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1 Detailed methods

1.1 A deterministic model of HIV transmission in Scott County, IN

Consider a population of size IV at risk for HIV infection, in which each individual can be classified into one of
four categories: susceptible HIV-, infectious HIV+ but undiagnosed, infectious HIV+ diagnosed, and removed. This
model is a generalization of the classical susceptible-infectious-removed (SIR) model commonly used to describe
infectious disease transmission in a population'. In this context, removal means cessation of epidemiologic contact
sufficient to transmit HIV infection, including successful virologic suppression following diagnosis, use of clean
needles, practicing safer sex, or otherwise preventing transmission.

Let S(t) be the number of susceptible individuals, I,,4(¢) the number of undiagnosed infectious individuals, 14 ()
the number of diagnosed infections, and R(¢) the number of “removed” individuals at time ¢, with S(t) 4+ L4 (t) +
I4:(t) + R(t) = N. Suppose at time ¢, each susceptible individual becomes infected with rate proportional to the
number of infectious individuals in the population, 4, (t) + I4.(t). Suppose each undiagnosed HIV+ individual is
diagnosed with rate v(t); we call y(t) the casefinding/diagnosis rate. Each diagnosed HIV+ individual removed from
the group of infectious individuals with rate p. The model dynamics are given by the ordinary differential equations
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for 8 > 0, p > 0, and a possibly time-varying non-negative function (), with initial conditions S(0), 1,4 (0), T4, (0)
and R(0) and conservation equation S(¢) + I, (t) + I.az(t) + R(t) = N. As p becomes larger, the model dynamics
approach those of a traditional time-varying SIR model with time-varying removal rate v(¢). The infection rate 8 has
units “infections per susceptible-infectious pair, per day”. The casefinding/diagnosis rate y(¢) has units “diagnoses
per undiagnosed HIV+ person per day”. The removal rate p has units “removals per diagnosed HIV+ person per day”.

1.2 Reconstruction of bounds for SIR dynamics from Scott County outbreak data

From the published data? we obtained the cumulative HIV diagnoses D(t). From the recency assay data® we obtained
lower and upper bounds C (¢) and C(t) for the cumulative HIV incidence C(t). Limited information is available on
the number of individuals IV at risk for HIV infection during the Scott County Outbreak; for now we will assume N
is fixed and known. The number of undiagnosed HIV infections at time ¢ is the cumulative number of infections by
time ¢ minus the number of diagnosed infections,

L4 (t) = C(t) — D(t),

and the number of susceptible individuals at time ¢ is
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S(t) = N -C(@),

and

S(t) = N — C(t).

The time-varying diagnosis rate +y(¢) can be reconstructed by considering the rate of diagnoses as a function of the
number of undiagnosed infections,
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We compute lower and upper bounds for () as
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The transmission rate 3 can be estimated by dividing the number of new infections by the person-time of infectious-
ness,
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We compute lower and upper bounds for 3 as
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1.3 Evaluation of counterfactual intervention scenarios

Let ¢, be the time of the first HIV diagnosis in Scott County, IN, and let ¢, be a later time, for example the time at
which diagnostic scaleup ceased. For a hypothetical earlier first diagnosis time t; < t,, define the counterfactual
diagnosis rate as
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Define 7*(t) and 5*(¢) by substituting (¢) and 7(¢) for (t) above. The resulting diagnosis rate is a replica of the
true diagnosis rate during the outbreak response, shifted to the earlier starting time ¢7.
Define the counterfactual SIR dynamics under earlier intervention at ¢ as
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with initial conditions S*(0), I*,,.(0), I’;.(0) and R*(0). This system has identical dynamics to (1) before ¢¥. That is,
fort < t%, S*(t) = S(t), I}, (t) = Luasx(t), I}, (t) = L4 (t), and R*(t) = R(t). Subsequently, for ¢ > ¢, the system
evolves under the counterfactual rate v*(¢). Define the lower bounds S*(¢), L7, ;. (t), I, (t), and R*(¢), by substituting



Term Description

S(t) Number of susceptibles at time ¢

I,4.(t) Number of HIV+ undiagnosed individuals at time ¢
I4,(t)  Number of HIV+ diagnosed individuals at time ¢

R(t) Number of removed individuals at time ¢
B(t) Transmission rate

~(t) Diagnosis rate

p Removal rate for diagnosed individuals
v (t) Counterfactual diagnosis rate

Table 1: Notation and symbols used to define the HIV transmission model.
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~*(t) for v*(t) in (4). Likewise, define the upper bounds S™ (¢), T, 4, (t), T4, (t), and R (£) by substituting 7*(¢) for

~*(t) in (4). Under the model specification (4), the model output delivers bounds for the dynamics that would have
occured if, contrary to fact, the public health intervention program had been implemented at an earlier date. Table 1
summarizes the notation and symbols used to define the mathematical model.

