Supplementary Table 1: Follicle size, time of surgery in relation to hCG treatment, preoperative serum hormone concentrations, menstrual cycle day at the time of surgery, menstrual cycle length, and age of the study population. All data are given as means ± SEM.

	Preovulatory phase	Early ovulatory phase	Late ovulatory phase
Follicle size (mm)	15.9 ± 0.7	17.1 ± 0.8	17.2 ± 0.8
	range 14.0 – 17.0	range 15.0 – 19.0	range 15.0 – 20.0
Hours after rhCG		14.0 ± 0.9 range 12.0 – 18.0	21.9 ± 0.8 range 19.0 – 24.0
Progesterone (nmol/L)	0.4 ± 0.04	1.2 ± 0.22	2.1 ± 0.3
	range 0.3 – 0.5	range 0.5 – 1.9	range 1.5 – 3.0
Estradiol	0.5 ± 0.1	0.6 ± 0.1	0.7 ± 0.1
(nmol/L)	range 0.2 – 1.0	range 0.4 – 0.9	range 0.6 – 0.9
Cycle day of surgery	14.0 ± 0.3	12.6 ± 0.5	13 ± 0.6
	range 13 – 15	range 11 – 14	range 11 – 15
Cycle length	29.0 ± 0.6	27.2 ± 0.5	29.4 ± 0.9
(days)	range 28-35	range 26 – 28	range 28 – 32
Age	35.4 ± 1.2	33.8 ± 1.4	37.4 ± 1.4
(years)	range 31 – 38	range 30 – 38	range 36 – 38

All the patients recruited had a planned laparoscopic sterilization as a means of contraception and participated in the study voluntarily.

Target protein	Immunogen	Entrez -Gene ID	Host	Clonality	Isotype	Name of Antibody	Manufacturer, Catalog #
FOS	Synthetic peptide corresponding to the sequence of human c- FOS	2353	Rabbit	Mono- clonal	IgG	c-Fos (9F6) Rabbit mAb	Cell Signaling, #2250
JUN	GST-c-JUN protein derived from the N- terminal sequence of human c-JUN	3725	Rabbit	Mono- clonal	IgG	C-Jun (60A8) Rabbit mAb	Cell Signaling, #9165
JUNB	Synthetic peptide corresponding to residues surrounding Pro169 of human JUNB	3726	Rabbit	Mono- clonal	IgG	JunB (C37F9) Rabbit mAb	Cell Signaling, #3753
JUND	Synthetic peptide corresponding to residues surrounding Pro250 of human JUND	3727	Rabbit	Mono- clonal	IgG	JunD (D17G2) Rabbit mAb	Cell Signaling, #5000
PGR	Synthetic peptide corresponding to residues surrounding Tyr541 of human PR	5241	Rabbit	Mono- clonal	IgG	PR A/B (DbQ2J) XP [®] Rabbit mAb	Cell Signaling, #8757
RNA polymerase II	Synthetic peptide YSPTSpPS corresponding to human RNA pol II	5430	Mouse	Mono- clonal	IgG	RNA pol II mAb	Active Motif #39097
Rabbit Control IgG for IHC	No immunogen	-	Rabbit	Mono- clonal	IgG	Rabbit (DA1E) mAb IgG XP [®] Isotype Control	Cell signaling, #3900
Rabbit Control IgG for ChIP	No immunogen	-	Rabbit	Poly- clonal	IgG	Normal Rabbit IgG	Cell Signaling, #2729
Secondary antibodies		Conju	igants	Host	Isotype	Application	Manufacturer, Catalog #
Goat anti-rabbit antibody		HRP-1 poly	abeled mer	Goat	IgG	Immunohisto chemistry	Dako, K4065
Goat anti-rabbit antibody		HI	RP	Goat	IgG	Western blotting	Santa Cruz Biotechnology, #sc-2030

Supr	olementarv	Table 2	: Antibodie	s used fo	r immun	ohistochem	nical. W	estern blot	and ChIF	analyses.

