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Supplementary Table 1. Results from the onchocerciasis PFFI analyses where Se=0.85 and Sp=0.95. 

Focus 
(transmission 

status) 
Village Year 

Probability of 
null 

hypothesis, P0 

Probability of 
alternative 

hypothesis, Pa 

Confidence of 
freedom Classificationa 

Mt. Elgon 
(interrupted) 

Bubungi 2005 0.023 0.986 0.977 Y 
2011 0.002 1.000 0.998 Y 

Bunabutiti 2005 0.002 1.000 0.998 Y 
2011 0.009 0.998 0.991 Y 

Bunambatsu 2005 0.035 0.987 0.965 Y 
2011 0.006 0.999 0.994 Y 

Buriri 2005 0.003 0.999 0.997 Y 
2011 0.125 0.961 0.875 insufficient evidence 

Madi Mid North 
(ongoing) 

Andra 2004 0.814 0.241 0.186 insufficient evidence 

Madulu 2004 0.167 0.878 0.833 insufficient evidence 
2011 0.052 0.971 0.948 insufficient evidence 

Masaloa 2004 0.317 0.778 0.683 insufficient evidence 
Palaure Pacunaci 2004 0.999 0.001 0.001 N 

a Y= free from infection, N= not free from infection 

 



Supplementary Table 2. Description of model parameters. 

Parameter Definition (units) 
Parameter Range 

References Lymphatic Filariasis 
Model Onchocerciasis Model 

λ Number of bites per vector (per 
month) [5, 15] = bH

g
 1, 2, 3, 4, 5 

Hb Human blood index - [0.3, 0.99] 6, 7, 8, 9, 10 

g Period of gonotrophic cycle 
(months) - [0.067, 0.13] 8, 9, 11, 12 

V/H Ratio of number of vectors to hosts MBR1 / λ MBR1 / λ data 

HLin
2 

Threshold value used in h(a) to 
adjust the age-dependent exposure 
rate (months) 

[240, 360] [12, 240] 1, 3, 13 

A2 Coefficient describing population 
age distribution in π(a)  data data data 

B2 Coefficient describing population 
age distribution in π(a) data data data 

ψ1 
Proportion of L3 leaving vector per 
bite [0.1, 0.8] [0.12, 0.7] 8, 9, 10, 11, 14, 

15 

ψ2 Larval establishment rate3 [0.00003, 0.00364] [0.02, 0.0854] 1, 2, 3, 8, 9, 10, 
11, 16 

c Strength of acquired immunity [0.015, 0.025] [0.0001, 0.001] 1, 2, 3, 17, 18 
IC Strength of immunosuppression4 [0.5, 5.5] [0.5, 5.5] 1, 2, 3, 17, 18 

SC Slope of immunosuppression 
function5 (per worm/month) [0.01, 0.20] [0.1, 0.75] 1, 2, 3, 17, 18 

δ  Immunity waning rate (per month) [0.001, 0.01] [0.00001, 0.0001] 1, 2, 3, 17, 18 

μW Worm mortality rate (per month) [0.008, 0.018] [0.0083, 0.0104] 
1, 2, 3, 8, 9, 10, 
11, 15, 19, 20, 

21, 22 
τ Pre-patency period (months) [1, 9] [9, 26] 11, 15, 23, 24 

k0 
Basic location parameter of negative 
binomial distribution used in k [0.000036, 0.000775] [0.00036, 0.0044] 1, 2, 3, 25, 26 

kLin Linear rate of increase in k [0.00000024, 0.282] [0.00000024, 0.282] 1, 2, 3, 25, 26 
s Proportion of female worms 0.5 0.5 - 

α Production rate of microfilariae per 
worm (per month) [0.25, 1.5] [0.25, 1.5] 1, 2, 3, 8, 9, 10, 

11, 14, 15 

γ Microfilariae mortality rate (per 
month) [0.08, 0.12] [0.08, 0.12] 1, 3, 8, 9, 10, 11, 

14, 15, 21 

b 
Proportion of vectors which pick up 
infection when biting an infected 
host 

[0.251, 0.485] [0.259, 0.481] 1, 3, 8, 9, 10, 11, 
27 

κ Maximum level of L3 given Mf 
density [3, 5] [1.16, 2.00] 1, 3, 28, 29 

r Gradient of Mf uptake6 [0.04, 0.25] [0.01,0.0495] 1, 3, 28, 29 

σ Vector mortality rate (per month) [1.5, 8.5] [1.5, 8.5] 1, 3, 8, 9, 10, 11, 
26 

