Supporting Information:

Transposase-Mediated Chromosomal Integration of Exogenous Genes in Acidithiobacillus ferrooxidans

Yuta Inaba, Indrani Banerjee, Timothy Kernan, and Scott Banta *

Department of Chemical Engineering, Columbia University, New York, NY, USA

Table S1. DNA and amino acid sequences for codon-optimized version of the hyperactive mini-Tn5 transposase, Tnp, expressed in *A. ferrooxidans*.

Tnp DNA	ATGATCACATCCGCACTTCACCGAGCAGCAGATTGGGCAAAAAGCG
	TTTTTAGTTCAGCCGCGCTGGGTGATCCCCGCCGTACCGCCCGTCTG
	GTGAACGTCGCCGCACAGCTCGCCAAGTACTCGGGCAAATCCATTAC
	AATTTCCAGCGAAGGCTCAAAGGCCATGCAAGAGGGCGCCTATCGC
	TTCATCCGCAATCCGAATGTCAGCGCCGAGGCCATTCGGAAGGCCG
	GTGCGATGCAGACCGTCAAATTGGCCCAAGAATTCCCCCGAGCTGTTG
	GCGATCGAAGATACGACGAGCCTTTCATATCGTCATCAAGTGGCGG
	AAGAACTGGGAAAACTGGGTTCCATCCAGGACAAGTCTCGCGGTTG
	GTGGGTACACTCGGTGCTGCTCCTGGAAGCTACCACCTTCCGTACCG
	TGGGCTTGTTGCACCAAGAGTGGTGGATGCGCCCGGATGATCCGGC
	GGACGCGGATGAGAAAGAATCGGGGGAAATGGCTGGCTGCCGCG
	ACCAGCCGGCTGCGGATGGGTAGTATGATGAGCAACGTCATAGCCG
	TCTGTGACCGCGAAGCCGACATCCATGCCTATCTGCAGGACAAGCTC
	GCGCATAATGAACGTTTTGTGGTTCGCTCCAAGCACCCGCGCAAAGA
	CGTTGAGTCGGGGCTGTACCTGTACGACCACCTCAAAAACCAGCCTG
	AGTTGGGCGGATACCAGATTTCCATTGGCCAGAAAGGCGTCGTTGAC
	AAGCGGGGTAAGCGCAAGAATCGCCCCGCCCGGAAAGCCTCTCTCT
	CCCTGCGGAGTGGGCGTATCACCCTCAAGCAAGGTAATATCACGCTC
	AACGCCGTACTGGCGGAAGAGATCAACCCCCCCAAAGGTGAGACTC
	CATTGAAGTGGCTGCTGCTGACCAGCGAGCCCGTGGAGTCTCTGGCC
	CAAGCGCTGCGCGTGATTGACATTTATACCCACCGGTGGCGAATCGA
	AGAATTTCATAAAGCCTGGAAAACGGGTGCCGGAGCGGAGCGTCAG
	CGGATGGAAGAACCTGATAATCTCGAACGCATGGTCAGTATCCTCA
	GCTTTGTGGCCGTGCGCCTGCTGCAACTGCGTGAGTCGTTCACCCCA
	CCGCAGGCCCTGCGAGCTCAAGGGCTCTTGAAAGAAGCCGAACATG
	TCGAGTCCCAAAGCGCCGAAACGGTACTGACGCCGGATGAGTGCCA
	GTTGTTGGGATATCTCGATAAGGGCAAGCGCAAGCGGAAAGAAA
	GCCGGCTCCCTTCAGTGGGCCTACATGGCGATCGCGCGTCTGGGGGGG
	ATTCATGGATAGTAAGCGGACTGGGATCGCTTCCTGGGGCGCGCGC
	GGGAAGGCTGGGAAGCCCTCCAGAGCAAACTCGATGGGTTCCTGGC
	AGCAAAAGATCTGATGGCGCAGGGTATCAAGATTTGA
Tnp AA	MITSALHRAADWAKSVFSSAALGDPRRTARLVNVAAQLAKYSGKSITIS
	SEGSKAMQEGAYRFIRNPNVSAEAIRKAGAMQTVKLAQEFPELLAIEDT
	TSLSYRHQVAEELGKLGSIQDKSRGWWVHSVLLLEATTFRTVGLLHQE
	WWMRPDDPADADEKESGKWLAAAATSRLRMGSMMSNVIAVCDREA
	DIHAYLQDKLAHNERFVVRSKHPRKDVESGLYLYDHLKNQPELGGYQI
	SIGQKGVVDKRGKRKNRPARKASLSLRSGRITLKQGNITLNAVLAEEIN
	PPKGETPLKWLLLTSEPVESLAQALRVIDIYTHRWRIEEFHKAWKTGAG
	AERQRMEEPDNLERMVSILSFVAVRLLQLRESFTPPQALRAQGLLKEAE
	HVESQSAETVLTPDECQLLGYLDKGKRKRKEKAGSLQWAYMAIARLG
	GFMDSKRTGIASWGALWEGWEALQSKLDGFLAAKDLMAQGIKI

