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1. Spatial synchrony in the observed epidemics 
 
Spatial synchrony in the timing of epidemics observed across different woredas was 
assessed by computing the cross-correlation at different time lags of time series of 
cases associated with different areas of provenience. Temporal patterns in the number 
of measles admitted cases coming from the most affected woredas were compared: 
Woliso, Amaya, Goro, and Wonchi (Figure S1). Specifically, obtained results show 
that the pair-wise cross correlation between time series of cases occurring in two 
different woredas is always higher when no or negligible time lags are considered. 
This result indicates a significant synchrony in the timing of epidemics occurring 
across different geographical areas of the South West Shoa Zone.  
 
 

 
Figure S1. Cross correlation at different time lags (in weeks) of time series of hospitalized measles 
cases in most affected woredas.  

 
2. Immunization rates across different woredas 
 
In the analysis proposed in the main text, we assume homogeneous vaccination 
coverage across different locations within the hospital main catchment area.  
In order to give some insights on potential differences in vaccine uptake levels across 
different woredas, we performed a simple analysis based on 295 measles cases 
hospitalized during 2016, for which the vaccination status was recorded (see Table 1).  
Interestingly, by neglecting individuals whose vaccination status is unknown, the 
fraction of vaccinated individuals among measles hospitalized cases were found to be 
not significantly different (proportional test p-value: 0.41) across woredas (Amaya, 
Goro, Wolisso, and Wonchi). Estimates of this fraction, denoted hereafter with P, are 
shown in Figure S2A. Confidence intervals on P were obtained using exact binomial 
test.  
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Woreda Sample size Vaccinated cases Unvaccinated cases Unknown vaccination status 
Ameya 53 21 29 3 
Goro 20 5 12 3 
Woliso 171 76 86 9 
Wonchi 20 9 9 2 
Other 31 9 19 3 
All 295 120 155 20 
Table 1. Vaccination status recorded in a subset of measles hospitalized cases during 2016 
 
The woredas-specific fractions of vaccinated cases among hospitalized measles cases 
were used to infer a rough estimate of the expected coverage levels across different 
woredas. In particular, we can assume that in each population of size N, In individuals 
has experienced measles natural infection, gaining life-long immunity against 
measles. Individuals who have never experienced measles infection can be therefore 
defined as Y=N-In. 
In the absence of measles transmission, by assuming a vaccine efficacy e and constant 
vaccination coverage c on Y, Y can be stratified in three mutually exclusive classes:  

• Iv= Y c e denoting individuals who have been vaccinated and developed 
immunity against the infection as a consequence of vaccination. 

• Sv = Y c (1-e) representing individuals who have been vaccinated, but are still 
susceptible as a consequence of vaccine failure 

• Snv = Y (1-c) defining individuals who are susceptible because they have 
neither experienced natural infection nor have been vaccinated. 

Note that Sv+Snv represents the total number of susceptibles in the considered 
population.  

 
By assuming that, during a new emerging epidemic, all susceptible individuals are 
exposed to the same force of infection 𝜆, we can write the proportion P of infected 
cases that have been previously vaccinated as  
 

P= 𝜆 Sv/(  𝜆 Sv+  𝜆 Snv)= c (1-e) / (1-ec) 
 

Through simple calculations we can derive the coverage c as 
 

c=P/ (1-e+eP) 
 

Figure S2B shows estimates of coverage levels across different woredas as obtained  
by using the equation derived for c, the woredas-specific estimates of P based on data 
shown in Table 1, and by assuming an average efficacy of 85%. 
Remarkably, estimates of coverage levels resulted approximately homogeneous 
across different woredas and consistent with the average coverage reported in the 
main catchment area, namely 88% (Figure S2B).  
 



 
Figure S2. Proportions (P) of vaccinated patients among hospitalized measles cases as reported during 
2016 across different woredas in the South West Shoa Zone (left panel, 95% of confidence intervals 
were computed using exact binomial test), and corresponding estimates of woredas specific coverage 
level  (right panel), as obtained by using the formula c=P/ (1-e+eP) and a vaccine efficacy of 85%.  
 