σe 
Excess vector mortality due to mf 
infection (per month) - [0.75, 4.25] 30 

σL Larval mortality rate - [0.33, 1.16] 8, 9, 10, 11 
1Note MBR (monthly biting rate) serves as an input to initialize the model, measured as bites per person per month, 
the value of which may be obtained from entomological surveys conducted in study sites. In the absence of the 
observed MBR value, the model has been adapted to estimate it from the community-level Mf prevalence data. 
2The parameters A, B, and HLin are estimated from national human demographic data or from the age-prevalence 
data. 
3The proportion of L3-stage larvae infecting human hosts that survive to develop into adult worms 2.  
4The facilitated establishment rate of adult worms due to parasite-induced immunosuppression in a heavily infected 
human host. 
5The initial rate of increase by which the strength of immunosuppression is achieved as W increases from 0 18.  
6The gradient of Mf uptake r is a measure of the initial increase in the infective L3 larvae uptake by vector as M 
increases from 0 2, 13.  



Supplementary Table 3. Description of model functions and functional forms. 
Function Functional form 
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for vectors with cibarial armature (i.e. Culex 
mosquitoes) 
 
 
for vectors without cibarial armature (i.e. 
Anopheles mosquitoes, Simulium 
damnosum/Simulium neavei blackflies) 



Supplementary Methods 

Modeling the effects of mass drug administration 

For the Nigerian lymphatic filariasis (LF) endemic sites without baseline microfilariae (mf) prevalence 

data, baseline model estimates were hindcasted by defining plausible ranges of initial mf and annual 

biting rate conditions, simulating the observed rounds of mass drug administration (MDA), and fitting the 

LF model to post-intervention mf data (see Methods in main text). MDA type and coverage data were 

retrieved from Richards et al. 31. The impact of annual mass drug treatment was modelled by assuming 

that anti-filarial treatment with various drug regimens acts by killing certain fractions of the populations 

of pre-patent (P) and patent (W) adult worms and mf (M) instantly after drug administration. We denote 

these fractions as ω for adult worms, and ε for mf, the values of which vary according to the drug that is 

administered and the targeted parasite 32. The population sizes of worms and microfilariae after drug 

treatment are calculated by modifying the populations of each parasite stage obtained immediately prior 

to the treatment: 

 
( , ) (1 ) ( , )
( , ) (1 ) ( , ) at time 
( , ) (1 ) ( , )

MDAi

P a t dt C P a t
W a t dt C W a t t T
M a t dt C M a t

ω
ω
ε

+ = − 
+ = − =
+ = − 

  (1) 

In the above, dt represents a short time-period since the time-point
iMDAT when the ith MDA was 

administered.  The parameter C is the population level drug coverage. Apart from instantaneous killing of 

adult worms and mf, filariasis drug regimens are also thought to reduce the production of mf by worms 

surviving each MDA. Here we modeled this effect by introducing a new parameter (denoted by δreduc) as 

follows: 

 2(1 ) [ ( , ), ] ( , ) ( , ),  for reduc MDAi MDAi
M M C s W a t k W a t M a t T t T P
t a

δ αφ µ∂ ∂
+ = − − < ≤ +

∂ ∂
  (2) 

where (1 )reducCα α δ′ = − reflects the suppressed fecundity (over a period of TP months since the ith MDA) 

of adult worms that survive the administration of drugs at each MDA. 



 

Supplementary Figure 1. Model fits and estimated transmission breakpoints for onchocerciasis 
endemic sites. The model fits (gray curves) to baseline microfilariae prevalence from eight 
onchocerciasis endemic sites are shown. Age-stratified Mf prevalence patterns (shown in the figure as red 
squares for plateau-type and blue circles for convex-type patterns) used for fitting were constructed 
according to the reported community-level Mf prevalence (Table 1). The error bars represent the 95% 
binomial confidence intervals. The constructed age pattern which best matched the community-level Mf 
prevalence based on mean-squared error calculations was used for fitting. The empirical cumulative 
density functions (right) of the model-calculated Mf breakpoints are shown for each site. The vertical 
dashed lines in the ECDF plots denotes the Mf breakpoint values corresponding to the 95% elimination 
probability thresholds applicable in each village. Note that the breakpoints for Bubungi, Bunabutiti, 
Bunambatsu, and Buriri were calculated at the threshold biting rate because vector control was used in 
these sites, while the breakpoints for Andra, Madulu, Masaloa, and Palaure Pacunaci were calculated at 
the annual biting rate.   



