
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Review of "Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome 
identifies genetic signatures of antibiotic resistance"  
 
 
 
Summary  
 
Kavvas et al have analysed 1595 M. tuberculosis genomes from the PATRIC database, along with 
phenotypic data (drug resistance), and sought to find mutations which cause drug resistance, and 
potential epistatic interactions. They start by ignoring the non-coding genome, and then build an 
allelic representation of all the gene sequence present in these samples. After decomposing this 
sequence into distinct chunks, (this can be seen as similar to that seen in graph representations of 
pan-genomes, such as Jaillard et al (https://www.biorxiv.org/content/early/2017/03/03/113563)), 
they use mutual information between presence-absence vectors of sequence markers and antibiotic 
resistance profiles to search for antibiotic resistance genes. This works strikingly well, finding the 
known genes rpoB, pncA,embB, rpsL, katG and gyrA - we return to this below. The authors then go on 
to use support vector machines to discover more associations, and then map their findings onto 
structures where possible. As an aside, they also report some analyses of the pan-genome of M. 
tuberculosis which perhaps is not that relevant to this paper.  
 
 
 
This is an interesting paper which performs novel and interesting analyses which are a contribution to 
the community - I think it should be published, but there are a few issues I would like to resolve first.  
 
 
 
Major issues  
 
1. Drug resistance in M. tuberculosis has evolved and spread in response to our use of anti-tubercular 
drugs. Ever since drug resistance first started to evolve during clinical trials, treatment has involved 
multiple drugs. Current best practise involves four first-line drugs as a standard regiment - isoniazid, 
ethambutol, pyrazinamide and rifampicin. As a result, samples are rarely exposed to just one drug, 
amnd drug resistances tend to co-occur. It is therefore difficult a priori (for me) to see how a purely 
genotype and phenotype -driven method can possibly tell which gene is associated with which drug. 
Indeed the authors mention that the dataset is 59% resistant to Rifampicin and 59% resistant to 
Isoniazid (I assume there is a huge overlap between these sets), so it might be hard to tell which 
gene associates which which drug. Indeed, if you look at Figure 2, the highlighted peak for isoniazid is 
in katG, and presumably is the well-known single dominant mutation - but there is a much higher 
peak to the left, which is unlabelled, and is very close to a labelled rpoB allele. Is this in fact an 
example of this issue? Furthermore, the highlighted rpoB allele is clearly also associated with peaks for 
pyrazinamide, streptomycin, isoniazid resistance also. I don't think this is a failing in the paper, but it 
would be good to be clearer. The MI method is essentially looking for association with AMR profiles, 
and it would be interesting to see if there is a systematic way to deconvolve out an association of a 
region (gene) with a drug.  
 
2. I would like to understand how we distinguish epistasis, as discovered by the method in this paper, 



from lineage effects (see Earle et al, mentioned above for more discussion). Any allele in tight linkage 
with an AMR allele will have equivalent signal by the method in this paper (Kavvas et al I mean, not 
Earle et al), and so we would expect to see association with other alleles, across the genome, that 
happen to be in linkage with the AMR gene (ie on the same branch of the phylogeny). Are the authors 
effectively relying on homoplasy to remove this confounding?  
 
3. I am not very convinced at all about the mapping onto structures section of the paper. The authors 
seem to be drawing confidence from finding mutations are either close to the binding site or located in 
a domain that appears biochemically important - however there are lots of examples where that may 
well be so and the mutation has no effect, and contrary examples where the mutation is miles away 
but is resistant.  
 
4. The section on the pan-genome being open is not really relevant to this paper. It is already well 
known that there is little if any horizontal gene transfer into M. tuberculosis ; the signal seen in the 
PE/PPE genes seems to me likely to be due to non-allelic recombination events leading to diversity. I 
think it is interesting that this much diversity is being seen, but I don't think most people would see 
this as causing an open pan-genome, as they are not novel genes with new functions (eg compare var 
genes in P. falciparum). The way alleles have been defined is nice, and useful, but the pan-genome 
open-ness feels to me like a tangent. I'm not explicitly asking for it to be removed, but if in revision 
the authors need space to give better exposition for something else, to my mind losing the open pan-
genome stuff would be no big loss to this paper (although I would like it published so I could reference 
it!)  
 
 
 
Other issues  
 
 
 
1. On line 135 the authors mention that their results show that exact sequence match and allele 
frequencies alone are enough to identify AMR genes. This is correct, but also well known from the 
various methods that use K-mer presence to detect causal alleles - for example Earle et al 
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049680/), Jaillard et al mentioned above, and Lees 
et al (https://www.nature.com/articles/ncomms12797)  
2. Compensatory mutations were mentioned, but not the well known rpoC compensatory mutation for 
rpoB resistance - is this maybe there in the data but not highlighted?  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
To be best of my knowledge this is the first time Support Vector Machines are used to identify drug 
resistance genes in Mtb and epistatic interactions.  
 
Although I understand that wet-lab experimental validation of the candidate loci may be outside the 
scope of this study, a biological interpretation and mechanistic insights about the role of novel genes 
and epistatic interactions is currently lacking.  
 
Find below a list of necessary changes before this work can be published:  
 
- Table 1. There are only six genes with a superscript 1 in Table 1, which does not add to the 



“additional seven known AMR gene-antibiotic relations”  
 
- Supplementary Data File 2. The gene_name column in sheets 2-11 does not always contain the 
expected gene name for its corresponding Rv name, which makes interpretation difficult. For instance, 
the locus RV1908C should have ‘katG’ as its gene name and Rv2043c should have ‘pncA’.  
 
- I find striking that RV2043C/pncA is labelled as an accessory gene (Supplementary Data File 2, 
pyrazinamide_SVM_SGD sheet). Have the authors check if Mtb strains lacking pncA or with truncated 
versions of it are pyrazinamide resistant? Loss of PZase enzymatic activity encoded by pncA is the 
most frequent mechanisms of pyrazinamide resistance.  
 
Line 155. “SVM method revealed an abundance of AMR-implicated genes involved in metabolic 
pathways”. The authors should quantify what they mean by “abundance” here, for example as a 
percentage, so that this value can be compared to that of the 73% among known AMR-determinants.  
 
Line 158. “We found over 30 genes related to cell wall processes”. The authors should provide a 
percentage here.  
 
Figure 3. Both in Figure 3 and throughout the text the authors should refer to the actual genetic 
variants (annotated as amino acid changes) as opposed to numbered alleles only. Otherwise, the 
readers won’t be able to identify what mutations are found to be associated with drug resistance and 
those involved in epistatic interactions.  
 
Line 214. The authors state that “embR alleles appeared sparsely across the ensemble of SVM 
hyperplanes”. This statement uses very technical terms and it is hard to interpret. Is this the result of 
embR alleles being rare in the population?  
 
Line 223. The authors state that “resistant-dominant ubiA alleles (i.e., those with high positive LOR), 1 
and 3, occurred exclusively in the background of non-susceptible-dominant embR alleles”, however, in 
Figure 3a, it looks like ubiA alleles 2 and 4 are the ones co-occurring with embR alleles 2 and 4. Please 
check.  
 