3. Calibration of the transmission model 
 
Measles transmission dynamics between 2013 and 2017 is simulated using the model 
described in the main text. Initial conditions for the corresponding system of ordinary 
differential equations were set by assuming that: 

1. the initial number of infectious individuals in the population is I(0) = !!
!!

   , 
where  𝑖! is the number of hospital admitted cases in the first week of January 
2013 and 𝑝! is the unknown hospitalization rate; 

2. initial infections are distributed across different ages proportionally to the age 
distribution of measles cases admitted to the hospital between January 1st 2013 
and April 9th 2017, i.e.  I(0,a)=I(0)  𝑍 𝑎 /   𝑍 𝑎!"

!!! , where 𝑍 𝑎  is total 
number of hospitalized measles cases of age a as observed in the main hospital 
catchment area in the considered period of time; 

3. the initial fraction of susceptible and immune individuals in each age group 
are S(0,a)= N(a) s0 𝑍 𝑎 /   𝑍 𝑎!"

!!!  and R(0,a)= N(a) - S(0,a) respectively, 
where N(a) is the number of individuals of age a at the beginning of the 2013 
in Woliso, Amaya, Goro, and Wonchi [1] and 𝑠! denotes the unknown fraction 
of susceptible individuals at the beginning of the epidemic, i.e. on 1st Jan 
2013. 

 
The baseline transmission model has five free epidemiological parameter: 
𝛽, 𝑟,𝑝! , 𝑐!, 𝑠!, where 𝛽 represents the transmission rate during the dry season and 
when schools are open; 𝑟 denotes the reduction in the force of infection (FOI) during 
school holidays/rainy seasons and 𝑐! is the fraction of susceptible individuals who get 
vaccinated during SIAs. 
 
Model calibration was carried out by performing a Bayesian statistical analysis of the 
reported number of hospitalized cases at the Woliso hospital between January 1st, 
2013 and March 20th, 2016. Specifically, the posterior distribution of free model 
parameters was estimated by means of a Markov chain Monte Carlo (MCMC) 
approach, applied to the Negative Binomial likelihood of the weekly observed 
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hospitalized measles cases in the main hospital catchment area. In particular, we 
assume that hospitalized cases are distributed according to a Negative Binomial 
distribution, which is commonly expressed in terms of the mean m and dispersion 
parameter k. The probability mass function is: 
 

𝑃(𝑥)   =   
Γ 𝑘 + 𝑥
𝑥! Γ 𝑘

𝑚
𝑚 + 𝑘

!
1+

𝑚
𝑘

!!
 

 
where Γ denotes the standard Gamma function Γ n+ 1 = n!.  
The likelihood associated with a specific parameter set 𝜃 is therefore defined as: 
 

ℒ(𝜗, 𝑘|ℎ)   =   
Γ 𝑘 + ℎ(𝑤 )
ℎ(𝑤)! Γ 𝑘

𝑚 𝑤,𝜗
𝑚 𝑤,𝜗 + 𝑘

!(!,)

1+
𝑚 𝑤,𝜗

𝑘

!!

!

 

 
where w runs over weeks between 1st January 2013 and 20th March 2017; h(w) is the 
observed number of hospitalized individuals at week w; m(𝑤,𝜗) is the estimated 
number of hospitalized measles cases during week w, as obtained by model 
simulation with a specific candidate parameter set  𝜗. At each iteration, the algorithm 
evaluates the likelihood of a new candidate vector of parameters, which is accepted or 
not based on the standard Metropolis-Hastings algorithm. Uniform prior distributions 
are assumed for the free parameters and, at each iteration, each candidate value of a 
parameter is proposed from a normal distribution centered on the current value. 
The scale parameter k defining the negative binomial distribution was jointly 
estimated with other free epidemiological parameters 𝜃 within the described 
algorithm. 
 
Model estimates of the mean number of weekly-hospitalized measles cases over time 
are shown in Figure S3A. Remarkably, the baseline transmission model, although 
assuming homogeneous mixing by age, is able to well reproduce both the age 
distribution of observed cases (Figure S3B) and the number of weekly-hospitalized 
measles cases at different ages, namely between 0 and 6 years of age, between 7 and 
14 years and older than 15 years of age (Figure S4A-C). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure S3 A) Estimated (mean in red and 95%CI in orange) and observed (blue bars) number of 
hospitalized measles cases between 2013 and 2017 in the main hospital catchment area, as obtained 
under the baseline scenario. Pink bars represents the period of time during which primary schools are 
closed, namely between 1st Jun and 12th Sep.  B) Central model estimate of the age distribution of 
measles cases in the study area between 2013 and 2017 (in red) and age distribution of measles cases 
admitted to the hospital in the same period of time (in blue). 
 
