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Supplementary Figures 
 

 
Supplementary Figure 1: Characteristics of 1595 strain dataset 
M. tuberculosis strains were selected to span geography, resistances and phylogenetic space. (a) 
Geographic locations of strain isolation sites. The locations are colored according to the “high 
burden countries” 2016-2020 watchlist categories 1. The size of the circles scale logarithmically with 
the number of strains found in that location. (b) Phylogenetic tree of the 1595 strains (Methods). (c) 
Specific drug characteristics tested across all 1595 strains. Abbreviations: RR, Rifampicin Resistant; 
MDR, Multidrug resistant; XDR, Extensively Drug Resistant; NT, Not Tested.  
 
 
 
 
 



 

Supplementary Figure 2: M. tuberculosis pan-genome characteristics  
(a) Distribution of the core, unique, and accessory genes across the pan-genome. (b) Products 
annotated across the pan-genome clusters in ranked order.  (c) The number of protein clusters in 
the pan-genome against the number of M. tuberculosis strains. The green line indicates the size of 
the pan-genome as M. tuberculosis strains are added to the pan-genome. The blue line indicates the 
size of the core genome with addition of new strains.  
 
 



 
Supplementary Figure 3: Pan-genome quality check, characteristics, and 
allele-centric view.  
(a) Distribution of M. tuberculosis luster size across the 1595 strains. (b) Number of unique clusters 
per strain in our dataset. (c) Change in unique pan-genome percentage according to change in strain 
cutoff values. (d) Change in core pan-genome percentage according to strain cutoff values. (e) Fit of 
median unique genome line on Heap’s power law. The y-axis is the normalized # of new genes 
discovered (note that this axis is not logarithmic). The x-axis is a logarithmic number of strains 
added to pan-genome. (f) Distribution of the functional characterized pan-genome across COG 
categories. (g) Higher resolution view of genetic variation and subsequent calculation of pairwise 
associations. The allele pan-genome was constructed by separating out sequences of exact 
similarity (i.e. 100% amino acid conservation) into separate columns. Therefore, each column in the 
allele pan-genome matrix corresponds to the frequency of a unique allele across the 1595 strains. 
Alleles that were found in less than 5 strains were taken out of the analysis. The mutual information 
between each binary absence/presence allele vector (blue) and each AMR phenotype vector (red) 
was taken. 
 
 
 
 
 



 
Supplementary Figure 4: Illustration of multi-layered analysis workflow. 
A support vector machine (SVM) was trained on random subsets of the total population with equal 
size (i.e., bootstrapping). The SVM utilized an L1-norm and stochastic gradient descent (SGD). Due to 
the randomness and L1-norm, the SVM may choose different features with different weights for 
each subset. Correlation matrix between the alleles was determined from the ensemble of SVMs. 
Large positive correlations correspond to alleles whose weights often appear together and are of the 
same sign (i.e., positive and positive, or negative and negative). Large negative correlations 
correspond to alleles whose weights often appear together but are of different signs (i.e., positive 
and negative). Significant correlations were evaluated using logistic regression models and 
visualized using allele co-occurrence tables. Mapping alleles of both high ranked genes and 
correlated genes concluded the quantitative analysis. 
 



 
Supplementary Figure 5: Ensemble ROC curves for SGD-SVM predictions 
Ensemble ROC curves for SGD-SVM (stochastic gradient descent support vector machine) 
predictions of different AMR classifications. (a) First-line drugs: isoniazid, rifampicin, ethambutol, 
and pyrazinamide. (b) Second-line drugs of fluoroquinolones: ofloxacin and moxifloxacin, and (c) 
aminoglycosides: kanamycin, amikacin, capreomycin. (d) Other antibiotics: 4-aminosalicylic acid, 
cycloserine, ethionamide, streptomycin. (e) MDR (multidrug resistant) and XDR (extensively drug 
resistant) classification. MDR is defined as M. tuberculosis strains that are resistant to at least 
Isoniazid and Rifampicin. XDR is defined as M. tuberculosis strains that are MDR and resistant to at 
least one second line aminoglycoside (i.e., amikacin, kanamycin, or capreomycin) and resistant to at 
least one second line fluoroquinolones (i.e. ciprofloxacin, ofloxacin, moxifloxacin). The average AUC 
was calculated by averaging over AUCs for the 200 independent SGD-SVM ROC curves. The y-axis is 
the true positive rate and the x-axis is the false positive rate. For ethionamide, a logistic regression 
estimator using both an L1-norm and SGD was used instead of the SVM due to have a significantly 
larger AUC (0.79) than the SVM (0.71) 
 