 

Supplementary Figure 2. Model fits and estimated transmission breakpoints for lymphatic filariasis 
endemic sites. The model fits (gray curves) to baseline microfilariae prevalence from seven lymphatic 
filariasis endemic sites are shown. Age-stratified Mf prevalence patterns (shown in the figure as red 
crosses for plateau-type and blue circles for convex-type patterns) used for fitting were constructed 
according to the reported community-level Mf prevalence (Table 2). The error bars represent the 95% 
binomial confidence intervals. Both plateau and convex constructed age patterns were used as an 
ensemble. In those sites that do not have constructed data shown, the baseline curves were hindcasted 
from fits to post-intervention data. The empirical cumulative density functions (right) of the model-
calculated Mf breakpoints are shown for each site. The vertical dashed lines in the ECDF plots denotes 
the Mf breakpoint values corresponding to the 95% elimination probability thresholds applicable in each 
village. Breakpoint values were calculated at the annual biting rate.  



Supplementary Note 1: Software

Description 
The PFFI function description and code that follows allows the calculation of freedom from infection 
probabilities in R. PFFI analyzes data from a parasitic infection survey for determining whether a 
population is free from infection at the design prevalence. The calculations employ the exact 
hypergeometric distribution as given by Cameron and Baldock 1998, and are based on one-stage 
sampling, use of an imperfect diagnostic test, and a finite population. 

Usage 

PFFI(p, …) 

Arguments 

p the design prevalence given as a proportion 

Se the sensitivity of the diagnostic test 

Sp the specificity of the diagnostic test 

N the population size 

n the number of individuals sampled in the survey 

x the number of sampled individuals who test positive for infection 

alpha the desired rate of Type I error 

beta the desired rate of Type II error 

Value 
A data frame is returned which contains the probability of the null hypothesis, the probability of the 
alternative hypothesis, the confidence of freedom, and the survey freedom classification. 

References 

Cameron and Baldock, (1998) A new probability formula for surveys to substantiate freedom from 
disease. Preventative Veterinary Medicine, 34(1), 1-17. 

Examples 

p = 0.005 
Se = 0.8 
Sp = 0.95 
N = 1500 
n = 200 
x = 1 



alpha = 0.05 
beta = 0.05 

out = PFFI(p,Se,Sp,N,n,x,alpha,beta) 

Code 

PFFI <- function(p,Se,Sp,N,n,x,alpha,beta){ 

# probability of null hypothesis (prob that prevalence >= design 
# prevalence) 

  d = floor(p*N) # diseased in population 
  P_null = 0 
  for (x1 in 0:x){ # summation of P(T+=x) 
    c = 0 
    for (y in 0:d){ # outer summation of hypergeometric 
      a = (choose(d,y)*choose(N-d,n-y))/choose(N,n) 
      b = 0 
      for (j in 0:min(x1,y)){ # inner summation of hypergeometric 
        b = b + choose(y,j)*Se^j*(1-Se)^(y-j)*choose(n-y,x1-j)*(1- 

Sp)^(x1-j)*Sp^(n-x1-y+j) 
      } 
      c = c + a*b 
    } 
    P_null = P_null+c 
  } 

# probability of alternative hypothesis (prob that prevalence < design 
# prevalence) 
  d=0 # disease free population 
  P_alt = 0 
  for (x2 in x:n){ # summation of P(T+=x) 
    c = 0 
    for (y in 0:d){ # outer summation of hypergeometric 
      a = (choose(d,y)*choose(N-d,n-y))/choose(N,n) 
      b = 0 

  for (j in 0:min(x2,y)){ # inner summation of hypergeometric 
        b = b + choose(y,j)*Se^j*(1-Se)^(y-j)*choose(n-y,x2-j)*(1- 

Sp)^(x2-j)*Sp^(n-x2-y+j) 
      } 
      c = c + a*b 
    } 
    P_alt = P_alt+c 
  } 

 # probability of freedom = 1-P_null 
  P_free = (1-P_null) 

# draw a conclusion regarding whether the survey indicates the 



# population is free from infection 
  if (P_null>alpha && P_alt>alpha){ 
    conc = "insufficient evidence, sample size too small" 
  } 
  else if (P_null<alpha && P_alt>(1-beta)){ 
    conc = "free from infection" 
  } 
  else if (P_alt<(1-beta)){ 
    conc = "not free from infection" 
  } 

# return list of probabilities 
  vars = c('P_null','P_alt','P_free','Decision') 
  Prob = c(P_null,P_alt,P_free,conc) 
  out = data.frame(Prob,row.names = vars) 

  return (out) 

} 
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