1.4 Evaluation of reduction in transmission rate

Here we define an intervention on the transmission rate 3 for use in the sensitivity analysis below. Define 0 < e <1
as the proportion reduction in 3 following implementation of an intervention at time ¢}. Fix a pre-intervention value

[ and let
B (1) = B ift<tr
s ift >t

Define 3*(t) and B (t) by substituting B and 3 for 3 above. The resulting diagnosis rate is a replica of the true
diagnosis rate during the outbreak response, shifted to the earlier starting time ¢}.

1.5 Evaluation of increasing uncertainty in cumulative HIV incidence

Define the midpoint of the HIV incidence interval

Cit)+C(t
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To evaluate the effect of increasing uncertainty about cumulative incidence C'(t) at time ¢, let f > 1 and define
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C™(t) =m(t) + f x (C(t) — m(t))

and

C*(t) =m(t) — f x (m(t) = C(t))-

Then the new interval defined by [C*(t),C" (t)] contains interval [C(t), C(t)] for every t. We evaluate the sensitivity
of results to values of f in the interval [1, 2] below.

1.6 Discrete-time system

In the analysis presented in the main manuscript, we discretize time in units of one day. At day ¢, we produce the
model output at day ¢ 4 1 by the iteration

S(t+1)=5@t) — BSt)Luds(t) + Laz(t))
Tudo(t + 1) = Lugo (t) + BS(t) (Luda (t) + Laa(t)) — ¥() Luda () 5)
Lag(t +1) = Lag(t) + v(t) Luda (t) — plax(t)
R(t+1) = R(t) + plaa(t).
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Figure 1: Evaluation of projected outbreak dynamics under a counterfactual intervention date of April 4, 2011. (A)
Counterfactual case-finding rate. (B) Cumulative HIV incidence (gray) and undiagnosed HIV infections (red) in the
actual outbreak and under earlier intervention. In this scenario, cuamulative HIV incidence by August 2015 is projected
to be at most 10 people, compared to the actual number183-184.

The available outbreak data C(t), C(t), R(t), and R(t) are discretely observed on different timescales. To facilitate
projection of trajectories over time, we used smoothing techniques to interpolate trajectories at the daily level. We
implemented spline, loess, and kernel smoothers.

2 Further results

2.1 Intervention in April 2011

We analyzed the impact of intervening on April 4, 2011. Figure 1 shows the results. The number of undiagnosed
infections stays very lowe througout the epidemic, while the cumulative incidence by August 2015 is reduced to at
most 10 infections.

2.2 Model calibration and sensitivity

Some prior information is available about expected HIV incidence rates among injection drug users. When the raw
data C(t) and D(t) do not identify model parameters, we seek to calibrate these parameters using data in the literature,
and evaluate how the results change as a function of these parameters.

2.2.1 Transmission rate 3

Upper and lower bounds for 3 can be calculated from the raw data C(¢t) and D(t), in conjunction with the model
assumptions (1). For p = 0.024, we calculate that estimates for 3 (presented in the main text). We can validate this
interval estimate as follows. Peters et al.? report 841 syringe sharing relationships among 536 individuals in a contact
tracing investigation (comprising (5::’6) possible connections) of the HIV risk population in Scott County. Peters et al.
report that individuals in this population engage in between 2 and 15 injections per day. The probability of sharing a



needle is between 0.565 and 0.75, and the probability of HIV transmission between serodiscordant injection partners
per sharing event is estimated to be approximately 0.00674~7. Multiplying these proportions, we find lower and upper

bounds for 3,

841
B = —z5 x 2% 0.565 x 0.0067 ~ 5.1 x 10~°

(536)

2

8= (8;;‘61) x 15 x 0.75 x 0.0067 ~ 4.3 x 10~*
2

new HIV infections per susceptible-infectious pair.