Line 226. The authors state that “Furthermore, neither embR nor ubiA were significantly associated 
with ethambutol AMR in pairwise associations tests”. Can the authors explain why these two genes 
were not identified in pairwise association tests? Is the because of a lower allele frequency of 
mutations in these two genes in the population as opposed to common embB mutations?  
 
Supplementary Data File 4 contains a lot of different co-occurrence tables. Numbered alleles should be 
annotated to represent actual genetic variants and amino acid changes so that these results can be 
compared to previous studies.  
 
Line 244. It is not clear to me what the authors mean by “the variation in AMR phenotypes across the 
different alleles were determined to be significant by the machine learning algorithm and thus 
motivated further investigation.”.  
 
Section “Machine learning uncovers genetic interactions contributing to AMR”. The strictly clonal 
population structure of Mtb, which is divided into seven lineages and these further split into sub-
lineages, may have confounded the epistatic analysis. The authors should make sure that co-
occurrence of alleles from different genes among resistant strains happens across different genetic 
backgrounds (i.e. lineage/sub-lineages) to provide further evidence of this putative epistatic 
interaction. For instance, in Figure 3b, katG allele 3 co-occurs frequently with oxcA alleles 2, 3, 6 and 



7; do the 78 strains containing both katG allele 3 and oxcA allele 2 belong to the same Mtb sub-
lineage? If so, this putative epistatic interaction may be the result of linkage (hitch-hiking) of these 
mutations in the same clonal background and therefore a likely false positive. If these 78 strains 
belong to different genetic backgrounds (i.e. lineage/sub-lineages), then this provides evidence of 
independence acquisition of these mutations. The authors can make use of existing SNP typing 
schemes (Coll et al. 2014) and/or construct a robust whole-genome phylogeny (See comment below).  
 
 
Methods:  
 
Line 545. M. tuberculosis strain dataset. The authors state that they “selected a representative set of 
1,595 M. tuberculosis strains for which AMR testing data was available from the PATRIC database”. On 
the 6th of March 2018, the PATRIC database has 9,314 available M. tuberculosis genomes 
(https://patricbrc.org/view/Taxonomy/1773#view_tab=genomes). The authors should at least 
prepare a supplementary data file with information on the 1,595 used in this study, including their 
ENA or Genbank accession numbers; and cite not only the PATRIC database but the publication where 
isolates where originally sequenced and presented. The authors should note that they should not 
make use of unpublished genomes.  
 
Line 554. In addition to the use of CD-hit package, the authors may want to use another stablished 
bioinformatics tool to characterise bacterial pan-genomes: (Page et al. 2015). If both CD-hit and 
Roary yield similar results, the readers will be more confident about the pan-genome analysis.  
 
Line 571. The phylogenetic approach used by the authors is not valid. Given that the whole-genome 
sequences of the 1,603 strains are available, the authors must make use of SNPs at the core genome 
to create a whole-genome phylogeny that is comparable to that already published ((Coll et al. 2014), 
(Comas et al. 2013)). Selection of just a few housekeeping genes is not enough to obtain a high-
resolution phylogeny required for this type of genomic studies. Furthermore, four of the seven 
housekeeping genes chosen (rpoB, katG, gyrA and rpoC) are likely to contain homoplastic SNPs 
among resistant strains that will inevitably distort the phylogeny.  
 
Line 589. The authors state that “M. tuberculosis has an open pan-genome.” The authors also note 
that “a significant portion of the unique and accessory genome was attributed to Pro-Glu (PE)-related 
proteins and hypothetical proteins (Fig. 1b).” These results could be the result of assembly and/or 
gene annotation artefacts. PE/PPE genes have a high GC content, which results in lower depth of 
coverage in these regions, and some members of this family of genes are highly repetitive, which 
make them inherently difficult to assemble from short sequence reads generated by Illumina 
sequencers. Fragmented assemblies at the boundaries of PE/PPE genes might lead to a higher number 
of predicted PE/PPE clusters. In order to rule out the possibility of assembly artefacts confounding the 
pan-genome analysis, I would recommend the authors repeat the pan-genome analysis using the 
subset of ‘Complete’ Mtb genomes sequenced using long-read sequencing (PacBio) and compare their 
results with those of the whole dataset. The authors should also measure the length of newly 
identified genes as they add more strains. Are newly identified genes shorter than core-genome genes? 
If so, they could be the result of miss-assemblies. The other necessary check is to quantify the 
amount of new DNA sequences (in base pairs) as more strains are added to make sure that the 
increasing number of new genes observed matches with an expected increase in new DNA sequences. 
The authors should perform these extra analyses before stating that “M. tuberculosis has an open 
pan-genome.” as it is established in the field that Mtb has a closed pan-genome due to the lack of 
inter-strain recombination.  
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Reviewer #3 (Remarks to the Author):  
 
The work targets an interesting and hot topic that is the investigation of AMR characteristics and 
evolution in MTB. To come to the conclusions the authors use statistical methods as well as machine 
learning approaches. Doing so the authors identified known resistance markers as well as 24 new 
genes somehow associated with drug resistance. A really interesting part is the analysis of interactions 
between genes, which is a unique feature of this study. Additionally, the authors prevent themselves 
of statistical artifacts by investigating the crystal structure of the newly identified genes and how those 
genes could play a role in AMR.  
The paper is well written and the results are clearly presented.  
The study has four main conclusions and thus the article has some length in reading. There is so many 
really interesting stuff included and each step make sense, but would like a shorter version focusing 
on the main points of the study. The sample size and selection of data is reasonable and leads to a 
representative dataset. I wonder about the term “platform”, is the code somewhere provided or is 
there a platform where you can upload your own data and get a classification?  
I would suggest to make the MLST scheme with more than just 7 house keeping genes.  
In Table 1 it is a profit of the SVM compared to the ANOVA and other methods, but to be honest when 
inhA would not be associated with INH resistance the method needs definitely a reconstruction.  
The key points of the study needs to be more precisely described e.g. focusing on only 1-2 major 
points and skipping for example the county distribution.  
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Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 
 
Review of "Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies 
genetic signatures of antibiotic resistance" 
 
Summary 
 
Kavvas et al have analysed 1595 M. tuberculosis genomes from the PATRIC database, along with 
phenotypic data (drug resistance), and sought to find mutations which cause drug resistance, and 
potential epistatic interactions. They start by ignoring the non-coding genome, and then build an allelic 
representation of all the gene sequence present in these samples. After decomposing this sequence into 
distinct chunks, (this can be seen as similar to that seen in graph representations of pan-genomes, such 
as Jaillard et al (https://www.biorxiv.org/content/early/2017/03/03/113563)), they use mutual information 
between presence-absence vectors of sequence markers and antibiotic resistance profiles to search for 
antibiotic resistance genes. This works strikingly well, finding the known genes rpoB, pncA,embB, rpsL, 
katG and gyrA - we return to this below. The authors then go on to use support vector machines to 
discover more associations, and then map their findings onto structures where possible. As an aside, they 
also report some analyses of the pan-genome of M. tuberculosis which perhaps is not that relevant to this 
paper. 
 
This is an interesting paper which performs novel and interesting analyses which are a contribution to the 
community - I think it should be published, but there are a few issues I would like to resolve first. 

