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Supplementary Note 1: Derivation of Fourier-series coefficients m

pqa  

The Fourier-series coefficients m

pqa  of the periodic function ( )pq t  are derived in 

detail as follows:  
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The equivalent amplitude m

pqA  and phase m

pq  excitations of each coding element at 

different harmonic frequencies can be written as 
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             (2) 

Via Supplementary Equation (2), we can calculate the equivalent amplitude and phase 

of each coding element for any time-coding sequences, which can help controlling the 

scattered power at various harmonic frequencies. 

 

Supplementary Note 2: Detailed analysis of the random space-time- 

coding matrix 

The three-dimensional (3D) space-time-coding matrix in Supplementary Figure 1a 

can be displayed in another form, as shown in Supplementary Figure 1f. Each coding 

element has its own time-coding sequences, which can be independently designed. 
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Supplementary Figure 1 | Space-time-coding matrix and corresponding scattering 

patterns. a, Random 3D space-time-coding matrix with dimension (8, 8, 8). The red and 

green dots represent “1” and “0” digits, respectively. b,c, Equivalent amplitudes and phases, 

respectively, of all coding elements at the +2nd harmonic frequency. d,e, Corresponding 3D 

and 2D scattering patterns, respectively, at the +2nd harmonic frequency. f, Time-coding 

sequences of each coding element in panel a. 

 

By using Supplementary Equation (2), the equivalent amplitude and phase at any 

harmonic frequencies are calculated. Supplementary Figures 2a and 2b show the 

equivalent amplitude and phase patterns from the -3rd to +4th harmonic frequencies 

based on the space-time-coding matrix in Supplementary Figure 1a. It can be 

observed that each harmonic frequency has independent distributions of amplitude 

and phase. However, the phase at the central frequency is only 0 or 180°, which is 
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inherently limited by the 1-bit design of the coding element. Supplementary Note 3 

illustrates how to circumvent this limitation. Further results pertaining to scattering 

patterns at different harmonic frequencies are shown in Supplementary Figure 3. The 

scattering patterns at any harmonic frequencies can be obtained via Eq. (7). Due to the 

different equivalent amplitude and phase distributions at different harmonic 

frequencies, the resulting scattering patterns are also different. 

 
Supplementary Figure 2 | Equivalent amplitudes and phases at any harmonic 

frequencies. a,b, Equivalent amplitude and phase distributions, respectively, pertaining to the 

-3rd to +4th harmonic frequencies, based on the space-time-coding matrix in Supplementary 

Figure 1a. 
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Supplementary Figure 3 | Scattering patterns at different harmonic frequencies. a,b, 2D 

and 3D scattering patterns, respectively, pertaining to the -3rd to +4th harmonic frequencies 

based on the space-time-coding matrix in Supplementary Figure 1a. 

 

Supplementary Note 3: Equivalent phase coverages at different 

harmonic frequencies 

As previously mentioned, the equivalent phases m

pq  of each coding element at any 

harmonic frequencies can be independently designed via suitable choice of the 

corresponding time-coding sequence. Here, we theoretically study the phase coverage 

at different harmonic frequencies. In the 1-bit case, the coding elements only exhibit 0 

or 180° phase responses, and the equivalent phase coverages are demonstrated in 

Supplementary Figure 4a. We can observe that the phase coverage can reach 360° at 

any harmonic frequencies, with the exception of the central frequency. This can be 
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explained by recalling that the equivalent phase 0

pq  at the central frequency is given 

by 
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which clearly indicates that the value of 0

pq  is either 0 or 180°. To relax this 

restriction, we further study the phase coverages of 2-bit digital coding elements, 

which have four phase states as 0, 90°, 180°, and 270°. As shown in Supplementary 

Figure 4b, the equivalent phase coverages at the central frequency can also reach 

almost 360°, provided that the time-coding sequences of each coding elements are 

sufficiently long. 

 

Supplementary Figure 4 | a,b, Equivalent phase coverages of 1-bit and 2-bit digital coding 

elements, respectively, at different harmonic frequencies. 