 

 
 
Figure S4 A) Estimated (mean in red and 95%CI in orange) and observed (blue bars) number of 
hospitalized measles cases between 2013 and 2017, among individuals younger than 6 years, as 
obtained under the baseline scenario. Pink bars represents the period of time during which primary 
schools are closed, namely between 1st Jun and 12th Sep. B) As A) but for individuals between 7 and 14 
years of age. C) As A) but for individuals older than 15 years. D) As A) but as obtained with the model 
accounting for heterogeneous mixing by age. E) As D) but for individuals between 7 and 14 years of 
age.  F) As D) but for individuals older than 15 years. 
 
4. Alternative dynamic transmission models  
 
A sensitivity analysis was conducted on different assumptions made in the baseline 
dynamic transmission model. The model was recalibrated by assuming either a 
constant transmission over the year or by fixing the coverage level for the SIA 
performed in 2013. For the latter case, we assumed that the SIA i) was not performed 



in the considered area; ii) was performed with coverage at 92%, corresponding to the 
highest coverage reported for past campaigns [2]. In addition, we fitted the time series 
of cases with a transmission model encoding age-specific contact rates as recently 
estimated for Ethiopia by Prem et al. [3]. The latter analysis is detailed in the 
following sub-section and aimed at evaluating whether the assumption of 
homogeneous mixing affects the model ability in reproducing the observed time series 
of cases. Model selection was based on the analysis of the Deviance Information 
Criterion (DIC). 
 
Finally we fitted the dynamic transmission model described in the main text to the 
time series of measles cases observed in Woliso, Wonchi, Ameya and Goro 
separately. Specifically, a single epidemic was simulated in the four woredas 
simultaneously, by assuming the same initial conditions and by assuming that 
populations from different locations mix homogeneously. All epidemiological 
parameters were assumed to be equal across different woredas, but a different 
hospitalization rate was considered for each woreda.  
In this case, a different likelihood function was also considered therefore preventing a 
comparison between models based on DIC values. As a consequence, model 
performances were compared with results obtained with the baseline model using the 
root mean square error between the average model estimates and data on weekly 
hospitalized cases across different woredas. For the baseline model, the estimated 
numbers of hospitalized cases over time across different woredas were obtained using 
the average incidence estimated in the main hospital catchment area, multiplied by the 
woreda specific population size and the average hospitalization rate in each woreda, 
as obtained with the baseline regression analysis described in the main text. 
 
Dynamic transmission model accounting for heterogeneous mixing by age 
 
Measles transmission dynamics between 2013 and 2017 is simulated following the 
same approach used for the baseline transmission model. The unique difference 
characterizing the model based on heterogeneous mixing by age relies in the 
formulation of the age-specific force of infection 𝜆! 𝑡  acting on susceptible 
individuals of age a, namely 𝑆!.  
In the baseline model, we assume homogeneous mixing between individuals. This 
means that all susceptible individuals of age a are subject to an age independent force 
of infection defined as:  

𝜆! 𝑡 = 𝛽 𝑡 𝐼 𝑡 /𝑁(𝑡) 
where I(t) and N(t) represent the total number of infectious individual and the 
population size at time t and 𝛽(𝑡) is the time-dependent transmission rate defined as 
  

𝛽 𝑡 =   𝑟  𝛽, 1!"  𝐽𝑢𝑛   < 𝑡 < 12!!  𝑆𝑒𝑝
𝛽, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 
where 𝛽 represents the transmission rate during the dry season and when schools are 
open, and 𝑟 denotes the reduction in the force of infection (FOI) during school 
holidays/rainy seasons. 
In the model based on heterogeneous mixing, an age-specific force of infection is 
defined as  
 



𝜆! 𝑡 =
  𝑟  𝛽 𝐶!,!!

!"