Major issues 
 

1. Drug resistance in M. tuberculosis has evolved and spread in response to our use of anti-
tubercular drugs. Ever since drug resistance first started to evolve during clinical trials, treatment 
has involved multiple drugs. Current best practise involves four first-line drugs as a standard 
regiment - isoniazid, ethambutol, pyrazinamide and rifampicin. As a result, samples are rarely 
exposed to just one drug, amnd drug resistances tend to co-occur. It is therefore difficult a priori 
(for me) to see how a purely genotype and phenotype -driven method can possibly tell which 
gene is associated with which drug. Indeed the authors mention that the dataset is 59% resistant 
to Rifampicin and 59% resistant to Isoniazid (I assume there is a huge overlap between these 
sets), so it might be hard to tell which gene associates which which drug. Indeed, if you look at 
Figure 2, the highlighted peak for isoniazid is in katG, and presumably is the well-known single 
dominant mutation - but there is a much higher peak to the left, which is unlabelled, and is very 
close to a labelled rpoB allele. Is this in fact an example of this issue? Furthermore, the 
highlighted rpoB allele is clearly also associated with peaks for pyrazinamide, streptomycin, 
isoniazid resistance also. I don't think this is a failing in the paper, but it would be good to be 
clearer. The MI method is essentially looking for association with AMR profiles, and it would be 



interesting to see if there is a systematic way to deconvolve out an association of a region (gene) 
with a drug. 

 
The reviewer makes an interesting observation in Figure 2 that there are multiple large peaks found in a 
specific antibiotic. The incidence of multiple AMR peaks is indeed an example of the simultaneous use of 
multiple antibiotics in TB treatment. This feature was a key driver for our chosen visualization of allele-
AMR associations portrayed in Figure 2 (now Figure 1). The discussion of this issue is located in the 
supplementary text section entitled “Motivation for using mutual information and observation of 
shared AMR signals across multiple antibiotics”. We agree that it would be interesting and valuable to 
deconvolve out an association of a region with a drug. Our study, however, does not provide a solution to 
this problem. Future efforts may similarly take inspiration from information theory and apply methods such 
as independent component analysis or the information bottleneck method 1 towards deducing 
independent signals corresponding to unique antibiotics. 
 

2. I would like to understand how we distinguish epistasis, as discovered by the method in this 
paper, from lineage effects (see Earle et al, mentioned above for more discussion). Any allele in 
tight linkage with an AMR allele will have equivalent signal by the method in this paper (Kavvas et 
al I mean, not Earle et al), and so we would expect to see association with other alleles, across 
the genome, that happen to be in linkage with the AMR gene (ie on the same branch of the 
phylogeny). Are the authors effectively relying on homoplasy to remove this confounding? 

 
While it is possible that lineage effects confound the results obtained by our pairwise association 
calculations, they are unlikely to confound the results obtained by our machine learning approach and 
subsequent epistasis calculations (the machine learning provides the set of gene-gene interactions to test 
for epistasis). This is because, in the case of pairwise associations, each allele is viewed independently of 
one another. Therefore, an allele in tight linkage with the key AMR allele will appear with similar 
significance through pairwise-associations. In the case of our SVM approach, however, an allele in tight 
linkage with the major AMR allele will not be identified (i.e., incorporated as a variable in the SVM 
classifier function) unless the allele in tight linkage provides further predictive accuracy. Our utilization of 
an L1-norm in the SVM limits the number of alleles that can be used to classify the AMR phenotypes, 
thereby eliminating alleles that are redundant (i.e., hitchhikers). We should clarify that the set of tested 
epistatic interactions come from correlations amongst the ensemble of SVM classifier functions 
(Supplementary Figure 5, shown below), not correlations amongst allele frequencies. Thus, the identified 
epistatic interactions are not prone to lineage effects because the set of tested gene-gene interactions are 
selected through a machine learning approach that negates redundant and non-predictive features. 
 



 
  
To evaluate whether lineage effects confound our resulting epistatic interactions, we first categorized our 
strains into lineages using a SNP-barcode 2 and then viewed the distribution of these lineages within the 
epistatic interactions. We find that while homoplasy is certainly a strong determinant, which is known to 
be a key feature of M. tuberculosis AMR evolution 3 4, our identified set of epistatic interactions extend 
into multiple lineages, which shows that alleles in tight linkage do not confound our machine learning-
driven approach. For example, the strains containing the co-occurrence of katG allele 3 and oxcA allele 2 
(shown in Fig 3) are spread across lineages 1, 2, and 3 (see barplot below). 
 

 
 
The approach taken by Earle et al. is indeed fascinating and shows that the combination of Principal 
Component Analysis (PCA) and Linear Mixture Model (LMM) accounts for lineage confounding effects. 
The authors find that the PCA decomposition of the k-mer variant matrix returns basis vectors that 
correspond to lineages. We thank the reviewer for drawing our attention to this work and feel that our 
study provides additional insights to the study of linkage effects and AMR. 
 

3. I am not very convinced at all about the mapping onto structures section of the paper. The 
authors seem to be drawing confidence from finding mutations are either close to the binding site 



or located in a domain that appears biochemically important - however there are lots of examples 
where that may well be so and the mutation has no effect, and contrary examples where the 
mutation is miles away but is resistant. 

 
The structural mutation mapping does indeed lack both quantitative rigor and a biological basis in 
providing confidence to the selected AMR alleles. As the reviewer notes, the incidence of both a 
resistance-dominant mutation and an annotated structural region does not necessarily support the 
conclusion that the resistance-dominant mutation is more likely to be casual. In order to address this 
incongruence, we have softened the claims made by our structural analysis and have restricted the 
insights to potential mechanistic insights underlying the selection of the alleles. While the incidence of 
mutations and structural features does not provide confidence in the causality of the allele, the incidence 
of features may provide insights into the mechanistic driver of selection. Therefore, the structural analysis 
solely enables the inference of potential mechanistic effects driving the selection of the alleles. In our 
study, we provided control cases (i.e., inhA, katG)  in which the incidence of mutations with alleles 
recapitulated known mechanism-of-action (MoA). Structural analysis thus enabled deeper hypothesis 
generation regarding the MoA. We do not claim that it added any more support to the causality of an 
implicated allele. Our goal was instead to go beyond the reporting of alleles by trying to link them to MoA, 
we feel that this process has helped to rank mutations of interest for future validation studies. 
 

Structural analysis of implicated AMR genes suggest a mechanistic driver of selection 
 

4. The section on the pan-genome being open is not really relevant to this paper. It is already well 
known that there is little if any horizontal gene transfer into M. tuberculosis ; the signal seen in the 
PE/PPE genes seems to me likely to be due to non-allelic recombination events leading to 
diversity. I think it is interesting that this much diversity is being seen, but I don't think most 
people would see this as causing an open pan-genome, as they are not novel genes with new 
functions (eg compare var genes in P. falciparum). The way alleles have been defined is nice, 
and useful, but the pan-genome open-ness feels to me like a tangent. I'm not explicitly asking for 
it to be removed, but if in revision the authors need space to give better exposition for something 
else, to my mind losing the open pan-genome stuff would be no big loss to this paper (although I 
would like it published so I could reference it!) 

