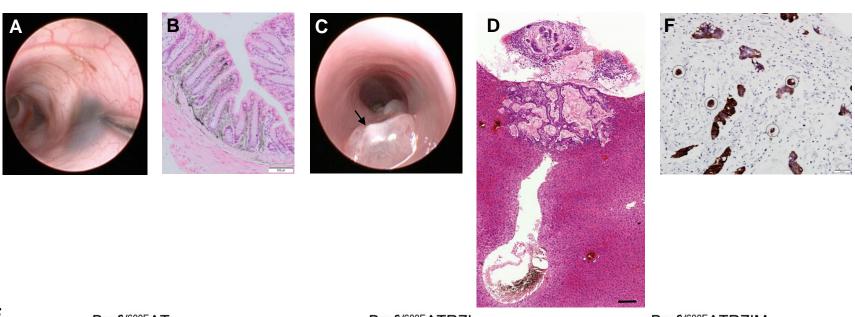
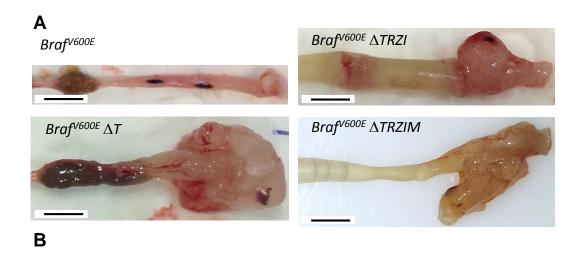
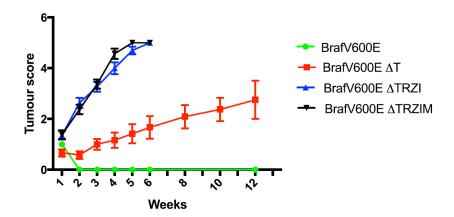
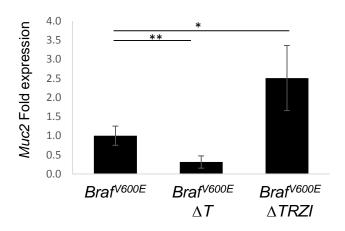

Supplementary Figure 1-Presence of *Braf*^{V600E} mutation in organoids verified by Sanger sequencing. gDNA prepared from 4-hydroxy tamoxifen treated organoids from *Villin*^{CreERT}; *Braf*^{CA} mice (A) or vehicle treated controls (B).


Supplementary Figure 2-Functional Braf^{V600E} in colonic organoids results in increased cellular proliferation and resistance to epidermal growth factor receptor inhibitor (EGFRi) treatment. Quantification of metabolically active cells using Real Time-Glo in *Braf* wild-type or *Braf*^{V600E} mutant mouse colonic organoid cultures after treatment with vehicle or EGFRi. Control cells did not survive in the presence of EGFRi, whilst *Braf*^{V600E} organoids were resistant. Representative experiment conducted in triplicate, error bars denote st.dev.

Supplementary Figure 3. **A,** Expression of *Serpin-1*, a Tgf β response gene, is not induced following treatment with Tgf β in $Tgf\beta r2$ mutant organoids. **B,** p16Ink4a RNA levels are decreased in p16Ink4a mutant organoids. **C-D,** Transcript levels of two Wnt-responsive genes, Axin2 and Lgr5, are increased in organoids with mutations in the two negative regulators of the Wnt-pathway, Rnf43 and Znrf3. Fold induction of mRNA expression is normalized to Gapdh, with transcript level in $Braf^{V600E}$ organoids in complete medium set to 1. Results from at least three independent experiments performed in triplicate are shown, error bars denote standard deviation. Two-tailed test was used for pair-wise statistical analysis. *=p≤0.05, **=p≤0.01.

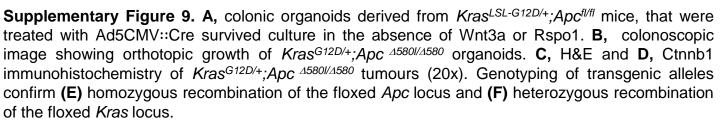



Supplementary Figure 4. Effective targeting of genes associated with serrated CRC using CRISPR/Cas9 gene editing followed by media selection of correctly targeted clones. **A,** Melt/reanneal of PCR amplicons from $Tgf\beta r2$ targeted genomic region in edited clones show the formation of hybrid complexes (slower migrating bands) in the presence of specific gRNAs but not the empty gRNA control by PAGE.