!!!!
𝐼!!/𝑁!! , 1!"  𝐽𝑢𝑛   < 𝑡 < 12!!  𝑆𝑒𝑝

𝛽 𝐶!,!!
!"

!!!!
𝐼!!/𝑁!! , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
where 𝐼!! and 𝑁!! represent the total number of infectious individual and the 
population size in the age 𝑎! at time t; 𝐶!,!! is the average number of contacts per day 
that an individual of age 𝑎 has with individuals of age 𝑎!. In the model 𝐶!,!! was 
assumed equal to the synthetic contact matrix recently estimated for Ethiopia [3].  
 
In the model the population of any age a is divided into five epidemiological classes: 
individuals protected by maternal antibodies (Ma), susceptible individuals (Sa), 
exposed individuals (Ea), infectious individuals (Ia) and individuals who acquired 
immunity against measles either through vaccination or natural infection (Ra).  
 
Simulated epidemiological transitions are described for each age class by the 
following system of ordinary differential equations:  
 
𝑀!
! 𝑡 = 𝑏𝑁 𝑡 − 𝜇𝑀! 𝑡 − 𝜀!𝑐! 𝑡,𝑎 + 𝜀!𝑐! 𝑡,𝑎 𝑀! 𝑡 − 𝑑 𝑡,𝑎 𝑀! 𝑡

𝑆!! 𝑡 = 𝜇𝑀! 𝑡 − 𝜀!𝑐! 𝑡,𝑎 + 𝜀!𝑐! 𝑡,𝑎 𝑆! 𝑡 − 𝜆! 𝑡 𝑆! 𝑡 − 𝑑 𝑡,𝑎 𝑆! 𝑡
𝐸!! 𝑡 = 𝜆! 𝑡 𝑆! 𝑡 − 𝜔𝐸! 𝑡 − 𝑑 𝑡,𝑎 𝐸! 𝑡
𝐼!! 𝑡 = 𝜔𝐸! 𝑡 − 𝛾𝐼! 𝑡 − 𝑑 𝑡,𝑎 𝐼! 𝑡
𝑅!! 𝑡 = 𝛾𝐼 𝑡,𝑎 + 𝜀!𝑐! 𝑡,𝑎 + 𝜀!𝑐! 𝑡,𝑎 𝑆! 𝑡 +𝑀! 𝑡 − 𝑑 𝑡,𝑎 𝑅! 𝑡
𝐻!! 𝑡 = 𝑝!𝜔𝐸 𝑡,𝑎

𝐼 𝑡 = 𝐼! 𝑡
!"

!!!

𝐻 𝑡 = 𝐻! 𝑡
!"

!!!

𝑁 𝑡 = 𝑀! 𝑡 + 𝑆! 𝑡 + 𝐸! 𝑡 + 𝐼! 𝑡 + 𝑅! 𝑡
!"

!!!

 

 
where t represents time and a the individuals’ chronological age; b(t) are d(t,a) are the 
crude birth and the age specific mortality rates at time t; 1/µ is the average duration of 
protection provided by maternal antibodies; 1/𝜔 and 1/γ  are the average duration of 
the latent and the infectivity periods; 𝑐! 𝑡,𝑎  and 𝑐! 𝑡,𝑎  are the coverage associated 
with first dose routine vaccination and SIAs for individuals of age a, at time t; 𝜀! and 
𝜀! represent the vaccine efficacy associated with routine vaccination of infants and 
SIAs. N(t) and H(t) represent the total population and the cumulative number of 
hospitalized measles cases at time t; 𝑝! is the fraction of measles infections that are 
hospitalized. At the end of the year, the chronological age of individuals is 
incremented by 1. 
 
The model is calibrated following the same procedure used for the baseline dynamic 
model. The basic reproductive number R0 was instead computed using the Next 
Generation Matrix associated with a SEIR model where the transmission is driven by 
the contact matrix 𝐶!,!!. Specifically, we computed 𝑅! = 𝛽𝜌(𝐶!,!!)/𝛾, where 
𝜌(𝐶!,!!) is defined as the spectral radius of the contact matrix 𝐶!,!!. 