 
We thank the reviewer for providing comments on the pan-genome analysis portion of this study. As the 
reviewer points out, the pan-genome provided the foundation for our perspective of genetic variation (i.e., 
our reference-agnostic exact allele view), which is a unique and an important feature of our study. We 
agree with the reviewers, however, that our pan-genome analysis --- which describes the shape of the 
pan-genome, distribution of virulence factors, and counteractome genes --- is certainly tangential to the 
primary goal of identifying AMR genes by machine learning. Therefore, we have moved the analysis 
portions of the pan-genome section to the supplementary material.  
 
Furthermore, we have recomputed the shape of the pan-genome by filtering out PE/PPE genes and 
genes with lengths that were significantly longer (>1 standard deviation) than the mean gene length of 
1000 bp which are likely result of sequencing or annotation errors.  In total, this led to the removal of 
1,335 genes clusters from the pan-genome.  The majority of these genes (826) were PE/PPE genes.   
 
Following the removal of these genes we find that the pan-genome is indeed closed for our 1595 strains 
of M. tuberculosis, see below:   



 

Other issues 
 

1. On line 135 the authors mention that their results show that exact sequence match and allele 
frequencies alone are enough to identify AMR genes. This is correct, but also well known from 
the various methods that use K-mer presence to detect causal alleles - for example Earle et al 
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049680/), Jaillard et al mentioned above, and 
Lees et al (https://www.nature.com/articles/ncomms12797) 

 
We thank the reviewer for drawing our attention to the various methods that used K-mer presence to 
detect causal alleles. While our approach is not quite the same as K-mer approach (full exact sequence 
vs k-mer), the concept is similar in its word-based perspective and certainly should be cited in our study. 
We have now included citations for these papers in our study at relevant point. 
 

These results suggest that allele frequencies based on exact sequence (i.e., without a metric for 
genetic distance) are capable of identifying AMR genes, which has previously been shown with k-
mer based approaches 5 6 7. 

 
2. Compensatory mutations were mentioned, but not the well known rpoC compensatory mutation 

for rpoB resistance - is this maybe there in the data but not highlighted? 
 
We thank the reviewer for highlighting a key false negative in our gene-gene epistasis calculations, which 
has led us to an improvement in our gene-gene epistasis workflow. The rpoC mutations were indeed 
identified as significant by our SVM approach (see Supplementary Data File 2, sheet 
“rifampicin_SVM_SGD”). The rpoC mutations, however, were previously not found to have significant 
epistatic interactions with rpoB by our quantitative epistasis analysis and highlighted a flaw in our logistic 
regression gene-gene epistasis calculations. Upon second review of our methodology, we noticed that 
low signal genes uncovered by the ensemble SVM were being tested in these gene-gene epistasis tests. 



For example, the Rv2090-lpqZ interaction highlighted in Figure 4 was previously tested to be significant 
despite Rv2090 appearing with a low signal in the SVM ensemble. While the gene-gene co-occurrence 
table is interesting, the interaction is not more significant than the rpoB-rpoC interaction. 
 
Our updated epistasis calculations now identify rpoB-rpoC as a significant gene-gene epistatic interaction 
by limiting the tested interactions to those with a high correlation amongst the top 25 weighted alleles 
(shown below, and provided in Supplementary Data File 4). We have updated both Supplementary Table 
3 and Supplementary Data File 4 with the results generated by the improved epistasis methodology. 
 

 
 

Furthermore, we have now updated Figure 3 (shown below) by removing the lpqZ-Rv2090 co-occurrence 
table (part C). 



 
 

The methods section has now been updated to reflect the improvement in methodology. 
 

We selected the top 100 gene-gene correlations that occur amongst the top 25 ranked SVM 
alleles for each antibiotic. We limited the correlations to the top 25 ranked alleles in order to 
avoid the case when low weighted alleles appear sparsely with other low weighted alleles 
which lead to significant correlations. 

 

Reviewer #2 (Remarks to the Author): 
 
To be best of my knowledge this is the first time Support Vector Machines are used to identify drug 
resistance genes in Mtb and epistatic interactions. 
 
Although I understand that wet-lab experimental validation of the candidate loci may be outside the scope 
of this study, a biological interpretation and mechanistic insights about the role of novel genes and 
epistatic interactions is currently lacking. 
 
We thank the reviewer for appreciating the novelty our work.  We agree that wet-lab validation is outside 
the scope of this study but hope that our work will guide future validation experiments.  Due to space 
constraints we were forced to place much of the biological interpretation and mechanistic insights about 
the role of novel genes and epistatic interactions in the Supplementary Note. In particular, we describe 
identified toxins within the context of literature (see section titled “Adaptations in toxins are associated 
with XDR in M. tuberculosis”), how the genetic background of oxcA resistant-dominant alleles may guide 



experimentation (see section titled “Epistatic and protein-structure-guided generation of experimental 
hypothesis”), and suggest relationships between implicated genes and potential excessive antibiotic 
treatment using geographic data (see section titled “Geographic contextualization suggests modulation of 
antibiotic treatment”). We provided this information when both literature and structural insights were 
available. In cases when such details were unknown (i.e., Rv3471c) --- which is the majority of the 
implicated genes --- we abstained from drawing weak hypothesis and made note of the key details for the 
reader in Table 2 (e.g., Rv3471c is predictive of ETA, XDR, and SM AMR phenotypes, resistant dominant 
allele (48/50) contains an SNP inside the Cupin 1 domain, and appears in South Africa). While providing 
biological interpretations for the implicated genes is tempting, statistical models and subsequent analysis 
are fundamentally limited in the conclusions they can draw. Therefore, we stayed away from from 
providing further information that may bias the interpretation of the implicated AMR genes, and focused 
our discussion on the computational platform and the mathematical outputs that it provides. We hope our 
work and this discussion will provide hypothesis and guidance for future validation studies. 

Major Issues 
 
Find below a list of necessary changes before this work can be published: 
 
- Table 1. There are only six genes with a superscript 1 in Table 1, which does not add to the “additional 
seven known AMR gene-antibiotic relations” 
 
We had incorrectly placed an asterisk next to the embR gene instead of a “1”. The embR alleles were not 
associated with ethambutol in the pairwise association tests (i.e., GWAS). Furthermore, since the numeric 
value of 1 may be confusing along with the citation number, we have replaced the “1” superscript with an 
asterisk “*”. We have now made these corrections and the total number of “*” superscripts now adds up to 
7, as mentioned in the paper. Note that inhA is counted twice since it did not appear in both isoniazid and 
ethionamide pairwise-association tests (inhA mutations are known to confer resistance to both drugs). 
 
- Supplementary Data File 2. The gene_name column in sheets 2-11 does not always contain the 
expected gene name for its corresponding Rv name, which makes interpretation difficult. For instance, 
the locus Rv1908C should have ‘katG’ as its gene name and Rv2043c should have ‘pncA’. 
 
We thank the reviewer for pointing this out. We have now included correct id to name mappings under the 
“gene_name” column for all genes in which a name is provided. We utilized the mappings provided in the 
Mycobrowser database for Mycobacterium tuberculosis H37Rv 8. 
 