 
Supplementary Figure 6: Pairwise correlation of ethambutol genetic features 
across ensemble of SGD-SVM simulations. 
(a) SVM weightings across the hyperplane ensemble. The x-axis represents the iterations for each 
unique SVM simulation. The y-axis represents the alleles selected by each SVM. Red corresponds to 
a positive weighting while blue corresponds to a strong negative weighting. The alleles of embB, 
ubiA, and embR are highlighted in green. (b) Clustering of ethambutol allele correlation matrix. The 
color blue corresponds to a negative correlation while a blue color corresponds to a positive 
correlation. The y-axis is shown since the figure since the x-axis is the mirror of the y-axis. The 
alleles of embB, ubiA, and embR are highlighted in green.  
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 7: Case-controls for relating MoA with uniprot 
annotated protein structural features. Mutation tables and uniprot color annotations are 
shown for katG, rpsL, thyA, rpoB, and embB. 
 
 
 

Supplementary Tables 
 

Supplementary Table 1 
 

Virulence Factor Accessory 
Genes 

Gene product annotation 

Rv3478 PPE family protein 

Rv1818c PE-PGRS family protein 

Rv0355c PPE family protein 

Rv2123 PPE family protein 

Rv0304c PPE family protein 

Rv1361c PPE family protein 

Rv1787 PPE family protein 

Rv1196 PPE family protein 

Rv1789 PPE family protein 

Rv1790 PPE family protein 

Rv1168c PPE family protein 

Rv3343c PPE family protein 

Rv1651c PE-PGRS family protein 

Rv2396 PE-PGRS family protein 



Rv3022A PE family protein 

Rv1386 PE family protein 

Rv1788 PE family protein 

Rv2351C Phospholipase C 4 precursor (EC 3.1.4.3) 

Rv2349C Phospholipase C 4 precursor (EC 3.1.4.3) 

Rv2350C Phospholipase C 4 precursor (EC 3.1.4.3) 

Rv1755c Phospholipase C 4 precursor (EC 3.1.4.3) 

Rv3487c Esterase/lipase 

Rv3084 Esterase/lipase 

Rv0982 Osmosensitive K+ channel histidine kinase KdpD (EC 2.7.3.-) 

Rv0171 MCE-family protein MceC 

Rv0867c Resuscitation-promoting factor RpfA 

Rv2192c Anthranilate phosphoribosyltransferase (EC 2.4.2.18) 

Rv1915 Isocitrate lyase (EC 4.1.3.1) 

Rv1940 3,4-dihydroxy-2-butanone 4-phosphate synthase (EC 
4.1.99.12) / GTP cyclohydrolase II (EC 3.5.4.25) 

Rv3020c ESAT-6-like protein EsxG 

Rv3019c ESAT-6-like protein EsxH, 10 kDa antigen CFP7 

Supplementary Table 1: Pan-genome partitioning of virulence factors. 
 