FIG. S1. The Clustal Omega sequence alignment for the transposase sequences used in pBAM1 and pBAM2.

pBAM1 pBAM2	ATGATTACCAGTGCACTGCATCGTGCGGCGGATTGGGCGAAAAGCGTGTTTTCTAGTGCT ATGATCACATCCGCACTTCACCGAGCAGCAGATTGGGCAAAAAGCGTTTTTAGTTCAGCC ***** ** ** ** ** ** ** ** ******** ****	60 60
pBAM1 pBAM2	GCGCTGGGTGATCCGCGTCGTACCGCGCGTCTGGTGAATGTTGCGGCGCAACTGGCCAAA GCGCTGGGTGATCCCCGCCGTACCGCCCGTCTGGTGAACGTCGCCGCACAGCTCGCCAAG *************** ** ******** **********	120 120
pBAM1 pBAM2	TATAGCGGCAAAAGCATTACCATTAGCAGCGAGGCAGGCA	180 180
pBAM1 pBAM2	TATCGTTTTATTCGTAATCCGAACGTGAGCGCGGAAGCGATTCGTAAAGCGGGTGCCATG TATCGCTTCATCCGCAATCCGAATGTCAGCGCCGAGGCCATTCGGAAGGCCGGTGCGATG ***** ** ** ** ** ******* ** ***** ** *	240 240
pBAM1 pBAM2	CAGACCGTGAAACTGGCCCAGGAATTTCCGGAACTGCTGGCAATTGAAGATACCACCTCT CAGACCGTCAAATTGGCCCAAGAATTCCCCCGAGCTGTTGGCGATCGAAGATACGACGAGC ******* *** *** ****** ***** ** ** *** *** *** *** ****	300 300
pBAM1 pBAM2	CTGAGCTATCGTCATCAGGTGGCGGAAGAACTGGGCAAACTGGGTAGCATTCAGGATAAA CTTTCATATCGTCATCAAGTGGCGGAAGAACTGGGAAAACTGGGTTCCATCCA	360 360
pBAM1 pBAM2	AGCCGTGGTTGGTGGGTGCATAGCGTGCTGCTGCTGGAAGCGACCACCTTTCGTACCGTG TCTCGCGGTTGGTGGGTACACTCGGTGCTGCTCCTGGAAGCTACCACCTTCCGTACCGTG ** ******** ** ******* *************	420 420
pBAM1 pBAM2	GGCCTGCTGCATCAAGAATGGTGGATGCGTCCGGATGATCCGGCGGATGCGGATGAAAAA GGCTTGTTGCACCAAGAGTGGTGGATGCGCCCGGATGATCCGGCGGACGCGGATGAGAAA *** ** **** ***** ***************	480 480
pBAM1 pBAM2	GAAAGCGGCAAATGGCTGGCCGCTGCTGCAACTTCGCGTCTGAGAATGGGCAGCATGATG GAATCGGGGAAATGGCTGGCTGCTGCCGCGACCAGCCGGCTGCGGATGGGTAGTATGATG *** ** ********** **** ** ** ** ** ** *	540 540
pBAM1 pBAM2	AGCAACGTGATTGCGGTGTGCGATCGTGAAGCGGATATTCATGCGTATCTGCAAGATAAA AGCAACGTCATAGCCGTCTGTGACCGCGAAGCCGACATCCATGCCTATCTGCAGGACAAG ******* ** ** ** ** ** ** ** ** ***** ** ** ****	600 600
pBAM1 pBAM2	CTGGCCCATAACGAACGTTTTGTGGTGCGTAGCAAACATCCGCGTAAAGATGTGGAAAGC CTCGCGCATAATGAACGTTTTGTGGTTCGCTCCAAGCACCCGCGCAAAGACGTTGAGTCG ** ** ***** ************* ** *** *** *	660 660
pBAM1 pBAM2	GGCCTGTATCTGTATGATCACCTGAAAAACCAGCCGGAACTGGGCGGCTATCAGATTAGC GGGCTGTACCTGTACGACCACCTCAAAAACCAGCCTGAGTTGGGCGGATACCAGATTTCC ** ***** ***** ** ***** **********	720 720
pBAM1 pBAM2	ATTCCGCAGAAAGGCGTGGTGGATAAACGTGGCAAACGTAAAAACCGTCCGGCGCGTAAA ATTGGCCAGAAAGGCGTCGTTGACAAGCGGGGTAAGCGCAAGAATCGCCCCGGCACGAAA *** ********** ** ** ** ** ** ** ** **	780 780