- I find striking that RV2043C/pncA is labelled as an accessory gene (Supplementary Data File 2, 
pyrazinamide_SVM_SGD sheet). Have the authors check if Mtb strains lacking pncA or with truncated 
versions of it are pyrazinamide resistant? Loss of PZase enzymatic activity encoded by pncA is the most 
frequent mechanisms of pyrazinamide resistance. 
 
Out of the 312 strains lacking the pan-genome cluster corresponding to pncA (Cluster 3930), only 53 
strains were tested for pyrazinamide susceptibility. Of these 53 strains, 51 were resistance (96%) and 2 
were susceptible (4%). This is precisely in line with what the reviewer mentions as the most frequent 
mechanism of pyrazinamide resistance and therefore provides a reason for the partitioning of pncA into 
the accessory genome.  
 



Line 155. “SVM method revealed an abundance of AMR-implicated genes involved in metabolic 
pathways”. The authors should quantify what they mean by “abundance” here, for example as a 
percentage, so that this value can be compared to that of the 73% among known AMR-determinants. 
 
Thank you for this comment. Out of the 472 implicated AMR genes described across the 10 AMR 
classifications, 172 were annotated as metabolic by COG, (172/472, 37%).  
 
Line 158. “We found over 30 genes related to cell wall processes”. The authors should provide a 
percentage here. 
 
Out of the 472 implicated AMR genes described across the 10 AMR classifications, 36 were annotated as 
cell wall/membrane/envelope biogenesis by COG (36/472, 8%). We have made these corrections in the 
main text. 
 

The SVM method revealed an abundance of AMR-implicated genes involved in metabolic 
pathways (119/317, 37.5%) (Supplementary Data File 2). In fact, the majority of the known 
AMR-determinants are metabolic enzymes (24/33, 73%). We found over 20 genes related to cell 
wall processes (26/317, 8.2%), which is consistent with previous findings of convergent AMR 
evolution in M. tuberculosis 3. 

 
Figure 3. Both in Figure 3 and throughout the text the authors should refer to the actual genetic variants 
(annotated as amino acid changes) as opposed to numbered alleles only. Otherwise, the readers won’t 
be able to identify what mutations are found to be associated with drug resistance and those involved in 
epistatic interactions. 
 
Instead of defining genetic features as amino acid changes relative to the H37Rv reference sequence, we 
take a reference agnostic approach by representing each allele as a unique sequence variant. Our view 
of genetic variation, however, makes connecting the genetic variants to amino acid changes challenging 
as a genetic variant may have numerous amino acid changes, including deletions, insertions etc. For 
example, there are 3 distinct polymorphisms  found in oxcA allele 3 (see Figure 4 Main text, now FIgure 
3), which makes it rather challenging to portray within the space constraints of an allele co-occurrence 
table, or in the main text.  
 
While our analysis is agnostic to a single reference  sequence (with exception to the protein structural 
analysis), we agree that the readers should be able to relate the numbered alleles to specific mutations. 
Therefore, we have provided a mutational mapping of all alleles in the predicted AMR genes, defined 
relative to the H37Rv reference strain (see Supplementary Table 4, column “mutation_residues”). 
Furthermore, metadata from uniprot describing previous annotations of mutations is additionally provided 
(see Supplementary Table 4 , column “uniprot_features”), which should enable researchers to 
differentiate between previously known mutations and potential new ones. We believe that this allows for 
comparison of our work with other studies, while also maintaining our perspective of genetic variation 
taken in this study. 
 
Line 214. The authors state that “embR alleles appeared sparsely across the ensemble of SVM 
hyperplanes”. This statement uses very technical terms and it is hard to interpret. Is this the result of 
embR alleles being rare in the population? 
 
We agree that the statement is too technical and should be simpler to interpret. We have now altered this 
line to read as follows, 



 
“Although the embR alleles appeared few times across the multiple SVM simulations, their 
appearance was highly correlated with alterations in the sign and weight of the ubiA allele (see 
Supplementary Figure 6). This implies that embR is only a predictive feature within the context 
of ubiA, which may result from the weak penetrance of embR alleles within M. tuberculosis (see 
Figure 2a)“ 
 

Interestingly, the embR alleles are neither rare nor highly resistant-dominant (see Figure 3a). Therefore, 
it’s not entirely surprising that the embR allele does not appear in pairwise association tests (now 
corrected in Table 1). The observation that embR alleles appeared sparsely across the ensemble of SVM 
hyperplanes implies that the effect of embR is subtle, or hidden, and becomes important (i.e., large 
weighting on SVM hyperplane) when appearing along with another allele and specific weighting of that 
allele. We provided a figure describing this sparse behavior (Supplementary Material File 3, 
“ethambutol_SVM_SGD_iterations.png”). The ability to uncover these features is the primary value of a 
machine learning approach.  
 

 
Supplementary Figure 5 

 
 
Line 223. The authors state that “resistant-dominant ubiA alleles (i.e., those with high positive LOR), 1 
and 3, occurred exclusively in the background of non-susceptible-dominant embR alleles”, however, in 
Figure 3a, it looks like ubiA alleles 2 and 4 are the ones co-occurring with embR alleles 2 and 4. Please 
check. 
 
The reviewer is correct. ubiA alleles 2 and 4 are the resistant-dominant alleles co-occurring with embR 
alleles 2 and 4. We have resolved this error in the revised manuscript. 
 

We observed that the resistant-dominant ubiA alleles (i.e., those with high positive LOR), 2 and 4, 
occurred exclusively in the background of non-susceptible-dominant embR alleles (Fig. 3a).  

 
Line 226. The authors state that “Furthermore, neither embR nor ubiA were significantly associated with 
ethambutol AMR in pairwise associations tests”. Can the authors explain why these two genes were not 
identified in pairwise association tests? Is the because of a lower allele frequency of mutations in these 
two genes in the population as opposed to common embB mutations? 
 
The ubiA alleles were not identified in the AMR pairwise association tests due to having a low resistance-
conferring allele frequency, as seen in Figure 3b. The embR alleles similarly lacked a significant 
association to the AMR phenotypes with respect to other alleles. In both cases, this lack of significant 



AMR association in ubiA and embR alleles is primarily due to being clouded by other alleles that are in 
close linkage with the key resistance-conferring allele (i.e., lineage effects, hitchhiker mutations, etc). 
Specifically, by “clouded”, we mean that these other alleles will have a higher association than ubiA and 
embR, which in some sense pushes ubiA and embR off the list of implicated genes. 
 
Supplementary Data File 4 contains a lot of different co-occurrence tables. Numbered alleles should be 
annotated to represent actual genetic variants and amino acid changes so that these results can be 
compared to previous studies. 
 
See response above to reviewer comment about Figure 3. Because we take a reference-agnostic 
approach, listing specific amino-acid changes is challenging. Instead we provide a table with all variants 
explicitly laid out in Supplementary Table 4, column “mutation_residues”. 
 
Line 244. It is not clear to me what the authors mean by “the variation in AMR phenotypes across the 
different alleles were determined to be significant by the machine learning algorithm and thus motivated 
further investigation.”. 
 
We agree that this sentence is ambiguous. We have now rewritten this sentence as follows. 
 

“The implicated alleles were identified by the machine learning algorithm as predictive features for 
classifying AMR phenotypes and thus motivated further investigation”. 