 
Supplementary Table 2 
 

Counteractome 
categories 

Counteractome 
genes 

Pan-genome 
partition 

Adenylate Cyclases Rv0891c Core 
  Rv1359 Accessory 
  Rv2435c Core 
  Rv1358 Accessory 
  Rv2488c Core 
  Rv0386 Core 
  Rv1264 Core 
  Rv1625c Core 
  Rv1900c Core 
  Rv2212 Core 
  Rv1647 Core 
  Rv1318c Core 
  Rv1319c Accessory 
  Rv1320c Core 
  Rv3645 Core 

Tryptophan 
starvation Rv2192c Accessory 

  Rv2246 Core 
  Rv1612 Core 
  Rv3160c Core 
  Rv1609 Core 
  Rv1053c Accessory 
  Rv3374 Core 
  Rv2661c none 
  Rv1559 Core 
  Rv1013 Core 
  Rv2283 none 



  Rv0346c Core 
Nitrosative stress Rv0757 Core 

  Rv3283 Core 
  Rv3270 Core 
  Rv1620c Core 
  Rv1622c Core 
  Rv2563 Core 
  Rv0467 Core 
  Rv3855 Core 
  Rv0561c Core 
  Rv3200c Core 
  Rv2476c Core 
  Rv2047c Core 

Acid stress Rv1621c Core 
  Rv1623c Core 
  Rv1622c Core 
  Rv1620c Core 

Acid stress buffer Rv0536 Core 
  Rv2282c Core 
  Rv1339 Core 
  Rv2665 Unique 
  Rv2943A Unique 
  Rv1717 Accessory 
  Rv1620c Core 
  Rv0326 Core 
  Rv1621c Core 
  Rv1623c Core 
  Rv2630 Core 
  Rv0612 Accessory 
  Rv1287 Core 
  Rv2758c Core 
  Rv3229c Core 
  Rv3203 Core 
  Rv2089c Core 
  Rv3013 Core 
  Rv1622c Core 
  Rv1284 Core 
  Rv0324 Core 

Supplementary Table 2: Pan-genome partitioning of counteractome genes. 
 
 
Supplementary Table 3 
 

Drug Threshold Key clusters filtered 
Ethionamide 200 Cluster 2122 (ethA) 
Pyrazinamide 175 Cluster 3930 (pncA), Cluster 1613 (pncA) 
Ethambutol 190 Cluster 551 (embB), Cluster 4244 (ubiA) 

Isoniazid 200 Cluster 1116 (katG) 
Rifampicin 195 Cluster 491 (rpoB), Cluster 415 (rpoC) 
Amikacin 195 - 

Ciprofloxacin 195 - 
Cycloserine 215 - 
Kanamycin 200 - 

Moxifloxacin 205 - 
Nicotinamide 180 - 

Ofloxacin 210 Cluster 893 (gyrA) 
Capreomycin 190 - 



4-aminosalicylic acid 220 Cluster 4486 (thyA) 
Rifabutin 185 - 

Streptomycin 175 Cluster 7435 (rpsL), Cluster 5240 (gidB) 
Supplementary Table 3: Scikit-learn SVM thresholds and pan-genome clusters filtered for each 
drug simulation. The alleles listed as key clusters filtered are those that were only allowed for 
simulations in the corresponding drug in the row. For example, all alleles within Cluster 2122 (ethA) 
were not accounted for as genetic features in the simulations for all drugs except for ethionamide. 

 

Supplementary Discussion 
 
Characteristics of 1,595 Strain M. tuberculosis dataset 
 
The chosen  strains come from a wide range of studies 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18. Because Africa 
exhibits the most diverse set of M. tuberculosis strains in the world 19, a third of our strains were 
isolated in South Africa (Supplementary Fig. 1a). Furthermore, the chosen dataset constitutes a wide 
spectrum of isolation hotspots, ranging from 144 strains in Sweden to 141 strains in Belarus. Notably, 
78 strains were isolated from South Korea, a country that has endured a significant increase in M. 
tuberculosis incidence since 2005 1. In total, 70% of the selected strains were in “high burden 
countries” 1. 
 