 

On the other hand, the control system and biasing circuit of conventional (n>2)-bit 

programmable metasurfaces are very complicated. In order to design non-modulated 

elements with higher-bit coding, such as 3-bit, additional diodes need to be embedded 

into the elements. The layout would be very complicate and the control system would 

also be a challenge. However, the proposed space-time-coding metasurfaces provide a 

simple strategy to obtain almost 360° phase coverage at any harmonic frequencies and 
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central frequency. Therefore, high-bit programmable metasurfaces can be easily 

realized by suitably designing the time-coding sequences, which does not need a 

complicate layout and control system. 

 

Supplementary Note 4: Alternative explanation of the harmonic beam 

steering in Figure 2 

For a better understanding of our work, we provide an alternative explanation of the 

harmonic beam steering, by introducing the time shift in the Fourier transform. As 

shown in Figures 2a and 2b, the time-coding sequences of the Y-elements from 1st to 

8th can be considered as the periodic function ( )pq t  with a time shift qt , 

 0( ) exp 2m

pq q pq qt t a j mf t                        (4) 

where 0= ( 1) ( 1) 8qt q q T   , and the Fourier series coefficients 
m

pqa  of the 

periodic function ( )pq t  are given in Eq. (6). When the time shift qt is applied to 

the periodic function ( )pq t , there will be an additional space phase shift 02 qmf t  

with unchanged amplitude at the mth harmonic frequency, which clearly explains the 

phase gradients in Figures 2c and 2d. Therefore, the phase difference m  between 

adjacent (p, q)th and (p, q+1)th elements at the mth harmonic frequency can be written 

as 

0 1= 2 ( ) 4m q qmf t t m                         (5) 

Under normal incidence, the generalized Snell’s law2 can be simply expressed as 

sin m
m

y

k
d


                                   (6) 

where m  is the beam steering angle at the mth harmonic frequency c 0f mf , 

c2k    is the wavenumber of the reflected waves, and c 2yd   is the element 

period along the y direction. Therefore, the beam steering angle m  can be written 

as: 
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Finally, we calculate the steering angles at different harmonic frequencies, 0 =0 ,

1= 14.48  , 2 = 30   and 3 = 48.59  , which are all in good agreement with the 

theoretical results in Figures 2e and 2f. 

 

Supplementary Note 5: Details on the BPSO-based design for harmonic 

beam steering 

As discussed in the main text, we design a coding metasurface with 8×8 elements and 

a time-modulation period with 10 intervals. For simplicity, each column of eight 

coding elements shares the same control voltage, which corresponds to the same 

digital code. In this case, the 3D space-time coding matrix is simplified to a 2D matrix 

(similar to the process that associates Figure 2a to Figure 2b). In the PSO algorithm, 

1,2 a potential solution is regarded as a particle. Every particle is represented as an 

n-dimensional vector, and every element of the vector is described by the digits ‘0’ or 

‘1’, corresponding to a bit of the space-time coding matrix. The moving velocity of 

the particle indicates the probability of position change, and is given by  

1

ij ij 1 1 2 2rand ( ) (pbest ) rand ( ) (gbest )k k k k k k

ij ij ij ijw c x c x                  (8) 

where 1rand ( )  and 2rand ( )  are random numbers between 0 and 1, 1c  and 2c  are 

the acceleration constants, w is the inertia coefficient, pbestk

ij
 is the individual 

optimal position, and gbestk

ij
 is the global optimal position. Consistently with the 

probabilistic interpretation, the velocity ij  is constrained within the interval [0, 1], 

by means of a sigmoid-function mapping: 

 
1

( ) Sigmoid( )
1 exp

ij ij

ij

S  


 
 

                     (9) 

Accordingly, the position 1

ij

kx   is updated via 
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The targets to be optimized are then evaluated by the function ( )fitness x , looking 

for the best space-time-coding matrix. In order to achieve the beam steering of the 

desired angles at the various harmonic frequencies, the fitness function is defined as 

 
3

0, 1, 2, 3

1 0 d 2 max d

3

fitness( ) ( ) SLL ( ) SLLm m

m

x w x w x    



 
      

 
        (11) 

where 0

m  and d

m  denote the simulated and desired steering angles, 0, 1, 2, 3

maxSBL     

and dSBL  represent the maximum values of the simulated and desired sidelobe 

levels, and 1w  and 2w  are the corresponding weighting factors of each term, which 

are set as 5 and 1 in our examples. 