 
Section “Machine learning uncovers genetic interactions contributing to AMR”. The strictly clonal 
population structure of Mtb, which is divided into seven lineages and these further split into sub-lineages, 
may have confounded the epistatic analysis. The authors should make sure that co-occurrence of alleles 
from different genes among resistant strains happens across different genetic backgrounds (i.e. 
lineage/sub-lineages) to provide further evidence of this putative epistatic interaction. For instance, in 
Figure 3b, katG allele 3 co-occurs frequently with oxcA alleles 2, 3, 6 and 7; do the 78 strains containing 
both katG allele 3 and oxcA allele 2 belong to the same Mtb sub-lineage? If so, this putative epistatic 
interaction may be the result of linkage (hitch-hiking) of these mutations in the same clonal background 
and therefore a likely false positive. If these 78 strains belong to different genetic backgrounds (i.e. 
lineage/sub-lineages), then this provides evidence of independence acquisition of these mutations. The 
authors can make use of existing SNP typing schemes (Coll et al. 2014) and/or construct a robust whole-
genome phylogeny (See comment below). 
 
We thank the reviewer for linking existing SNP types schemes. We have now built a new phylogenetic 
tree of our strains using existing SNP typing schemes 2 (see comment below in Methods related to our 
previous phylogenetic approach). Using our updated phylogenetic tree, we investigated the location of the 
78 strains containing both katG allele 3 and oxcA allele 2 and found that these strains are spread across 
lineages 1, 2, and 3 (see barplot below). Of the 78 strains, 60 were contained in lineage 2.2 with 30 
further categorized into sublineage 2.2.1. Of the remaining 18 strains, 5 were classified as lineage 1 and 
13 were classified as lineage 3. While the co-occurrence of these two alleles (katG allele 3 and oxcA 
allele 2) in different lineages indicates that these putative epistatic interactions are likely not the result of 
linkage, we should note that interacting mutations are known to appear in clonal backgrounds of M. 
tuberculosis 4 and are descriptive of convergent evolution 3. 



  

 

Methods: 
 
Line 545. M. tuberculosis strain dataset. The authors state that they “selected a representative set of 
1,595 M. tuberculosis strains for which AMR testing data was available from the PATRIC database”. On 
the 6th of March 2018, the PATRIC database has 9,314 available M. tuberculosis genomes 
(https://patricbrc.org/view/Taxonomy/1773#view_tab=genomes). The authors should at least prepare a 
supplementary data file with information on the 1,595 used in this study, including their ENA or Genbank 
accession numbers; and cite not only the PATRIC database but the publication where isolates where 
originally sequenced and presented. The authors should note that they should not make use of 
unpublished genomes. 
 
We have now included a supplementary table that includes GenBank accession numbers for the 
genomes, references, sequencing details, and other metadata for the selected 1,595 M. tuberculosis 
strains (see Supplementary Table 5). We have also included citations for the studies that provided the 
M. tuberculosis genomes utilized by our study. Many of the genomes in our study come from the TB-ARC 
project and variants (i.e., MALI, MALI.1, TAIWAN, etc…) -- most which were uploaded to the PATRIC 
database in 2013. Since we were unable to find publications for some of these projects, we followed the 
language and reference style used in Manson et al. 2017 9 when using unpublished datasets. We have 
now provided citations for the published studies in the first paragraph of the results section, shown below.  
 

These strains come from a wide range of studies 10 11 12 13 14 15 16 17 18 19 20 21 9 22 23 24 25. 
 
We have also provided further information in the Methods section, titled “M. tuberculosis strain dataset”. 
 

References for the published and unpublished data sets can be found in Supplementary Table 
5. The sequencing data for the TB Antibiotic Resistance Catalog (TB-ARC) projects 
(Supplementary Table 5) were generated at the Broad institute. Additional information for each 
of these unpublished projects can be found at the Broad Institute website 
(https://olive.broadinstitute.org/projects/tb_arc). 

 



Line 554. In addition to the use of CD-hit package, the authors may want to use another stablished 
bioinformatics tool to characterise bacterial pan-genomes: (Page et al. 2015). If both CD-hit and Roary 
yield similar results, the readers will be more confident about the pan-genome analysis. 
 
The CD-hit package is a tool used to cluster large amounts of protein sequences into separate groups. In 
fact, Roary uses CD-hit as its primary clustering tool 26.  Following new quality control measures we 
instituted, recommended by reviewer 1, including removing PE/PPE genes and genes of unrealistic 
length (see response to Reviewer 1, comment 4, above) we find that the calculated TB pan-genome is 
closed and would likely be similar to that constructed by Roary.  Furthermore, now that the pan-genome 
analysis is no longer a focus of the main text, we believe that the lack of comparisons amongst pan-
genome tools will not detract  from our study. 
 
Line 571. The phylogenetic approach used by the authors is not valid. Given that the whole-genome 
sequences of the 1,603 strains are available, the authors must make use of SNPs at the core genome to 
create a whole-genome phylogeny that is comparable to that already published ((Coll et al. 2014), 
(Comas et al. 2013)). Selection of just a few housekeeping genes is not enough to obtain a high-
resolution phylogeny required for this type of genomic studies. Furthermore, four of the seven 
housekeeping genes chosen (rpoB, katG, gyrA and rpoC) are likely to contain homoplastic SNPs among 
resistant strains that will inevitably distort the phylogeny. 
 
We agree with the reviewer in that our phylogenetic MLST approach lacks a high-resolution necessary for 
rigorous downstream analysis. While our computational analysis is agnostic to phylogenetics and the use 
of a reference strain, we agree that our tree construction should adhere to the standards set by the 
community. Therefore, we have now created a phylogenetic tree of the 1595 strains using an existing and 
recent SNP typing scheme 2. Specifically, we used a total of 141 SNPs for identifying lineages and 
sublineages for our 1595 TB strains. These SNPs were previously determined to be sufficient for 
categorizing lineages 2. Of these SNPs, 61 were in non-synonymous sites and the other 70 were SNPs 
found in drug resistance genes. These 141 SNPs comprised a total of 74 genes. We used needle 27 to 
align sequences within a pan-genome cluster (a cluster is representative of a particular loci) to the H37Rv 
reference allele. The presence of SNPs were then used to categorize the strains into the defined lineages 
2. Of the 1595 strains, 1366 strains were categorized and 229 were uncategorized. To categorize these 
genes, we built a binary SNP matrix using all of the SNPs identified from the 74 genes (885 SNPs in 
total), and then estimated a maximum-likelihood phylogeny using RaXML version 8 28, visualized below 
using iTOL 29. 



 
 
Supplementary Figure 1b has now been updated with the new phylogenetic tree (shown below). Note that 
the tree distances are hidden in order to allow for a clear visualization of AMR phenotypes. 
 