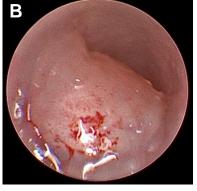


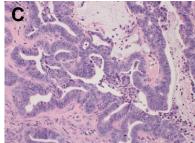
Supplementary Figure 5. Orthotopic injection site in colon wall. **A**, Colonoscopic image with needle and dark ink spots at injection sites and **B**, histological location of injected dye immediately adjacent to the colonic epithelium in the mucosal layer. **C**, Representative colonoscopy image of *Braf*^{V600E}Δ*TRZI* tumours showing white mucous cap on *Braf*^{V600E}Δ*TRZI* tumours (arrow). **D**, histology of infrequent liver metastasis (n=1 from 11 mice) in *Braf*^{V600E}Δ*TRZI* injected animals. **E**, low (i) and high (ii) power images of immunohistochemical staining for mutant BrafV600E protein in serratoid derived tumour cells. These are the same samples as depicted in Figure 4D but here high power image focusses on part of the section with tumour (to left of dashed line in ii) and normal epithelium (to right of dashed line in ii). **F**, tumour budding (circled) from *Braf*^{V600E}Δ*TRZI* tumours is positive for cytokeratin 20 (CK20) by immunohistochemistry. Scale bars 500um (Ei), 100um (B, D Eii), 50um (F).

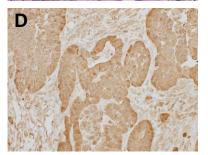
Supplementary Figure 6. A, Necropsy images of dissected distal colon showing ink spots only following $Braf^{V600E}$ organoid injections and invasion/extra-colonic growth from more complex organoid lines. Scale bar is 0.5cm. **B,** Colonoscopic scoring of largest tumour in each mouse (n=5 mice per group, Becker scale). Extended time course for tumour scoring to show relatively slow growth of $Braf^{V600E} \Delta T$ tumours out to 12 weeks (Figure 3C depicts the same data but finishes at 6weeks).

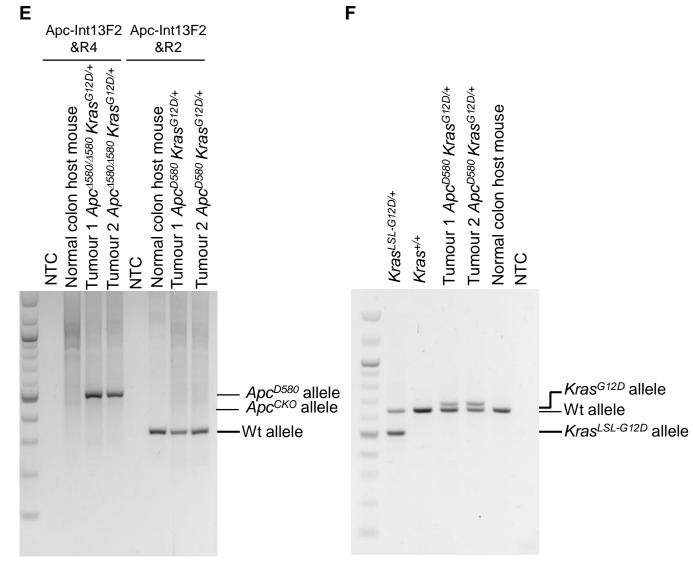

Supplementary Figure 7. Expression Muc2, a goblet cell marker and core component of the mucus layer is increased in $Braf^{V600E}\Delta TRZI$ but not $Braf^{V600E}\Delta T$ mutant organoids. Fold induction of mRNA expression is normalized to Gapdh, with transcript level in $Braf^{V600E}$ organoids in complete medium set to 1. Results from at least three independent experiments performed in triplicate are shown, error bars denote standard deviation. Two-tailed t-test was used for pair-wise statistical analysis. *=p \leq 0.05, **=p \leq 0.01.

