation of the three A2AAR variants 

with single extrinsic tryptophan residues, which were used in this study.  

Protein Direction oligo sequence 5'-3' 

A2AAR[F201W] Forward atgctgggtgtctatttgcggatctggctggcggcgcgacgacagctgaag 

 

Reverse cttcagctgtcgtcgcgccgccagccagatccgcaaatagacacccagcat 

A2AAR[K233W] Forward ctgcagaaggaggtccatgctgcctggtcactggccatcattgtggggctc 

 

Reverse gagccccacaatgatggccagtgaccaggcagcatggacctccttctgcag 

A2AAR[Y290W] Forward gttgtgaatcccttcatttacgcctggcgtatccgcgagttccgccagacc 

 

Reverse ggtctggcggaactcgcggatacgccaggcgtaaatgaagggattcacaac 
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Figure S1. Ligand binding activity of A2AAR and engineered A2AAR variants containing a 

single extrinsic reporter tryptophan residue.  Radioligand binding data is shown for A2AAR 

and the three presently used A2AAR variants expressed in P. pastoris for complexes with (A) the 

agonist UK432097 and (B) the antagonist ZM241385.  These and additional data were used to 

calculate the ligand binding affinities presented in Table 1. 
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Figure S2.  Analytical size exclusion chromatograms of A2AAR and the three presently used 

A2AAR variants containing a single engineered tryptophan.  Chromatograms are shown of 

purified A2AAR and A2AAR variants in complex with the antagonist ZM241385 in LMNG/CHS 

mixed micelles.   
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Figure S3.  NMR spectrum of [u-
15

N, ~70% 
2
H]-A2AAR[F201W] in complex with 

ZM241385.  A 800 MHz 2D [
15

N,
1
H]-TROSY correlation spectrum is shown. The peaks 

numbered 1 to 30 were used to monitor the global fold of the variant protein.  In A2AAR, the 

peaks 1,3, 6, and 7 were previously assigned to glycines 142, 114, 118, and 69 (see text). 
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Figure S4.  NMR spectrum of [u-
15

N, ~70% 
2
H]-A2AAR[K233W] in complex with 

ZM241385.  Same presentation as in Figure S3. 
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Figure S5.  NMR spectrum of [u-
15

N, ~70% 
2
H]-A2AAR[Y290W] in complex with 

ZM241385.  Same presentation as in Figure S3.
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PDB Residue Wild-type Variant ∆∆G(kcal/mol) ∆∆Solubility(kcal/mol) 

3EML 201 F W 1.00 0.34 

3QAK 201 F W -0.11 0.34 

3EML 233 K W 0.98 -1.06 

3QAK 233 K W 1.15 -1.06 

3EML 290 Y W 0.49 -0.47 

3QAK 290 Y W 0.23 -0.47 

 

Table S2.  Evaluated penalties in free energy and solubility relative to wild type A2AAR for 

the structural models of A2AAR variants used in this study.  This data was generated to 

support the selection of suitable variants for this project (see text). 
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Figure S6.  Schemes of A2AAR constructs examined in the context of Figure 5.  In addition to 

the construct of Figure 5B, the constructs A to E were tested for use in this project (Figure 5).  

“MF” is the alpha mating factor peptide leader sequence, “FM-EAEA” the alpha mating 

factor peptide leader sequence with the amino acids EAEA added at the C-terminus, “HIS” a 10 

X polyhistidine tag, “FLAG” a FLAG octapeptide, “TEV” the amino acid sequence ENLYFQG 

recognized by the tobacco etch virus protease, and “PP” is the amino acid sequence LFQGP 

recognized by the Prescission Protease (GE Healthcare).  Initial attempts to express stable-

isotope labeled A2AAR were done with construct A, which was used to express A2AAR for 

crystal structure determination
9
, resulting in samples where the secretion signal was still 

covalently attached to A2AAR (see Figure S8).  Expression of A2AAR with constructs B-E 

resulted in 5 to 10-fold reduced yield of protein after cleavage with the protease, as assessed by 

analytical size exclusion chromatography of the purified proteins. 
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A2AAR[F201W] 