 
 



 
Line 589. The authors state that “M. tuberculosis has an open pan-genome.” The authors also note that 
“a significant portion of the unique and accessory genome was attributed to Pro-Glu (PE)-related proteins 
and hypothetical proteins (Fig. 1b).” These results could be the result of assembly and/or gene annotation 
artefacts. PE/PPE genes have a high GC content, which results in lower depth of coverage in these 
regions, and some members of this family of genes are highly repetitive, which make them inherently 
difficult to assemble from short sequence reads generated by Illumina sequencers. Fragmented 
assemblies at the boundaries of PE/PPE genes might lead to a higher number of predicted PE/PPE 
clusters. In order to rule out the possibility of assembly artefacts confounding the pan-genome analysis, I 
would recommend the authors repeat the pan-genome analysis using the subset of ‘Complete’ Mtb 
genomes sequenced using long-read sequencing (PacBio) and compare their results 
with those of the whole dataset. The authors should also measure the length of newly identified genes as 
they add more strains. Are newly identified genes shorter than core-genome genes? If so, they could be 
the result of miss-assemblies. The other necessary check is to quantify the amount of new DNA 
sequences (in base pairs) as more strains are added to make sure that the increasing number of new 
genes observed matches with an expected increase in new DNA sequences. The authors should perform 
these extra analyses before stating that “M. tuberculosis has an open pan-genome.” as it is established in 
the field that Mtb has a closed pan-genome due to the lack of inter-strain recombination. 
 
We thank the reviewer for pointing these issues out. Based on this suggestion we have re-calculated the 
pan-genome curve after double checking for gene annotation artefacts.  Please see our response to 
reviewer 1, point 4 (above) but in short we found that PE/PPE genes were significantly longer (>1 
standard deviation) than the mean gene length of 1000 bps. In total, this led to the removal of 1,335 
genes clusters from the pan-genome and led to a “closed” pan-genome for M. tuberculosis, in agreement 
with the literature. 
 
Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, Portugal I, Pain A, Martin N, 
Clark TG. 2014. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nature 
Communications 5: 4812. 
 
Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, 
et al. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern 
humans. Nature Genetics 45: 1176–1182. 
 
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, 
Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 3691–
3693. 

Reviewer #3 (Remarks to the Author): 
 
The work targets an interesting and hot topic that is the investigation of AMR characteristics and evolution 
in MTB. To come to the conclusions the authors use statistical methods as well as machine learning 
approaches. Doing so the authors identified known resistance markers as well as 24 new genes 
somehow associated with drug resistance. A really interesting part is the analysis of interactions between 
genes, which is a unique feature of this study. Additionally, the authors prevent themselves of statistical 
artifacts by investigating the crystal structure of the newly identified genes and how those genes could 
play a role in AMR. The paper is well written and the results are clearly presented. The study has four 
main conclusions and thus the article has some length in reading. There is so many really interesting stuff 



included and each step make sense, but would like a shorter version focusing on the main points of the 
study. The sample size and selection of data is reasonable and leads to a representative dataset. I 
wonder about the term “platform”, is the code somewhere provided or is there a platform where you can 
upload your own data and get a classification? 
 
We thank the reviewer for closely reviewing the manuscript and appreciate their interest in our analysis of 
genetic interactions. Also, yes we feel this can be described as a “platform”. We have uploaded our code 
to a publicly accessible github repository along with a description of the workflow that should enable 
reproducible applications to similar GWAS-like microbial datasets. We have added the following sentence 
under the Methods section titled “Code Availability”, 
 

The computational platform is provided as a github code repository 
(https://github.com/erolkavvas/microbial_AMR_ML/). 

 
I would suggest to make the MLST scheme with more than just 7 housekeeping genes. 
 
We have now constructed a phylogenetic tree of the 1595 strains using an existing and recent SNP typing 
scheme 2. The tree was inferred using 885 SNPs comprising a total of 74 genes. Supplementary Figure 1 
has now been updated with the new phylogenetic tree. 
 
In Table 1 it is a profit of the SVM compared to the ANOVA and other methods, but to be honest when 
inhA would not be associated with INH resistance the method needs definitely a reconstruction. 
 
We were also surprised that inhA was not found to be significantly associated with INH in the pairwise 
ANOVA test. The reason for this absence becomes much more apparent when viewing the actual 
frequencies of resistant-dominant inhA alleles in Figure 4, which turn out to be very minor. Thus, perhaps 
it’s not a surprise that GWAS approaches do not pick up inhA as a signal, including those that explicitly 
account for geographic structure (Earle et al. 2016). Importantly, the ensemble SVM approach 
successfully picks up inhA as the second highest signal, exemplifying the ability to uncover hidden 
signals. 
 
The key points of the study needs to be more precisely described e.g. focusing on only 1-2 major points 
and skipping for example the county distribution. 
 
We have moved both Figure 1 and the pan-genome analysis to the supplementary text as recommended 
by the other reviewers (Figure 1 is now Supplementary Figure 2, and the pan-genome analysis is located 
under Supplementary Note). We believe that this makes the paper much more focused and clear. 
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Reviewers' comments:  
 
Reviewer #2 (Remarks to the Author):  
 
I am happy to see that the authors have correctly addressed most of my comments. There are still 
two outstanding issues that the authors should address:  
 
1. The authors should make use genome-wide SNPs at the core genome, not only lineage/sub-lineage 
defining SNPs, to create a robust phylogeny. It is accepted to estimate a maximum-likelihood 
phylogeny using RAxML and visualize it using iTOL. Please do not hide the branch lengths when 
visualizing the tree.  
 
2. I am happy to see that katG allele 3 and oxcA allele 2 co-occur in different lineages/genetic 
backgrounds, which rules out they are the result of linkage. This was just an example, the authors 
should do the same analysis for all co-occurring alleles and find a way to summarise these results in 
Figure 2 (previous Figure 3) and Supplementary Tables alike. The authors could add in how many 
lineages each pair of alleles co-occur, maybe in brackets in each cell in Figure 2, or alternatively add a 
superscript to indicate whether each pair of alleles co-occur in the same lineage or across multiple 
lineages. The latter will provide further evidence of a putative epistatic interaction.  
 
 
comments on the authors’ answers to Reviewer 1 comments  
 
Major issue 1 - Reviewer 1 highlights that fact that Mycobacterium tuberculosis strains are rarely 
exposed to just one drug, which results in drug resistances tend to co-occur in the same strains. This 
makes it hard to tell which gene associates with which drug. Although this is not a limitation of this 
study per se, the authors do not address this issue and acknowledge that “it would be interesting and 
valuable to  
deconvolve out an association of a region with a drug. Our study, however, does not provide a 
solution to this problem.” The authors should include this text in the Discussion section of the main 
manuscript to highlight this limitation.  
 
Major issue 2 - Reviewer 1 highlights the same issue I highlighted in my revision, that is, the authors 
need to make sure that epistatic alleles are homoplastic (they occur across different lineage/sub-
lineage) to provide further evidence of their putative epistatic interaction. My comment on this matter 
was:  
 
“I am happy to see that katG allele 3 and oxcA allele 2 co-occur in different lineages/genetic 
backgrounds, which rules out they are the result of linkage. This was just an example, the authors 
should do the same analysis for all co-occurring alleles and find a way to summarise these results in 
Figure 2 (previous Figure 3) and Supplementary Tables alike. The authors could add in how many 
lineages each pair of alleles co-occur, maybe in brackets in each cell in Figure 2, or alternatively add a 
superscript to indicate whether each pair of alleles co-occur in the same lineage or across multiple 
lineages. The latter will provide further evidence of a putative epistatic interaction.”  
 