Α				Microsatellite	e Markers		
Α _			mBat-26	mBat-67	mBat-37	GA29	TG27
c	Organoid dono	or mouse gDNA	wt	wt	wt	wt	wt
В	BrafV ∆TRZI (Organoids	wt	wt	wt	wt	wt
			wt	wt	wt	wt	wt
			wt	wt	wt	wt	wt
		ours generated by orthotopic	wt	wt	wt	wt	wt
	injection o	f <i>BrafV ∆TRZI</i> Organoid (n=5)	wt	wt	wt	wt	wt
			wt	wt	wt	wt	wt
l _B	BrafV ATRZIN	ſ Organoid Line 1 (<i>Mlh1</i> ^{△/△})	1bp Del	3bp Del	1bp Del	wt	wt
⊢		// Organoid Line 2 ($Mlh1^{\Delta/\Delta}$)					
-			ND	ND	1bp Del	wt	2bp Del
B	arajv ∆i k∠iiv	1 Organoid Line 3 (Mlh1 ^{4/+})	ND	ND	1bp Del	wt	wt
			2bp Del	5bp Del + 32bp Del	3bp Del	wt	wt
	Colon tum	ours generated by orthotopic	1bp Del	4bp Del 5bp Del	Wt	wt	wt
	injection of	BrafV ∆TRZIM Organoid Line	1 1bp Del 1bp Del	4bp Del + 22bp Del	1bp Ins 1bp Del	wt wt	wt
		(n=6)	1bp Del	4bp Del + 22bp Del	1bp Del	wt	wt
			1bp Del	4bp Del + 22bp Del	wt	wt	wt
B					and the same of th		
mBat-		mBat-67 2bp Del + 29bp Del	mBa	t-37 Ins	GA29 All wt		
			Blue Colon tumou	r generated using IIM Organoids	Traces ove	erlap	


Supplementary Figure 8. Analysis of microsatellite instability using 5 validated mouse microsatellite markers. **A,** repeat tract length for 5 validated mouse microsatellite markers shows variability (MSI) in *MIh* mutant organoids and tumours, ND not determined. **B,** representative sequence traces of microsatellite marker length.


Red *Braf*^{V600E} <u>ATRZIM</u> Organoids


Braf^{V600E} ATRZIM Organoids

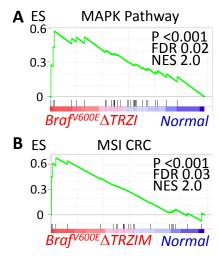


Supplementary Table 1-Sanger sequencing the top bioinformatically predicted *Tgfbr2* and *Bmpr2* gRNA off-target sites reveals no off-target events in mutant organoid lines.