Characterizing the M. tuberculosis pan-genome 
 
Following selection of the representative set of M. tuberculosis genome sequences, we determined 
the pan-genome (i.e., the union of all genes across all strains) represented by these data (Methods). 
We categorized the genome content across all 1,595 strains as “core” (the set of genes shared by at 
least 1590 strains), “accessory” (the set of genes present in some, but not all, strains), or “unique” 
(the set of genes found in at most 5 strains) 20 21; the cutoffs for each of these categories were 
evaluated using sensitivity analyses (Methods). The resulting pan-genome consisted of 11,039 
clusters, where each cluster represents a grouping of protein variants determined to be sufficiently 
similar to each other (i.e., >80% sequence similarity). Using these partitioning criteria, the core, 
accessory, and unique genomes were composed of 3,419 genes (31%), 2,402 genes (21.8%), and 5,218 
genes (47.3%), respectively (Supplementary Fig. 2a). The core genome made up 80% of the average 
genome in our dataset, a result in agreement with the hypothesis that M. tuberculosis is a clonal 
species 22. This diversity is in stark contrast to that of Escherichia coli, which has a core genome 
percentage estimated to be between 20% and 50% of the average full E. coli genome 23, and 
Staphylococcus aureus, where we recently calculated the core genome to comprise 56% of the 
average genome 21. Furthermore, we found that virulence factors were highly conserved in the M. 
tuberculosis core genome (93%, 414/445 genes) (Supplementary Table 1 and Supplementary 
Discussion). 
 
The remaining 7,620 genes that comprise the accessory and unique genomes represent the genetic 
variability across M. tuberculosis strains. A significant portion of the unique and accessory genome 
was attributed to Pro-Glu (PE)-related proteins and hypothetical proteins (Supplementary Fig. 2b). 



Specifically, PE-related proteins represent products that contain the characteristic motifs Pro-Glu 
(PE), Pro-Pro-Glu (PPE), or polymorphic GC-rich sequence motifs (PE-PGRS) 24 and make up 
approximately 10% of the average M. tuberculosis coding capacity 25. Because of  significant variation 
in both PE-related proteins and hypothetical proteins, we computed the shape of the pan-genome 
by filtering out PE/PPE genes and genes with lengths that were significantly longer (>1 standard 
deviation) than the mean gene length of 1000 bp, which are likely result of sequencing or annotation 
errors. In total, this led to the removal of 1,335 genes clusters from the pan-genome.  The majority of 
these genes (826) were PE/PPE genes. Following the removal of these genes we find that the pan-
genome is closed for our 1595 strains of M. tuberculosis (Supplementary Fig. 2c). 
 
 

Pan-genome COG Categories 
 
We used eggNog with the eggNog-mapper tool 26 to functionally categorize the pan-genome into 
Clusters of Orthologous Groups (COGs) 27 (Supplementary Fig. 3f). We filtered out clusters 
annotated as PE genes or those marked as hypothetical proteins in order to focus on the 
functionally characterized pan-genome. The core genome made up less than 50% of the clusters 
annotated with defense mechanisms (V), signal transduction mechanisms (T), inorganic ion 
transport and metabolism (P), and secondary metabolism (Q) COGs. In contrast, the core made up 
more than 70% of clusters annotated with intracellular trafficking, secretion, and vesicular transport 
(U), and translation, ribosomal structure and biogenesis (J).  
 

Virulence factors are highly conserved in the core genome 
 
The pathogenicity of M. tuberculosis can be partly attributed to its unique set of virulence factors, 
whose variable distribution may provide further insight into pathogenic requirements. Thus, we 
determined the distribution of 445 virulence factors, curated by the PATRIC database 28, across the 
constructed pan-genome. Of the 445 virulence factors, 7.0% (31 genes) were in the accessory 
genome and 93.0% (414 genes) were in the core genome (Supplementary Table 1). Of the 31 
accessory virulence genes, 17 were PPE/PE/PGRS genes (Supplementary Table 1). Also partitioned 
in the accessory genome was a set of six virulence factors composed of genes encoding the 
phospholipases C (plcC, plcD, plcA, and plcB) 29, and lipR (a lipolytic esterase). The remaining eight 
virulence factors found in the accessory genome were kdpD, mceC, rpfA, trpD, aceAa, ribA1, Rv0969, 
and ctpV, and two ESAT-6 like proteins, esxG and esxH. esxG and esxH comprise part of the ESX-3 
secretion system involved in mycobactin-mediated iron acquisition but may play an additional role 
in virulence 30. The isocitrate lyase subunit (aceAa) is a nonessential gene within the glyoxylate shunt 
and is downregulated in antibiotic conditions 31.  
 