        10         20         30         40         50         60  

MDYKDDDDKM PIMGSSVYIT VELAIAVLAI LGNVLVCWAV WLNSNLQNVT NYFVVSLAAA  

        70         80         90        100        110        120  

DIAVGVLAIP FAITISTGFC AACHGCLFIA CFVLVLTQSS IFSLLAIAID RYIAIRIPLR  

       130        140        150        160        170        180  

YNGLVTGTRA KGIIAICWVL SFAIGLTPML GWNNCGQPKE GKQHSQGCGE GQVACLFEDV  

       190        200        210        220        230        240  

VPMNYMVYFN FFACVLVPLL LMLGVYLRIW LAARRQLKQM ESQPLPGERA RSTLQKEVHA  

       250        260        270        280        290        300  

AKSLAIIVGL FALCWLPLHI INCFTFFCPD CSHAPLWLMY LAIVLSHTNS VVNPFIYAYR  

       310        320        330  

IREFRQTFRK IIRSHVLRQQ EPFKAHHHHH HHHHH  

 

A2AAR[K233W] 

        10         20         30         40         50         60  

MDYKDDDDKM PIMGSSVYIT VELAIAVLAI LGNVLVCWAV WLNSNLQNVT NYFVVSLAAA  

        70         80         90        100        110        120  

DIAVGVLAIP FAITISTGFC AACHGCLFIA CFVLVLTQSS IFSLLAIAID RYIAIRIPLR  

       130        140        150        160        170        180  

YNGLVTGTRA KGIIAICWVL SFAIGLTPML GWNNCGQPKE GKQHSQGCGE GQVACLFEDV  

       190        200        210        220        230        240  

VPMNYMVYFN FFACVLVPLL LMLGVYLRIF LAARRQLKQM ESQPLPGERA RSTLQKEVHA  

       250        260        270        280        290        300  

AWSLAIIVGL FALCWLPLHI INCFTFFCPD CSHAPLWLMY LAIVLSHTNS VVNPFIYAYR  

       310        320        330  

IREFRQTFRK IIRSHVLRQQ EPFKAHHHHH HHHHH  

 

A2AAR[Y290W] 

        10         20         30         40         50         60  

MDYKDDDDKM PIMGSSVYIT VELAIAVLAI LGNVLVCWAV WLNSNLQNVT NYFVVSLAAA  

        70         80         90        100        110        120  

DIAVGVLAIP FAITISTGFC AACHGCLFIA CFVLVLTQSS IFSLLAIAID RYIAIRIPLR  

       130        140        150        160        170        180  

YNGLVTGTRA KGIIAICWVL SFAIGLTPML GWNNCGQPKE GKQHSQGCGE GQVACLFEDV  

       190        200        210        220        230        240  

VPMNYMVYFN FFACVLVPLL LMLGVYLRIF LAARRQLKQM ESQPLPGERA RSTLQKEVHA  

       250        260        270        280        290        300  

AKSLAIIVGL FALCWLPLHI INCFTFFCPD CSHAPLWLMY LAIVLSHTNS VVNPFIYAWR  

       310        320        330  

IREFRQTFRK IIRSHVLRQQ EPFKAHHHHH HHHHH  

Figure S7.  Amino acid sequences of A2AAR variant proteins.  The amino acid sequences are 

shown of the three presently used A2AAR variants, each containing a single reporter tryptophan.  

In each sequence, the non-endogenous tryptophan reporter is highlighted in grey.  Following the 

start codon, each variant contains an N-terminal FLAG tag with the sequence “DYKDDDDK” 

and 10 X C-terminal HIS tag. 
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Figure S8.  NMR comparison of [u-
15

N, ~70% 
2
H]-A2AAR with and without a covalently 

attached peptide leader sequence.  800 MHz 2D [
15

N,
1
H]-TROSY correlation spectra of 

complexes with the antagonist ZM241385 are shown.  (A) [u-
15

N, ~70% 
2
H]-A2AAR with the 

86-residue MF peptide leader sequence covalently attached, which was previously used in a 

crystal structure determination
9
. (B) Construct of Figure 5B.  
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Figure S9.  Comparison of NMR spectra of A2AAR in different mixed micelles.  Contour 

plots are shown of 800 MHz 2D [
15

N,
1
H]-TROSY correlation spectra of [u-

15
N, ~70% 

2
H]-

A2AAR in complex with the antagonist ZM241385 reconstituted in two different mixed micelles.  

(A) n-dodecyl--D-maltopyranoside (DDM) and cholesteryl hemisuccinate (CHS) (5:1 w/w 

ratio).  (B) Lauryl maltose neopentyl glycol (LMNG) and CHS (20:1 w/w ratio).  Dashed boxes 

highlight the glycine backbone amide group region, which is shown on an expanded scale in A’ 

and B’.  

 

 