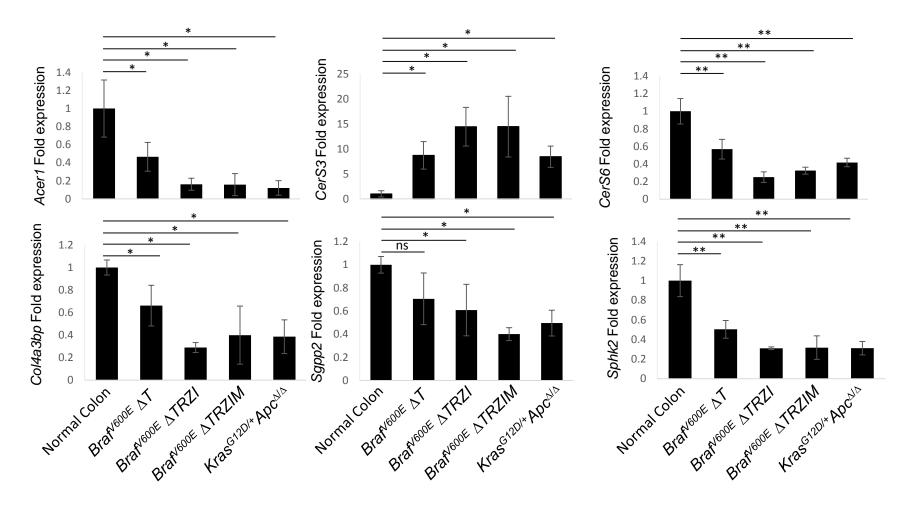
	Location	Sequence	Mismatches	Strand	Туре	Comments-sequencing each locus in gDNA isolated from CRISPR/Cas9 gene edited organoid
Tgfbr2 gRNA On-site	<u>9:116174992-116175014</u>	GGACGATATGCAGCGGCCAC AGG	0	+	Exonic	
Tgfbr2_off_site1	18:65431501-65431523	GGAAGATATGAAGGGGCCACTGG	3	-	Intronic	No change compared to reference mouse genome
Tgfbr2_off_site2	13:74221583-74221605	GGACCATATGCAGTGGTCAC AGG	3	+	Intronic	No change compared to reference mouse genome
Tgfbr2_off_site3	12:26345670-26345692	GGCTCACATGCAGCGGCCAC AGG	4	-	Intronic	No change compared to reference mouse genome
Tgfbr2_off_site4	<u>4:74305539-74305561</u>	GGAGCTTATGCAGAGGCCACAGG	4	-	Intronic	Repeat sequence, Sanger sequencing not possible
Tgfbr2_off_site5	4:124246525-124246547	GGAAGAGAAGCAGAGGCCACAGG	4	+	Intergenic	No change compared to reference mouse genome
Tgfbr2_off_site6	1:87663023-87663045	GGACGGGAAGCAGAGGCCACTGG	4	+	Intronic	No change compared to reference mouse genome
Tgfbr2_off_site7	7:69437642-69437664	GGACCATGTGAAGGGGCCACTGG	4	-	Intergenic	No change compared to reference mouse genome
Tgfbr2_off_site8	12:118438479-118438501	GGATTATATGCACAGGCCACTGG	4	+	Intergenic	No change compared to reference mouse genome
Tgfbr2_off_site9	8:13155901-13155923	GGAATATATGCAAAGGCCAC AGG	4	+	Intergenic	No change compared to reference mouse genome
Tgfbr2_off_site10	6:29249997-29250019	GGAAGATATGAAAAGGCCAC AGG	4	-	Intergenic	No change compared to reference mouse genome

	Location	Sequence	Mismatches	Strand	Туре	Comments-sequencing each locus in gDNA isolated from CRISPR/Cas9 gene edited organoid
Mlh1 gRNA On-site	9:111271459-111271481	TAGTGAACCGCATAGCGGCG GGG	0	-	Exonic	
Mlh1_Off_Site1	12:99158597-99158619	CAGTGAACAGCATAGCGGGG AGG	3	-	Intergenic	No change compared to reference mouse genome
Mlh1_Off_Site2	14:53741961-53741983	TAGTAAACAGCAGCGCGGCG AGG	4	+	Intergenic	Identical to reference mouse genome except for SNP:rs579384457. This SNP present in parental mouse gDNA, i.e. not an off-target event.
Mlh1_Off_Site3	<u>15:84631904-84631926</u>	TAGAGAACAGCATGGGGGCG GGG	4	-	Intergenic	No change compared to reference mouse genome
Mlh1_Off_Site4	<u>15:36853646-36853668</u>	TAGTGATCCCCATAGGGCCG GGG	4	+	Intergenic	No change compared to reference mouse genome
Mlh1_Off_Site5	9:69989986-69990008	TAGTGCACCCCATAGCCTCG GGG	4	+	Intronic	No change compared to reference mouse genome
Mlh1_Off_Site6	10:61247708-61247730	TAGAGAAACGCAGAGCGGGG AGG	4	+	Intronic	No change compared to reference mouse genome
Mlh1_Off_Site7	<u>5:137788331-137788353</u>	TACTGAACCCCACAGCGGAG GGG	4	-	Intronic	No change compared to reference mouse genome
Mlh1_Off_Site8	<u>8:50161834-50161856</u>	TAGTGAACAACAGAGCGGGG GGG	4	-	Intergenic	Repeat sequence, Sanger sequencing not possible
Mlh1_Off_Site9	1:143952103-143952125	TAGAGAACCACATAGTGGTGTGG	4	-	Intergenic	No change compared to reference mouse genome

Supplementary Table 2. Loss of function insertions/deletions (indels) at target sites using CRISPR/Cas9 combined with media selection for correctly targeted organoid clones. Sanger sequencing of each target site allele and resulting change to protein sequence is displayed in the table below. N.B.* we sequenced 7 plasmid clones containing PCR-amplified *p16lnk4a* target genomic sequence and all were identical. This suggests that likely both alleles were altered in an identical manner or a larger deletion has removed the PCR primer sites at the target site for allele 2.