 
Dynamic transmission model with woredas specific hospitalization rates 
 
In this model, the population of each woreda j and age a is divided into five 
epidemiological classes: individuals protected by maternal antibodies (𝑀!,!), 
susceptible individuals (𝑆!,!), exposed individuals (𝐸!,!), infectious individuals (𝐼!,!) 
and individuals who acquired immunity against measles either through vaccination or 
natural infection (𝑅!,!).  
In each woreda measles transmission dynamics is simulated as in the baseline model 
described in the main text and by assuming that the population homogeneously mix 
across different woredas. The main difference characterizing the model fitted on 
woredas specific cases over time with respect to the baseline model relies on the 
definition of four woreda-specific hospitalization rates.  
 
Simulated epidemiological transitions are described for each woreda and age class by 
the following system of ordinary differential equations:  
 

𝑀!,!
! 𝑡 = 𝑏𝑁! 𝑡 − 𝜇𝑀!,! 𝑡 − 𝜀!𝑐! 𝑡, 𝑎 + 𝜀!𝑐! 𝑡, 𝑎 𝑀!,! 𝑡 − 𝑑 𝑡, 𝑎 𝑀!,! 𝑡

𝑆!,!! 𝑡 = 𝜇𝑀!,! 𝑡 − 𝜀!𝑐! 𝑡, 𝑎 + 𝜀!𝑐! 𝑡, 𝑎 𝑆!,! 𝑡 − 𝛽𝑆!,! 𝑡 𝐼 𝑡 /𝑁(𝑡) − 𝑑 𝑡, 𝑎 𝑆!,! 𝑡
𝐸!,!! 𝑡 = 𝛽𝑆!,! 𝑡 𝐼 𝑡 /𝑁(𝑡) − 𝜔𝐸!,! 𝑡 − 𝑑 𝑡, 𝑎 𝐸!,! 𝑡
𝐼!,!! 𝑡 = 𝜔𝐸!,! 𝑡 − 𝛾𝐼!,! 𝑡 − 𝑑 𝑡, 𝑎 𝐼!,! 𝑡

𝑅!,!! 𝑡 = 𝛾𝐼!,! 𝑡 + 𝜀!𝑐! 𝑡, 𝑎 + 𝜀!𝑐! 𝑡, 𝑎 𝑆!,! 𝑡 +𝑀!,! 𝑡 − 𝑑 𝑡, 𝑎 𝑅!,! 𝑡
𝐻!,!! 𝑡 = 𝑝!,!𝜔𝐸!,! 𝑡

𝐼 𝑡 = 𝐼!,! 𝑡
!"

!!!!

𝐻! 𝑡 = 𝐻!,! 𝑡
!"

!!!

𝑁! 𝑡 = 𝑀!,! 𝑡 + 𝑆!,! 𝑡 + 𝐸!,! 𝑡 + 𝐼!,! 𝑡 + 𝑅!,! 𝑡
!"

!!!

𝑁 𝑡 = 𝑁! 𝑡
!

 

 
 
where j is an index defining one of the four possible woredas, namely Woliso, 
Wonchi, Goro, Ameya; 𝑁! 𝑡 , 𝑁 𝑡  and 𝐻! 𝑡  represent the total population in the 
woreda j, the total population in the main hospital catchment area and the cumulative 
number of hospitalized measles cases at time t in the woreda j, respectively; 𝑝!,! is the 
fraction of measles infections occurring in woreda j that are hospitalized at the Woliso 
hospital. 
 
Model calibration was carried out by adopting the same approach used for other 
dynamic transmission models. However, in this case, free model parameters consist in 
four site independent free epidemiological parameters 𝛽, 𝑟, 𝑐!, 𝑠!, the scale parameter 
k defining the negative binomial distribution and four woredas specific hospitalization 
rate 𝑝!,!. The posterior distribution of free parameters was estimated by means of a 
Markov chain Monte Carlo (MCMC) approach, applied to the product of the Negative 
Binomial likelihood associated with the weekly observed hospitalized measles cases 
in each of the four considered woredas.  
The likelihood associated with a specific parameter set 𝜃 was therefore defined as: 



 

ℒ(𝜗, 𝑘|ℎ!)   =   
Γ 𝑘 + ℎ(𝑤, 𝑗)
ℎ(𝑤, 𝑗)! Γ 𝑘

𝑚 𝑤, 𝑗,𝜗
𝑚 𝑤, 𝑗,𝜗 + 𝑘

!(!,!)