In addition to virulence factors, we investigated the “CD4 counteractome”—defined as the specific 
set of genes necessary for coping with the immune environment generated by CD4 T cells 32. We 
found that all of the genes were partitioned in the core genome with the exception of a trpD, Rv1053, 
and three adenylate cyclases (Rv1358, Rv1359, and Rv1319c) (Supplementary Table 2). Interestingly, 
the existence of an alternative tryptophan biosynthesis pathway suggested by 3334 is supported by 
the partitioning of trpD in the accessory genome. 
 



Among the accessory genes found in the virulome and counteractome, trpD (anthranilate 
phosphoribosyltransferase) stood out as it is an essential tryptophan biosynthesis gene. 
Interestingly, in a study comparing trpE and trpD deleted strains, it was found that the trpE deleted 
strains had a 100,000 fold loss of viability after 2 weeks in contrast to the trpD deleted ones which 
could not achieve such a level after 13 weeks3334. Zang et al. hypothesized that such a difference 
could either be due to either “an accumulation of intermediary metabolites or an as of yet 
undescribed alternative tryptophan biosynthesis pathway”34. In our case, the partitioning of trpD to 
the accessory genome could either be due to the absence of trpD in 1000+ strains or due to trpD 
having significant sequence variability. A quick check on the PATRIC database corroborates our 
findings in that many strains lack an annotated trpD. Given the drastic experimental differences 
between trpD and trpE deletions and the rare occurrence of accessory virulence factors, we believe 
that the significant absence of trpD in the constructed pan-genome supports the claim that there is 
an alternative Tryptophan biosynthesis pathway in M. tuberculosis.  
 
 

Motivation for using mutual information and observation of shared AMR 
signals across multiple antibiotics 
 
In our study, mutual information (MI) was used to quantify the dependence between the labeled 
phenotype distribution of a specific drug (resistant or susceptible) and the distribution of a specific 
variant (presence or absence), across all tested strains (Supplementary Figure 3g). MI was chosen 
due to having many statistical benefits, which include being a nonparametric method that can 
quantify nonlinear relationships unlike Pearson’s correlation which measures a linear relationship. 
MI has proven to be a natural and powerful means to equitably quantify statistical associations in 
large datasets 35. In addition to key AMR genes (Fig. 1), mutual information picks up a other known 
resistance-conferring genes including ethA (Rv3854) 36, papA2 (Rv1182) 37, drrA (Rv2936) 38, drrB 
(Rv2937) 38, gidB (Rv3919c) 39, moeW (Rv2338c) 40 and ubiA (Rv3806c) 41 42 (Supplementary Data 1). 
 
MI showed that the variants associated with the highest signals are often those representative of 
susceptible rather than resistant phenotypes, thus indicating that knowledge of the presence of a 
susceptible variants in M. tuberculosis holds more informational value in determining the AMR 
phenotype.  
 
It is important to note that M. tuberculosis treatment consists of the combined use of multiple drugs, 
which in turn make many M. tuberculosis strains (reflected in their genomes) resistant to multiple 
antibiotics. Therefore, it comes as no surprise that key resistance-determining genes showed up as 
tall peaks with other drugs (Fig. 1). These multi-antibiotic resistant M. tuberculosis strains make 
relating a specific variant to a AMR challenging 43 44. 
 
 

Motivation of ensemble support vector machine and limitations 
 
Although simple and effective, mutual information does not account for the relationship between 
interacting alleles since the pairwise calculations consider variants independently of one another. In 
order to uncover possible structures in our dataset related to AMR, we used a Support Vector 



Machine (SVM) to select AMR-associated alleles. We introduced both unstable and randomized 
behavior in the SVM by using an L1-norm penalty and stochastic gradient descent. A “noisier” SVM 
was used in order to address the following two inherent biases in the AMR data: (1) that the binary 
AMR phenotype (resistant or susceptible) is biased towards in vitro drug testing conditions, and (2) 
that the binary AMR phenotype does not account for varying levels of drug efficacy which may 
determine high level resistance. We looked at an ensemble of noisy SVM simulations for each drug 
in order to get a notion of significance (genes that pop out in many simulations are more likely to be 
significant) (Methods). 
 