	wt protein	DNA Δ	Change to Protein	DNA Δ	Change to Protein				
		Allele 1		Allele 2					
Rnf43	784 aa	5bp del	p.R246fs* (premature stop 250aa)	10bp del	p.R246fs* (premature stop 272aa)				
Znrf3	913 aa	3bp del	p.T308 <i>del</i> (912aa)	4bp ins	p.T308ins* (premature stop 337aa)				
Tgfβr2	567 aa	13bp del	p.L9fs* (premature stop 51aa)	339bp del	Removes +1ATG translation start site				
p16lnk4a	168 aa	1 bp del	p. S34fs* (premature stop 42aa)	*					
MIh1	760 aa	31bp del	p.L10fs* (premature stop 24aa)	2bp ins+12bp del	p.A19fs* (premature stop 31aa)				

			Serrated Features							_					
	Tumour ID	Туре	eosinophilic cytoplasm	abundant cytoplasm	basal nuclei	vesicular nuclei	prominent nucleolus	luminal serrations	absence of necrosis	mucin	cell balls and papillary rods	Total score	Desmoplastic stromal reaction	Infiltrative growth	Tumour budding
	402	Adenocarcinoma	1	0	0	1	1	0	1	0	0	4	Minimal	Present	Absent
	197	Adenocarcinoma	0	0	1	1	0	0	1	0	0	3	Present	Present	Absent
Braf ^{V600E} ⊿T (n=6)	199	Adenocarcinoma	0	0	1	0	0	1	1	0	0	3	Minimal	Present	Absent
Бішу Ді (11-0)	457	Adenocarcinoma	0	0	1	1	1	0	1	0	0	4	Minimal	Present	Absent
	401	Adenocarcinoma	1	0	1	1	1	0	1	1	1	7	Present	Present	Absent
	403	Adenocarcinoma	0	0	0	0	0	0	1	0	0	1	Absent	Present	Absent
	348	High grade tubulovillous adenoma	0	0	0	0	0	0	1	0	0	1	Absent	Absent	Absent
	349	Adenocarcinoma	0	0	0	1	1	0	1	1	0	4	Present	Absent	Absent
	351	Mucinous adenocarcinoma	0	0	0	0	0	0	1	1	1	3	Present	Present	Present (low level)
	352	Adenocarcinoma	0	0	0	1	1	0	1	0	0	3	Absent	Present	Absent
	353	Mucinous adenocarcinoma	0	0	0	0	0	0	1	1	1	3	Present	Present	Present (low level)
Braf ^{v600E} ∆TRZI	354	Mucinous adenocarcinoma	0	0	0	0	0	0	1	1	1	3	Present	Present	Absent
(n=14)	112	Mucinous adenocarcinoma	0	0	1	0	0	0	1	1	0	3	Present	Present	Present (low level)
	111	Adenocarcinoma	0	0	1	1	0	0	1	1	0	4	Present	Present	Absent
	109	Adenocarcinoma	0	0	1	0	0	0	1	1	1	4	Present	Present	Absent
	108	Adenocarcinoma	0	0	1	0	0	0	1	1	0	3	Present	Present	Absent
	107	Adenocarcinoma	0	0	1	1	0	0	1	1	0	4	Present	Present	Present (low level)
	106	Adenocarcinoma	0	0	1	0	0	0	1	1	0	3	Present	Present	Present (low level)
	105	Mucinous adenocarcinoma	0	0	0	0	0	0	1	1	1	3	Present	Present	Present (low level)
	516	Adenocarcinoma	0	0	0	0	0	0	1	0	0	1	Absent	Absent	Absent
	517	Mucinous adenocarcinoma	0	0	0	0	0	0	1	1	1	3	Present	Present	Absent
Braf ^{V600E} ∆TRZIM	518	Adenocarcinoma	0	0	0	0	0	0	0	0	0	0	Absent	Present	Absent
(n=6)	519	Mucinous adenocarcinoma	0	0	0	0	0	0	1	1	1	3	Present	Present	Absent
	566	Mucinous adenocarcinoma	0	0	0	0	0	0	1	1	1	3	Present	Present	Present (low level)
	567	Adenocarcinoma	0	0	0	1	1	0	1	0	0	3	Minimal	Absent	Absent


Supplementary Table 3. Pathology scoring of mouse tumours for type (WHO classification 4th Ed, 2010), serrated features common to human serrated adenocarcinoma (WHO classification 4th Ed, 2010), the desmoplastic stromal reaction, infiltrative growth and tumour budding properties.