1+
𝑚 𝑤, 𝑗,𝜗

𝑘

!!

!!

 

 
where j runs over the four woredas, w runs over weeks between 1st January 2013 and 
20th March 2017; h(w,j) is the observed number of hospitalized individuals at week w 
in site j; m(𝑤,𝜗, 𝑗) is the estimated number of hospitalized measles cases during week 
w for the site j, as obtained by model simulation with a specific candidate parameter 
set  𝜗.  
 
5. Model selection and additional results 
 
Table 2 shows DIC values associated with different modelling assumptions and the 
corresponding parameters’ and epidemiological estimates, as obtained through the 
MCMC approach described above. Estimates obtained with different model 
assumptions are also displayed in Figure S5. For the sake of comparison, we 
computed the average hospitalization rate in the main hospital catchment area 
associated with the model fitted separately for each woreda. The latter was computed 
as the weighted sum of estimates obtained for the hospitalization rate in each woreda, 
using the woredas’ population size as weights (see Figure S5). 
 

Table 2. Summary of model results as obtained under different modelling assumptions.  
 

 

 DIC SIA  
coverage  
(%) 

R0 FOI reduction  
during 
summer (%) 

Susceptible 
individuals 
in 2013 (%) 

Hospitalization  
Rate (%) 

Baseline model  1089 18.7 
(11.9-24.3)  

16.5 
(14.5-18.3)  

27.8 
(21.6-33.2)  

6.5 
(6.0-7.3)  

12.4 
(10.9-14.1) 
 

No seasonal 
forcing 

1162 39.8 
(32.3-45.1) 

20.7 
(18.6-22.0) 

0 5.8 
(5.4-6.3) 

11.6 
(11.0-14.4) 

No SIA in 2013 1128 0 12.2 
(11.0-13.6) 

33.3 
(26.6-39.2) 

8.2 
(7.4-9.2) 

13.1 
(10.9-15.0) 

SIA coverage 
assumed 

1257 92 69.6 
(66.1-73.0) 
 

23.1 
(17.9-29.2) 
 

1.8 
(1.7-2.0) 
 

31.8 
(26.9-36.7) 
 

Heterogeneous 
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Figure S5 A) Estimates of R0 obtained with the baseline scenario and with the alternative assumptions 
made for the sensitivity analysis. B) As A) but the estimated R0 during the school terms (corresponding 
to the dry season). C) As A) but for the estimated reduction in force of infection during school holidays 
(r). D) As B) but for the estimated percentage of susceptible individuals in the population at the 
beginning of the epidemic (𝑠!). E) As B) but the estimated hospitalization rate (ph). A weighted 
average is shown for the model based on woreda-specific hospitalization rates. F) As B) but for the 
estimated coverage level characterizing the 2013 SIA (cs). G) DIC values associated with different 
modelling assumptions considered. 
 
On the basis of DIC values, both the inclusion of a seasonal forcing in measles 
transmission and a parameter aimed at estimating the coverage associated with the 
2013 SIA improve the model capability of reproducing the observed epidemiological 
patterns (see Table 1 and Figure S6). Specifically, in the absence of a seasonal 
variation in the transmission rate, the model fails to reproduce the decrease in the 
number of hospitalised measles cases observed during school holidays/rainy season 
(see Figure S6A). When the coverage of the 2013 SIA is assumed to be 92%, the 
model completely fails in reproducing the overall epidemic pattern observed between 
2013 and 2017 (see Fig. S6B). However, by assuming that the 2013 SIA was not 
performed in the study area, model fit underestimates the observed increase of 
hospitalized cases occurring between January and May 2013 (see Figure S6C).  
The obtained results therefore suggest that the 2013 SIA was at least partially 
effective in decreasing measles circulation between September 2013 and June 2015 
and that a significant reduction in measles transmission regularly occur between June 
and September, possibly due to either school closure or rainfalls. 
On the other hand, the inclusion of realistic age-specific contact patterns (stratified in 
5-years age-bands) was ruled out by the analysis of DIC values associated with 
different models considered. Although age-specific contact patterns may be relevant 
when investigating the transmission of infectious diseases, 70% of reported infections 
were <4 years of age and the model based on heterogeneous mixing by age fails in 
reproducing the temporal series of hospitalized cases observed in the main hospital 
catchment area (Figure S6D).  However, it is worth noting that the model based on 
heterogeneous mixing by age was informed with a synthetic contact matrix recently 
estimated for this country [3]. Indeed, data on age-specific contact patterns in 
Ethiopia are not yet available and the unique work providing some information on this 
is represented by a very recent study by Prem et al. [3], which provides only synthetic 