pBAM1 pBAM2	GCGAGCCTGAGCCTGCGTAGCGGCCGTATTACCCTGAAACAGGGCAACATTACCCTGAAC GCCTCTCTCCCCTGCGGAGTGGGCCGTATCACCCTCAAGCAAG	840 840
pBAM1 pBAM2	GCGGTGCTGGCCGAAGAAATTAATCCGCCGAAAGGCGAAACCCCGCTGAAATGGCTGCTG GCCGTACTGGCGGAAGAGATCAACCCCCCCAAAGGTGAGACTCCATTGAAGTGGCTGCTG ** ** ***** ***** ** ** ** ** ** ***** ** ** ** **	900 900
pBAM1 pBAM2	CTGACCAGCGAGCCGGTGGAAAGTCTGGCCCAAGCGCTGCGTGTGATTGAT	960 960
pBAM1 pBAM2	CATCGTTGGCGCATTGAAGAATTTCACAAAGCGTGGAAAACGGGTGCGGGTGCGGAACGT CACCGGTGGCGAATCGAAGAATTTCATAAAGCCTGGAAAACGGGTGCCGGAGCGGAGCGT ** ** ***** ** ********** ***** *******	1020 1020
pBAM1 pBAM2	CAGCGTATGGAAGAACCGGATAACCTGGAACGTATGGTGAGCATTCTGAGCTTTGTGGCG CAGCGGATGGAAGAACCTGATAATCTCGAACGCATGGTCAGTATCCTCAGCTTTGTGGCC ***** ********** ***** ** ** ***** *****	1080 1080
pBAM1 pBAM2	GTGCGTCTGCTGCAACTGCGTGAATCTTTTACTCCGCCGCAAGCACTGCGTGCG	1140 1140
pBAM1 pBAM2	CTGCTGAAAGAAGCGGAACACGTTGAAAGCCAGAGCGCGGAAACCGTGCTGACCCCGGAT CTCTTGAAAGAAGCCGAACATGTCGAGTCCCAAAGCGCCGAAACGGTACTGACGCCGGAT ** ********* ***** ** ** ** *** ***** ****	1200 1200
pBAM1 pBAM2	GAATGCCAACTGCTGGGCTATCTGGATAAAGGCAAACGCAAACGCAAAGAAAAAGCGGGC GAGTGCCAGTTGTTGGGATATCTCGATAAGGGCAAGCGCAAGCGGAAAGAAA	1260 1260
pBAM1 pBAM2	AGCCTGCAATGGGCGTATATGGCGATTGCGCGTCTGGGCGGCTTTATGGATAGCAAACGT TCCCTTCAGTGGGCCTACATGGCGATCGCGCGTCTGGGGGGGATTCATGGATAGTAAGCGG *** ** ***** ** ******* ***********	1320 1320
pBAM1 pBAM2	ACCGGCATTGCGAGCTGGGGTGCGCTGTGGGAAGGTTGGGAAGCGCTGCAAAGCAAACTG ACTGGGATCGCTTCCTGGGGCGCGCGCTGTGGGAAGGCTGGGAAGCCCTCCAGAGCAAACTC ** ** ** ** ** ******	1380 1380
pBAM1 pBAM2	GATGGCTTTCTGGCCGCGAAAGACCTGATGGCGCAGGGCATTAAAATCTAA GATGGGTTCCTGGCAGCAAAAGATCTGATGGCGCAGGGTATCAAGATTTGA ***** ** ***** ** ***** *************	1431 1431