The unstable and randomized SVM method may slightly relieve the bias introduced by the AMR 
phenotypes (resistant or susceptible) experimentally determined from in vitro testing conditions. As 
noted earlier, the host environment of M. tuberculosis is drastically different from the one 
encountered in the petri dish, and such differences influence the efficacy of drugs 45. Moreover, the 
AMR phenotype is binary and does not consider variation in the drug concentration profiles. 
Therefore, “explaining resistance” by finding a minimal set of mutations that best explains the in 
vitro AMR phenotypes may not capture subtle genetic adaptations. Other possible influential 
adaptations, however, such as those under the complex resistance category that have been shown 
to result in varying levels of resistance 41, may be hidden within the genomic data. Thus, this  “loose” 
machine learning method extracts features from suboptimal peaks as well as from areas 
surrounding the global optima. Furthermore, it is important to note that current treatments of M. 
tuberculosis infection consists of the combined use of multiple drugs, which in turn make many M. 
tuberculosis strains resistant to multiple antibiotics.  
 
A key biomarker that was not uncovered was the streptomycin AMR-determinant, rrs, because only 
protein coding genes were taken into account in our analysis. We find many cell wall genes 
implicated in the analysis as well including pks12 46, pks9, pks2, dprE1, pks7, pks1 , pks6, ltp1, and ddpX. 
Furthermore, many implicated alleles occur in sulfur metabolism including cysK2, serA1, moaE2, mec, 
and metZ. The presence of cydC as an implicated gene was interesting because studies have shown 
that it is important for host immune response and that disruptions in cydC affect antibiotic efficacy 
47,48.  
 

Defining SNPs is not required for identification of AMR genes 

Defining SNPs relative to the M. tuberculosis H37Rv reference strain has provided the foundation 
both for diagnostics and for identifying novel resistance-conferring mutations but has limited a 
comprehensive and unbiased analysis of the M. tuberculosis AMR mutational landscape 44,49,50 51. Our 
representation of genetic variation and subsequent identification of key AMR genes demonstrates 
that reference-based genetic variation is not required for comprehensively identifying AMR genes. 
Rather, by representing genetic features as exact allele sequences, each strain in our dataset 
contains a single genetic feature for each of its genes, which removes potential confounding effects 
that may arise when multiple genetic features appear in a single gene. 
 

Limitations of our view of genetic variation  
The primary limitation in our view of genetic variation is that we do not account for non-protein 
coding genes. Therefore, our analysis is unable to identify known non-protein coding genes that 



confer resistance such as eis and rrs. Furthermore, by only looking at protein sequences, we do not 
account for synonymous SNPs, which have been shown to confer resistance 41. While we focused our 
view on protein-coding genes and their protein sequences, there is no limitation in the ability of our  
computational platform to account for non-protein coding genes and synonymous SNPs. 
 

Machine learning enables increased identification of known AMR genes over GWAS  
Our results suggest that a machine learning approach that accounts for multi-dimensional 
correlations is more powerful than a typical GWAS-based approach that tests positions on the 
genome individually for association with a phenotype 52. Implementing an ensemble SVM identified 
33 known AMR genes, including an additional 7 gene-to-antibiotic relations absent from our lists 
derived from pairwise statistical associations. Our observation of significant correlations between 
embB, ubiA, and embR implied that machine learning may provide a base for the quantitative analysis 
of epistatic interactions. In particular, our pipeline identified an optimal mapping between multiple 
genetic features and AMR phenotypes. This mapping elucidates complex relations underlying AMR 
evolution that are hidden from simple GWAS analysis. While we utilized an SVM for its clarity, future 
efforts may implement machine learning methods capable of capturing more complexity, or 
integrate phylogenetic constraints in the optimization problem. 
 