 

Supplementary Note 6: Equivalent amplitudes and phases for the 

space-time-coding matrix in Figure 3a 

We have realized harmonic beam steering based on the phase modulation with the 

BPSO-based design of the coding matrix shown in Figure 3a. Here, we illustrate the 

equivalent amplitudes and phases of the coding elements at different harmonic 

frequencies, as shown in Supplementary Figure 5. At the central frequency, the phase 

of the 5th coding element is 180°, and different from other elements, but its amplitude 

is zero. Therefore, the main beam still points at broadside, which is consistent with 

the results shown in Figures 3b and 3d. Furthermore, the equivalent phases at positive 

and negative harmonic frequencies also exhibit different phase gradients. 
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Supplementary Figure 5 | a,b, Equivalent amplitude and phase distributions, respectively, 

for the BPSO-based design of the space-time coding matrix in Figure 3a. 

 

Supplementary Note 7: Criterion for selecting the time-coding sequences 

for obtaining 3-bit equivalent coding responses 

In some practical applications, sideband signals are not desirable and should be 

suppressed to improve the scattered/radiated power at the central frequency. As an 

application for the beam steering shown in Figures 4e-4g, the criterion for selecting 

time-coding sequences of the eight elements is to make the equivalent amplitudes 

small enough at all harmonic frequencies, while making the equivalent phases at the 

central frequency to exhibit 3-bit coding responses with high amplitude (as shown in 

Figures 4c and 4d). Hence, an in-house MATLAB code based on Supplementary 

Equation (2) is utilized to search for the eligible time-coding sequences (as shown in 

Figure 4b).  

As a result, the 2D scattering patterns pertaining to the -3rd to +3th harmonic 

frequencies based on the space-time-coding matrix in Figure 4a are shown in 

Supplementary Figure 6a. The corresponding 1D scattering patterns at the first five 

negative and positive harmonic frequencies are also shown in Supplementary Figure 

6b. We observe that the maximum sideband level is about -12.95dB, which is much 

lower than the pattern level at the central frequency (cf. Figure 5f). 
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Supplementary Figure 6 | a, 2D scattering patterns pertaining to the -3rd to +3th harmonic 

frequencies, based on the space-time-coding matrix in Figure 5a. b, Corresponding 1D 

scattering pattern cuts (at 𝜑 = 90°) at different harmonic sidebands. c,d, Comparison of 

scattering patterns pertaining to the original 2-bit coding and equivalent 3-bit coding for 

realizing larger steering angles at the central frequency. 

 

Moreover, we can also utilize the equivalent 3-bit coding to attain larger steering 

angles. Supplementary Figure 6c compares the performance of the original 2-bit 
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coding “3-0-2-3-0-1-3-0” with the equivalent 3-bit coding “ 7′-1′-4′-6′-1′-3′-6′-0′ ”. 

It is observed that both schemes could realize a steering angle of 40°, but the latter 

accompanied by a lower sidelobe level. A similar example is shown in Supplementary 

Figure 6d, in which the original 2-bit coding is “2-0-1-3-0-2-3-1”, and the equivalent 

3-bit coding is “ 5′-0′-3′-6′-1′-4′-7′-2′ ” for a steering angle of 50°. 

 

Supplementary Figure 7 | Space-time-coding configuration for vortex-beam generation 

and corresponding 2D scattering patterns at harmonic frequencies. a, The coding 

metasurface is divided into eight sectors, each characterized by a 2-bit time-coding sequence. 

b, Corresponding 2D scattering patterns pertaining to the -3rd to +3th harmonic frequencies. 

 

Furthermore, the eight sets of time-coding sequences with rotated distribution (see 

Supplementary Figure 7a) can be used to generate a vortex-beam at the central 

frequency, and the scattered powers at the harmonic frequencies (see Supplementary 

Figure 7b) are also much smaller than that in Figure 4j. Finally, we can also utilize 
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optimization algorithms to reduce power losses in harmonic sidebands, so as to 

further improve the efficiency of the coding metasurface. 

 

Supplementary Note 8: Spectral analysis of the maximum intensity of 

harmonics 

Figures 5h and 5j show the spatial scattering patterns at different harmonic 

frequencies. Here, we investigate the spectral distribution of the maximum intensity 

of the harmonics. Supplementary Figure 8a and 8b show the maxima of scattering 

patterns from -50th to +50th harmonic frequencies, corresponding to the coding 

matrices in Figure 5c and 5e, respectively. It can be observed that the maximum 

intensity gradually decreases with the increase of the harmonic order, and drops 

significantly with respect to the first few harmonics. 