FIG. S2. Maps of pBAM2-GFP and pBAM2-KDC plasmids used to generate chromosomally integrated *A. ferrooxidans* strains with the super-folder (sfGFP) and 2-keto decarboxylase (KDC) genes, respectively. Top: pBAM2-GFP contains the codon-optimized version of the transposase and the sfGFP gene. Bottom: pBAM2-KDC contains the codon-optimized version of the transposase and the KDC gene.

FIG. S3. Schematic representation of the inverse PCR method used in this study. The genomic DNA from the mutant strains were digested overnight with EcoRI. The cut DNA was ligated intramolecularly resulting in two circular pieces of DNA containing a portion of tn5 and the flanking genomic DNA. The ligated DNA was used as a template for four PCR reactions using two sets of nested reactions using the primers shown to amplify the flanking genomic DNA. The shorter fragment of DNA amplified was sequenced with the sequencing primers, tnFSeq and tnRSeq.

Table S2. Media formulations used in this study. AFM3 and F2S media were adjusted to pH 1.8. S204 and SM4 medium were adjusted to pH 5.0. $Fe_2(SO_4)_3 \cdot 5H_2O$ was used for adding Fe(III); however, the weight by volume is calculated for the amount of Fe(III) ions in solution.

AFM3 (F2S)	Mating	S204	SM4
0.8 g/L (NH ₄) ₂ SO ₄	0.625% (w/v) agar	0.625% (w/v) agar	0.8 g/L (NH ₄) ₂ SO ₄
0.1 g/L HK ₂ PO ₄	11.25 g/L (NH ₄) ₂ SO ₄	11.25 g/L (NH ₄) ₂ SO ₄	0.1 g/L HK ₂ PO ₄
2.0 g/L MgSO ₄ ·7H ₂ O	0.38 g/L KCl	0.38 g/L KCl	2.0 g/L MgSO ₄ ·7H ₂ O
5ml/L Trace Mineral	1.86 g/L	1.86 g/L	5ml/L Trace Mineral
Supplement (ATCC [®]	MgSO ₄ ·7H ₂ O	MgSO ₄ ·7H ₂ O	Supplement (ATCC [®]
$MD-TMS^{TM}$)			$MD-TMS^{TM}$)
10 mM Citric Acid	0.0005% (w/v)	0.04% (w/v) Fe(III)	1 mM Citric Acid
	Fe(III)		
100 mM	0.05% (w/v) NaS ₂ O ₃	0.2% (w/v) NaS ₂ O ₃	0.0005% (w/v)
FeSO ₄ ·7H ₂ O			Fe(III)
0.1% (w/v) colloidal	100 µM	100 µM	100 µM
sulfur for F2S	diaminopimelic acid	diaminopimelic acid	diaminopimelic acid
	40 µg/mL leucine	40 µg/mL leucine	40 µg/mL leucine
	0.05% (w/v) yeast	225 µg/mL	0.1% (w/v) colloidal
	extract	kanamycin	sulfur
			250 µg/mL
			kanamycin