Adaptations in toxins are associated with XDR in M. tuberculosis  
In addition to analyzing the resistance to individual antibiotics, we looked at AMR genes predicted to 
contribute to MDR (multidrug-resistant, AUC: 0.96) and XDR (extensively drug-resistant, AUC: 0.92) 
strains of M. tuberculosis. In XDR cases, mazF3 (Rv1102c) appeared as the top 5th allele and vapC21 
(Rv2757c) appeared as the 10th ranked allele, both of which ranked higher than alleles of known AMR 
determinants such as gyrA, embB, ethA, katG, thyA, ppsA, and pncA (Supplementary Data 2). Notably, 
mRNA levels of mazF3 have been shown to be induced 6.0-, 8.9-, and 8-fold by isoniazid, 
gentamycin, and rifampicin, respectively, when grown in a non-replicating, starved state 53. The 
hyperplane weights for mazF3 and vapC21 showed that mazF3 allele 6 and vapC21 allele 7 were 
selected as determinants for resistance and susceptibility, respectively. In addition to the mentioned 
XDR-associated toxins, other implicated AMR toxins that appeared across the antibiotics include 
mazF5 (8th rank, PAS), higA (30th rank, PAS), vapC2 (21th rank, ETH), higB (49th rank, EMB). In 
particular, mazF5 is part of a toxin-antitoxin module (mazF5-mazE5) that has been shown to be in 
the top five most differentially expressed genes in a XDR M. tuberculosis strain 54. The uncovering of 
toxins by our machine learning approach complements and extends recent experimental studies by 
relating toxin variation to host-relevant AMR evolution. 
 

Epistatic and protein-structure-guided generation of experimental hypothesis  
Extending our sequence-based view of these implicated AMR genes by mapping alleles to protein 
structures provides a basis for inferring the causal driver of adaptation. We found that the two 
resistant-dominant alleles of oxcA uniquely share a SNP A253S located within the thiamin 
diphosphate-dependent enzyme M-terminal domain, which led us to hypothesize that the SNP 
A253S promotes acid stress resistance through increased enzyme efficiency. Observation that oxcA 
SNP A253S occurs in the background of katG S315T suggests the use of acidic stress and M. 
tuberculosis strains carrying the S315T harbinger mutation 14 in experimental interrogation of oxcA in 
high-level isoniazid resistance.  



 
Given the difficulty of experimenting with M. tuberculosis—where slow growth rate, host-irrelevant 
media conditions, and biosafety level 3 requirements burden experimentalists—our results 
demonstrate that an additional interpretation of computationally-derived mutations by analyzing 
protein structures may accelerate experimental investigation of this deadly pathogen. Beyond 
mutation proximality and feature incidence, future efforts may better utilize protein structures by 
estimating changes in biochemical properties due to mutations, such as changes in metabolite or 
cofactor binding affinities 55. 
 

Geographic contextualization suggests modulation of antibiotic treatment  
Our geographic contextualization of the implicated AMR genes identifies novel genetic adaptations 
specific to Belarus—a country that had the highest rate of MDR M. tuberculosis strains in the world 
between 2015-2016 1. While studies have described the genomic composition of Belarus strains in 
terms of the commonly used AMR genes 56, our identification of resistant-dominant alleles within 
Rv3848, oxcA, kdpC, dnaA, and vapC21 demonstrates that the focused view of genetic variation is 
limiting. Modulation of treatment regimens may reflect these genetic adaptations by removing 
isoniazid, streptomycin, and ethambutol. Furthermore, observation that susceptible dominant alleles 
of thyA, mmpL11, and ald are localized in Belarus suggests that a combinatorial antibiotic regimen 
based on PAS and d-cycloserine may increase the likelihood of effective MDR M. tuberculosis 
treatment. We believe that additional epidemiological perspectives should enable actionable insight 
to the problem of poor M. tuberculosis management. 
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