2.2.2 Removal rate p

The removal rate p controls the rate of viral suppression or cessation of infectious contact in HIV+ diagnosed individ-
uals. While information on the diagnosis rate is readily available from the raw data, p cannot be directly estimated.
An upper bound for the rate of removal can be calculated from known data from individuals who are diagnosed and
immediately receive ART. The viral suppression interval is roughly 6 weeks, or 42 days, leading to an estimate of

p=1/42~0.024

removals per HIV+ diagnosed person per day. Information from the Scott County outbreak can give clues to a possible
lower bound for p. Despite logistical challenges, many HIV+ diagnosed individuals eventually received comprehensive
HIV care, including ART. Janowicz 8 writes,

At the end of 2015, among 176 individuals who were eligible for HIV treatment, 86% had been engaged
in care, 74% had undergone care coordination, 59% had been prescribed antiretroviral therapy, and 32%
had achieved virologic suppression.

First, 32% of 175 is approximately 56. If individuals achieved viral suppression approximately in the order in which
they were diagnosed, then the time to viral suppression is at least the time required for the 56th diagnosed individual to
achieve suppression on or before January 1, 2016. The 56th diagnosis occured around March 8, 2015, leaving at most
299 days to January 1, 2016. The rate of viral suppression for HIV+ diagnosed individuals can therefore be estimated
by

p=1/299 ~ 0.0033

removals per HIV+ diagnosed person per day. Since both of these estimates only take into account viral suppression,
and not behavioral change leading to loss of infectious ness or cessation of infectious contact, they are likely to be
under-estimates of the true removal rate p. In the main text, we fix p = 0.024, but analyze sensitivity of results to
different choices of p below.

2.3 Sensitivity analysis: N and p

Figure 2 shows projected cumulative HIV infections by August 2015, as a function of the risk population size N. The
top panel shows cumulative HIV incidence for intervention on April 5, 2011; the middle panel shows intervention
on January 1, 2013; and the bottom panel shows intervention under actual circumstances. In both early intervention
scenarios, cumulative HIV incidence is largely invariant to assumed population size N. In the actual scenario shown
at bottom, there is greater variation in cumulative incidence — larger assumed population sizes lead to more infections.

Figure 3 shows projected cumulative HIV infections by August 2015, as a function of the removal rate p for diag-
nosed individuals, for three intervention scenarios. The top panel shows cumulative HIV incidence for intervention on
April 5, 2011; the middle panel shows intervention on January 1, 2013; and the bottom panel shows intervention under
actual circumstances. In all cases, implausibly low values of p lead to HIV infections in the entire risk population. For
plausible larger values of p, both early intervention scenarios show dramatic reduction in cumulative HIV incidence.
In the actual intervention scenario shown at bottom, cumulative incidence is not substantially modified by larger values
of p and increasing p has little effect on cumulative infections. This happens because intervention in late 2014 occurrs
too late to avert most infections, and a higher rate of removals does little to decrease transmission.
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Figure 2: Projected cumulative HIV infections by August 2015, for three intervention date scenarios, as a function of
the assumed risk population size N.
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Figure 3: Projected cumulative HIV infections by August 2015, for three intervention date scenarios, as a function of
the assumed removal rate p for diagnosed individuals.
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Figure 4: Projected cumulative HIV infections by October 2015, for three intervention date scenarios, as a function of
the transmission reduction portion.
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Figure 5: Projected cumulative HIV infections by October 2015, for three intervention date scenarios, as a function of
the incidence uncertainty scale factor.

2.4 Sensitivity analysis: transmission reduction and incidence uncertainty

Figure 4 shows projected cumulative HIV infections by October 2015, as a function of the transmission rate reduction
factor ¢, defined above in Section 1.4. The top panel shows cumulative HIV incidence for intervention on April
5, 2011; the middle panel shows intervention on January 1, 2013; and the bottom panel shows intervention under
actual circumstances. In both early intervention scenarios, even large values of € — corresponding to little reduction
in transmission risk — lead to substantial reductions in cumulative HIV incidence. In the actual intervention scenario,
very small values of ¢ lead to projections below the actual number of HIV infections. Larger values of ¢ in this case
lead to incidence bounds matching the observed incidence.

Figure 5 shows projected cumulative HIV infections by October 2015, as a function of the incidence uncertainty
scale-up factor f, defined in Section 1.5 above. The top panel shows cumulative HIV incidence for intervention on
April 5, 2011; the middle panel shows intervention on January 1, 2013; and the bottom panel shows intervention
under actual circumstances. For both early intervention scenarios, projected cumulative incidence is at or below the
actual incidence for f smaller than approsximately 1.4. In the actual intervention scenario, even modest increases in
uncertainty in HIV incidence lead to dramatic increases in proejcted incidence.
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