contact matrices across different countries based of a statistical analysis of their 
demographic structure.  
Finally, Figure S7 shows model estimates of the mean number of weekly-hospitalized 
measles cases over time across different woredas, as obtained by fitting cases from 
Woliso, Ameya, Goro and Wonchi, separately. The estimated posterior distributions 
of woredas specific hospitalization rates obtained with this model were compared 
with the woredas specific hospitalization rates obtained with the baseline regression 
analysis presented in the main text. More specifically, the hospitalization rate 
characterizing the Woliso woredas for the baseline regression analysis was computed 
as the weighted average of hospitalization rates estimated across all kebeles in the 
Woliso woreda, by assuming weights equal to kebeles specific population sizes. In 
addition, the average measles incidence estimated with the baseline transmission 
model was scaled to the woreda level, using woreda specific population sizes and 
hospitalization rate as resulting from the baseline regression model. This allowed us 
to compare the two models (separate fit vs baseline) in terms of the root mean square 
error (RMSE) between model estimates and observed data at the woreda level. 
Remarkably, negligible differences were found by using the two alternative modeling 
approaches (see Figure S7).  
 

 
Figure S6 A) Estimated (mean in red and 95%CI in orange) and observed (blue bars) number of 
hospitalized measles cases between 2013 and 2017, as obtained by assuming a constant transmission 
rate over time. B) As A) but by assuming 92% coverage for the 2013 SIA. C) As A) but by assuming 
that the 2013 SIA was not performed in the study area. D) As A) but as obtained with the model 
accounting for heterogeneous mixing by age.  
 



 
Figure S7. A) Estimated (mean in dark green and 95%CI in light green) and observed (blue bars) 
number of hospitalized measles cases between 2013 and 2017, among individuals of Woliso woreda, as 
obtained by fitting a model taking into account woreda-specific hospitalization rates. Pink bars 
represents school closures. B) As A) but for Ameya. C) As A) but for Goro. D) As A) but for Wonchi. 
E) Comparison between estimates of woreda-specific hospitalization rates as obtained by directly 
fitting the dynamic model against cases reported in Woliso, Ameya, Goro and Wonchi separately and 
as obtained with the baseline approach. F) Comparison of the root mean square error (RMSE) between 
model estimates and observed data obtained by directly fitting the dynamic model against cases 
reported in Woliso, Ameya, Goro and Wonchi separately or through the baseline approach. 
 
6. Alternative spatial regression models  
 
Alternative regression models were also considered to assess the robustness of results 
obtained in the main text. In particular, we performed a sensitivity analysis to 
investigate the spatial dependence in the hospitalization rates when patients recorded 
from all woredas of the South West Shoa Zone zone are considered.  Although it is 
likely that measles cases occurring beyond 30km from Woliso town have been 
partially detected, recovered and treated in other health care facilities, our results 
suggest that the marked decrease of measles hospitalization rate with travel distance 
from the hospital do not critically depend on the selection of sites adopted in our 
baseline regression analysis (Figure S8). 
 

 



Figure S8 A) Cumulative incidence of hospitalizations per 1,000 individuals by distance from Woliso 
hospital in the entire South West Shoa zone. The red solid line represents estimate obtained by the 
negative binomial regression model applied to all sites in the South West Shoa zone; shaded area 
represents 95%CI. The blue solid line represents the mean estimate obtained by the negative binomial 
regression model applied only to the main hospital catchment area (baseline scenario in the main text). 
B) as A) but for the measles hospitalization rate. 
 