Major issue 3 - Both reviewer 1 and the authors themselves highlight another limitation of the study, 
that is: “The structural mutation mapping does indeed lack both quantitative rigor and a biological 
basis in providing confidence to the selected AMR alleles” and that “We do not claim that it added any 
more support to the causality of an implicated allele”. The authors should include this text in the 
Discussion section of the main manuscript to highlight this limitation.  
 



Major issue 4 - Correctly addressed.  
 
Other issues 1 - Correctly addressed.  
 
Other issues 2 - Correctly addressed.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
The manuscript reads well. The authors incorporated all suggestions made. I have no furhter 
suggestions  



This font color represents our comment to reviewers 
This highlight represents the text that has been changed in the main manuscript or supplementary text. 

Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

Reviewers' comments: 

Reviewer #2 (Remarks to the Author): 

I am happy to see that the authors have correctly addressed most of my comments. There are still two 
outstanding issues that the authors should address: 

We thank reviewer #2 for the very constructive feedback. Addressing these comments has greatly 
improved this paper. 

1. The authors should make use genome-wide SNPs at the core genome, not only lineage/sub-lineage defining 
SNPs, to create a robust phylogeny. It is accepted to estimate a maximum-likelihood phylogeny using RAxML 
and visualize it using iTOL. Please do not hide the branch lengths when visualizing the tree.

We have now extended our analysis of phylogeny beyond the SNP barcodes to the genome-wide SNPs 
present in the core genome. Specifically, we expanded our SNP list from the 71 SNP-barcode genes (Coll 
et al. 2016) to a set of 2803 core genes that appeared in at least 1593 strains including the H37Rv 
reference strain (83332.12). These 2803 genes approximate the core genome and are comprised of a 
total of 21,206 SNPs. We then constructed a phylogeny with these SNPs using RAxML using the 
GTRGAMMA parameter and visualized the tree using iTOLv3. As recommended, the branch lengths are 
no longer hidden in the tree visualization. The robust phylogenetic tree is portrayed below along with the 
newly edited version of ​Supplementary Figure 1​ that includes the new phylogenetic tree. We have 
included the phylogenetic tree as supplementary material (​Supplementary File 5​). 



 
 



 
 
 
2. I am happy to see that katG allele 3 and oxcA allele 2 co-occur in different lineages/genetic backgrounds, 
which rules out they are the result of linkage. This was just an example, the authors should do the same 
analysis for all co-occurring alleles and find a way to summarise these results in Figure 2 (previous Figure 3) 
and Supplementary Tables alike. The authors could add in how many lineages each pair of alleles co-occur, 
maybe in brackets in each cell in Figure 2, or alternatively add a superscript to indicate whether each pair of 
alleles co-occur in the same lineage or across multiple lineages. The latter will provide further evidence of a 
putative epistatic interaction. 
 
We have now provided a supplementary excel sheet describing the distribution of lineages for each 
allele-allele pair across all gene-gene pairs identified in our epistasis analysis (​Supplementary Table 6​). 
In addition, we followed the visual recommendation recommended by the reviewer and added a numeric 
subscript describing the number of unique sublineages for each allele-allele pair. We determined the 
number of unique sub-lineages to be the maximum number of sub-lineages that occurs at a single 
lineage/sublineage branch point, amongst all potential branch points in the set of lineage/sublineages 



captured by the allele co-occurrence. The co-occurrence tables in ​Supplementary Data File 4​ now 
reflect this change. ​Figure 2​ in the main text (shown below) now includes the subscripts.  
 

 
 
 
We additionally provided a note of the additional lineage material in the methods section, titled “Phylogenetic 
Tree and categorization of lineages”, with the following text: 
 

“The frequency of lineage variants are displayed as subscripts to help discern between epistatic 
alleles and those in tight linkage (​Supplementary Table 6​). Implicated co-occurring alleles that 
span different lineages are unlikely to be in tight linkage (i.e., hitchhikers). We determined the 
lineages of our set of ​M. tuberculosis​ strains using previously defined lineage/sub-lineage SNPs 
(Coll et al. 2014).” 

 
Comments on the authors’ answers to Reviewer 1 comments 
 
Major issue 1 - Reviewer 1 highlights that fact that Mycobacterium tuberculosis strains are rarely exposed to 
just one drug, which results in drug resistances tend to co-occur in the same strains. This makes it hard to tell 
which gene associates with which drug. Although this is not a limitation of this study per se, the authors do not 
address this issue and acknowledge that “it would be interesting and valuable to 
deconvolve out an association of a region with a drug. Our study, however, does not provide a solution to this 
problem.” The authors should include this text in the Discussion section of the main manuscript to highlight this 
limitation. 



 
We have added text describing this limitation in our discussion section, 
 

“While our framework successfully identifies genetic AMR signatures, there are limitations to the             
approach that future efforts may expand upon. For one, our platform utilizes prior knowledge of               
known gene-antibiotic relationships limiting its ability to uniquely deconvolve regional associations           
with a specific drug (​Supplementary Note​).” 

 
Major issue 2 - Reviewer 1 highlights the same issue I highlighted in my revision, that is, the authors need to 
make sure that epistatic alleles are homoplastic (they occur across different lineage/sub-lineage) to provide 
further evidence of their putative epistatic interaction. My comment on this matter was: 
 
“I am happy to see that katG allele 3 and oxcA allele 2 co-occur in different lineages/genetic backgrounds, 
which rules out they are the result of linkage. This was just an example, the authors should do the same 
analysis for all co-occurring alleles and find a way to summarise these results in Figure 2 (previous Figure 3) 
and Supplementary Tables alike. The authors could add in how many lineages each pair of alleles co-occur, 
maybe in brackets in each cell in Figure 2, or alternatively add a superscript to indicate whether each pair of 
alleles co-occur in the same lineage or across multiple lineages. The latter will provide further evidence of a 
putative epistatic interaction.” 
 
See above. 
 
Major issue 3 - Both reviewer 1 and the authors themselves highlight another limitation of the study, that is: 
“The structural mutation mapping does indeed lack both quantitative rigor and a biological basis in providing 
confidence to the selected AMR alleles” and that “We do not claim that it added any more support to the 
causality of an implicated allele”. The authors should include this text in the Discussion section of the main 
manuscript to highlight this limitation. 
 
We have added text describing this limitation in our discussion section, 
 

“... regional associations with a specific drug (​Supplementary Note​). In addition, while our             
structural analysis provides a foundation for hypothesizing evolutionary drivers, it does not prove             
causality of an allele. These results should be interpreted as the delineation of susceptible and               
resistant alleles into distinct structural features that can be leveraged in the future for              
experimental validation.” 

 
These  
 
Major issue 4 - Correctly addressed. 
 
Other issues 1 - Correctly addressed. 
 
Other issues 2 - Correctly addressed. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The manuscript reads well. The authors incorporated all suggestions made. I have no furhter suggestions 
 



REVIEWERS' COMMENTS:  
 
Reviewer #2 (Remarks to the Author):  
 
I am happy with the latest changes incorporated by the authors. The few remaining concerns were 
correctly addressed. I have no furhter suggestions.  
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