	ES	NES	NOM.p	FDR q-val
Top 5 GSEAs <i>Braf</i> ^{V600E} ⊿T tumour vs normal colon				
REACTOME_SPHINGOLIPID_DE_NOVO_BIOSYNTHESIS	0.539	2.629	0.00	0.013
REACTOME_SPHINGOLIPID_METABOLISM	0.494	2.276	0.00	0.013
KEGG_LYSOSOME	0.452	2.147	0.00	0.018
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY	0.581	1.989	0.00	0.015
KEGG_CHEMOKINE_SIGNALING_PATHWAY	0.638	1.948	0.00	0.016
Top 5 GSEAs <i>Braf</i> ^{V600E} <u>A</u> TRZI tumour vs normal colon				
REACTOME_SPHINGOLIPID_DE_NOVO_BIOSYNTHESIS	0.45	2.267	0.00	0.028
KEGG_LEISHMANIA_INFECTION	0.743	2.145	0.00	0.023
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY	0.556	2.061	0.00	0.022
ST_ERK1_ERK2_MAPK_PATHWAY	0.578	2.045	0.00	0.023
REACTOME_DEADENYLATION_OF_MRNA	0.523	1.97	0.00	0.031
Top 5 GSEAs <i>Braf^{V600E} ATRZIM</i> tumour vs normal colon				
REACTOME_SPHINGOLIPID_DE_NOVO_BIOSYNTHESIS	0.502	2.526	0.00	0.013
KEGG_APOPTOSIS	0.389	2.027	0.00	0.038
ST_P38_MAPK_PATHWAY	0.39	1.93	0.00	0.030
KEGG_LEISHMANIA_INFECTION	0.672	1.889	0.00	0.027
KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY	0.348	1.88	0.00	0.030
Top 5 GSEAs in <i>Kras^{G12D}Apc</i> △/△tumour vs normal				
REACTOME_EGFR_DOWNREGULATION	0.439	2.058	0.00	0.055
REACTOME_ANTIVIRAL_MECHANISM_BY_IFN_STIMULAT ED_GENES	0.33	1.662	0.00	1.000
KEGG_CITRATE_CYCLE_TCA_CYCLE	0.607	1.621	0.00	0.723
KEGG_PYRUVATE_METABOLISM	0.597	1.619	0.00	0.683
REACTOME_GLUCONEOGENESIS	0.595	1.604	0.00	0.644

Supplementary Table 4. Top 5 gene sets enriched for each pair-wise comparison of normal mouse colon with tumour samples. Nominal p values (NOM.p val) all <0.001. Enrichment score (ES), false discovery rate (FDR), normalized enrichment score (NES).

Supplementary Figure 10. GSEA identified differential expression of **(A)** ERK1/2 MAPK pathway transcripts in the BrafV600EATRZI tumours and (B) transcripts upregulated in a human MSI-CRC gene set (Watanabe et al., Cancer 2006;66:9804-8) Res in the Braf^{V600E}∆TRZIM tumours compared to normal colon. Enrichment score (ES), false discovery rate (FDR), normalized enrichment score (NES).

Supplementary Figure 11. Differential expression of spingolipid metabolism transcripts in normal mouse colon and tumours generated from $Braf^{V600E}$ organoid series and $Kras^{G12D/+}Apc^{\Delta/\Delta}$ organoids. qPCR validation of RNAseq leading edge genes from GSEA. Expression of CerS3 is increased and Acer1, CerS6, Col4a3bp, Sgpp2, Sphk2 are decreased in tumours compared to normal colon. Fold induction of mRNA expression is normalized to Gapdh, with transcript level in normal colon set to 1. Results from at least four animals with triplicate technical replicates are shown, error bars denote standard deviation. Two-tailed t-test was used for pair-wise statistical analysis. ns=not significant, *=p≤0.05, **=p≤0.01.