We also assessed whether the identified spatial dependence of the measles 
hospitalization rate was dependent on sex of measles patients. This analysis was 
conducted by considering a separate regression analysis for male and female patients. 
As we do not have any information on the different coverage level by sex in the area, 
this analysis assumes that measles incidence was the same among males and females. 
Obtained results suggest a slightly higher measles hospitalization incidence among 
males. Although this result highlights a possibly different access to health facilities of 
males with respect to females, the observed changes in both the cumulative 
hospitalization incidence and the measles hospitalization rate strongly suggest that the 
role of travel distance in shaping individuals’ access to care does not depend on the 
individual sex (Figure S9).  

 

 
Figure S9 A) Cumulative incidence of measles hospitalizations per 1,000 individuals by distance from 
Woliso hospital as obtained when considering only male patients. The green solid line represents the 
mean estimate obtained by the negative binomial regression model applied to all sites in the main 
hospital catchment area; shaded area represents 95%CI. B) As A) but for females. C) As A) but for the 
measles hospitalization rate. D) As B) but for the measles hospitalization rate. 
 
7. The relationship between hospitalization and distance 
from the hospital 



 
Results obtained from the spatial analysis of measles hospital admissions at different 
distances are supported by spatial trends we identified in the relative risk of being 
hospitalized as a consequence of other illness conditions.  
In particular, we investigated the risk ratio (RR) of being hospitalized for individuals 
living at a certain distance from the hospital with respect to those living in Woliso 
town.  
Hospitalization causes considered in this analysis include - among others - other 
infectious diseases (e.g. malaria, TB, HIV), respiratory tract infections (RTI), 
traumas, and natural deliveries (see Figure S10). It is worth noting that hospitalization 
due to natural delivery consists of hospital admissions of patients that had not been 
affected by any complication raised neither post-partum nor during pregnancy.  
In general, the risk ratio (RR) is defined by ratio of the probability of an event 
occurring in an exposed group to the probability of the event occurring in a 
comparison, non-exposed group. In our case, we computed the relative risk associated 
with a given distance d from the hospital as RR(d) = ph (d)/ph(d=0), where: i) ph(d) is 
probability of being hospitalized at a certain distance and it is computed as the 
cumulative hospitalization incidence in the population living at distance d; ii) ph(d=0) 
denotes the probability of being hospitalized for individuals that are close to the 
hospital and it is computed as the cumulative hospitalization incidence in Woliso 
town. Cumulative hospitalization incidence rates were obtained dividing the number 
of cumulative hospitalized cases in a given site by the population size of the same 
site. 
More specifically, we performed a linear regression analysis applied to the logarithm 
of the RR computed for different causes of hospitalization, by considering as the 
response variable the travel distance from the hospital (𝑑) and assuming no intercept 
(i.e., 𝑙𝑜𝑔 𝑅𝑅 𝑑 = 𝜙𝑑, where 𝜙 can be either positive or negative). The analysis 
can be interpreted as fitting the RR with an exponential function of distance, 
constrained to be 1 at 0km (i.e., RR d = 𝑒!").  
Obtained results (Figure S10) highlight a marked decrease of the relative risk of 
hospitalization with distance from Woliso for all the causes of hospitalization 
considered but for malnutrition. Actually, for malnutrition an increase of RR with 
distance from the hospital is estimated. To some extent, this is something expected as 
malnutrition is much more prevalent in rural areas. 
Interestingly, we found that the decrease in the relative risk of seeking hospitalization 
for measles as a function of distance is milder than what observed for other health 
outcomes (Figures S10 and S11). However, confidence intervals associated with 
different outcomes often intersect each other so that, for most of outcomes, no 
significant differences were found (Figure S11). 
 
 
 



 
Figure S10 Points represent estimates of the relative risk (RR) of being hospitalized for different 
causes of hospitalization across different sites in the main hospital catchment area. Different colours 
are used for different hospitalization causes. Solid lines represent mean estimates obtained using a 
linear regression model applied to the corresponding log(RR) using distance as independent variable 
and assuming no intercept. 
 

 
 
Figure S11. A) Estimated values of the decay/increase rate (i.e. 𝜙) with distance for the logarithm of 
the RR of being hospitalized for different illness conditions and B) the resulting estimated RR as a 
function of distance (i.e. RR d = 𝑒!"). 
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