 

Supplementary Figure 8 | a,b, Maxima of the scattering patterns from -50th to +50th 

harmonic frequencies, corresponding to the coding matrices in Figures 5c and 5e, 

respectively. 

 

As we previously mentioned, the space-time-coding in Figure 5e yields better RCS 
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reduction performance than that in Figure 5c. This mainly depends on the judiciously 

designed coding sequences in both space- and time-domain, which can redistribute the 

scattered power more uniformly not only in space but also in spectrum, as 

demonstrated in Supplementary Figure 8. In connection with the time-domain 

response of the proposed space-time-coding metasurface, we observe that, by 

assuming the modulation time much larger than the period at the central wavelength, 

and neglecting the transients, during each time intervals one effectively experiences a 

time-harmonic response associated with a specific spatial coding. Especially for the 

case of RCS reduction in Figure 5e, the time-domain response of this 3D 

space-time-coding matrix during any modulation interval can be represented by the 

scattering pattern in Figure 5i. In this case, the scattered power at any direction 

remains at low levels due to the optimized space-coding in Figure 5d for 

redistributing the power in the space-domain uniformly. 

 

As also indicated in the main text, the scattering patterns in Figure 5h and 5j are 

similar in terms of beam shapes, only differing in the maximum value. The scattering 

patterns at different harmonic frequencies overlap in the space-domain and therefore 

the temporal interference of different harmonics may add up to a ultrashort 

high-intensity pulse in the time-domain. Here, we provide two solutions to limit the 

maximum intensity over time. 

(1) We could utilize the random 3D space-time-coding matrix in Supplementary 

Figure 1a to randomly redistribute scattering patterns in space. In this case, 

scattering patterns at different harmonic frequencies would have different beam 

shapes and would not exactly overlap in space, as shown in Supplementary Figure 

3. Therefore, the chances for temporal interference of different spectral harmonics 

adding up to a short, high-intensity pulse would be further minimized.  

(2) On the other hand, we could significantly increase the modulation frequency 0f  

to obtain a very short period 0T , which mainly depends on the switching speed of 

the PIN diodes and the control systems. The PIN diodes we used can reach a 2~3 
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ns switching speed. By decreasing the switching time to a nanosecond scale, it 

would be difficult for a radar detector to harvest energy from many harmonics. 

This also represents a possible solution to avoid accumulating a high-intensity 

pulse. 

 

Supplementary Note 9: Detailed analysis of the proposed 1-bit coding 

element and experimental results 

 

Supplementary Figure 9. a, Top view of the 1-bit coding element with detailed geometrical 

parameters. b,c, Electric-field distributions of the coding element with the PIN diode ‘OFF’ 

and ‘ON’, respectively. d, Magnified view of the fabricated prototype in Figure 6b. 

 

The detailed parameters of the coding element considered in our fabricated prototype 
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are shown in Supplementary Figure 9a. The corresponding electric-field distributions 

(at the operational frequency of 10 GHz) with and without biasing lines are shown in 

Supplementary Figures 9b and 9c. When the biasing line is added at point A, it does 

not affect the field distribution of the rectangular patch at both “ON” and “OFF” 

states, because the electric field at point A is very weak. Therefore, the introduction of 

the biasing line does not sensibly affect the performance of the space-time-coding 

metasurface. Moreover, inductors with inductance of 2nH are also introduced in the 

biasing lines to provide an RF choke, as illustrated in Supplementary Figure 9d.  

Finally, Supplementary Table 1 quantitatively illustrates the comparison between 

theoretically calculated and measured beam-steering angles at different harmonic 

frequencies, from which a generally good agreement is observed. 

 

Supplementary Table 1. The comparison of theoretical and measured results. 

Harmonic orders -3rd -2nd -1st +1st +2nd +3rd 

Theoretically 

calculated 
−47° −30° −15° 15° 30° 47° 

Measured at 9.8GHz −50° −31° −18° 16° 33° 50° 

Measured at 10.0GHz −47° −30° −17° 15° 28° 47° 
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