Supplementary Table 3: Primer sequences (Forward and Reverse) used for real-time PCR analyses and ChIP assays

Genes	Accession No.	Forward primers	Reverse primers
For Real-time	e PCR		
FOS	NM_005252.3	AGGAGAATCCGAAGGGAAAG	CTTCTCCTCCAGCAGGTTGG
JUN	NM_002228.3	TGACTGCAAAGATGGAAACG	GGGTCATGCTCTGTTTCAGG
JUNB	NM_002229.2	TTAACAGGGAGGGGAAGAGG	CACAGTACGGTGCAGAGAGG
JUND	NM_005354.5	AGGCCCTGGAGGATTTACAC	CTCAGGTTCGCGTAGACAGG
PTGES	NM_004878.4	GCTGATCACACCCACAGTTG	CCAGGAAAAGGAAGGGGTAG
SLCO2A1	NM_005630.2	TCAACATGAGCTCTGCAACC	ATCAACAAGAACTGCACCCC
ABCC4	NM_005845.4	GGCTTGTGCTCTGAAAAAGG	CTGAGAGGATCGTCCAGGAG
RNA18S5	NR_046235.1	GTAACCCGTTGAACCCCATT	CCATCCAATCGGTAGTAGGG
For ChIP assa	ay		
FOS		CACCCCCTTCAAATGTCTTC	GCCCTAATTCAGTGCAAAGC
PTGES		GGCTAAAGGGATCAGCAGTG	TCTGCACGTGGTGATTATCG
SLCO2A1 (1)		ACCTCCTTCCCTCCCTCTC	CCTCTTTTCCTCGGGTGTC
SLCO2A1 (2)		CATTCCAGCACTGAGAAGGAG	GTCTCTGGACCTGAGCCAAG
ABCC4 (1)		CGACAGCATTCATCCATCTC	AGGCTCTTCAACCTGTGAGC
ABCC4 (2)		CCTCCATGACAATCATTTGG	CTGTCGTCAAGCCCTAAAGC

Supplementary Table 4. Relative abundance of FOS, JUN, JUNB, and JUND staining in granulosa and theca cells of human periovulatory follicles

		Pre	EO	Late
FOS	GC	-	+	+++
FO5	Th	-	+	+++
TINI	GC	-	+	+
JUN	Th	-	+	+
HINR	GC	-	+++	+++
JUND	Th	-	+++	+++
	GC	-	+++	+++
JUND	Th	-	+++	+++
InC Control	GC	N/A	N/A	-
igg Control	Th	N/A	N/A	-

Staining intensity: -, no staining detected; +, weak; ++, moderate; + + +, Strong. N/A, Not Available. GC, granulosa cells; Th, theca cells.

A. Sequence of human FOS gene

-1517	AGEAGGATETEETGGETEEEGGGEGGEGGEGGEGGEGGGEG
-1417	CGEDECTETDEAGGTGEEEACDGEGGGEECDGACECDEGGGECEEGAAGAGTGGAGAAGGGAAGAECGGGGGETGTGDGGGGACATGEGTETTEGDGECEETG
-1317	GAGGTGGECAGCGCGCGGGCTGAGCCCCGGCAGCGTGACCCCCGGCTGTCCTACGCAGGGCAGGAGATTGGGGGGGCGTGGCACACTCTGGAGCACC
-1217	TTGOTTOCCAAAGCO <mark>DEGTGTT</mark> CEAGGACGTGGAGCEGETEETGGGGTEEEAGGCGAGGTATTEEGEECAGGEGEAGETGGACAETGTEETTOEAG PRA & PRB-1196
-1117	CCCCCGTCCTCCACCCTCCAAGTCCGCGCTGGAAAATCACCCGCTGCGGGCTCCCGTAAGCACAGCTTCCTGGCGGGACCGAACCAGCCCTCAGCGCAGA
-1017	TTTGAGTTCDECGEAGGAAGCACACECDGECTTGTCATCDEGAACTGACEACECTGECEACATAACCACACECTCGEACTECCTACECETGGGGECEAGET
-917	CAGAACOGGGCAGACACCCCCTTCAAATGTCTTCGCAGGGTTTTGCACAGTGTTTGCAGGGCAGGCA
-817	CCACACATGGECGAGAAAAATAAATAAATAAATGEGETGTETTETTTAAAAAAAA
-717	CTTATTTTGGATCCTCCACTTTCTGCTTCCAAACGCAGG <mark>AACAGTG</mark> CTAGTATTGCTCGAGCCCGAGGGCTGGAGGGTAGGGGATGAAGGTCTGCTTCCA
	primer - R PRA & PRB-672
-617	primer - R PRA & PRB-672 DGUTTTGCACTGAATTAGGGUTAGAATTGGGGATGGGGGGTAGGGGGGGG
-617 -517	PRA & PRB-672 DECTTTECACTEGAATTAGEGETAGAATTEGEGGATEGEGGGTAGEGGGGGGGG
-617 -517 -417	PRA & PRB-672 OGUTTTGLACTGAATTAGGGUTAGAATTGGGGATGGGGGTAGGGGGGGGCATTCUTTCGGGAGECGAGGUTTAAGTCUTCGGGGGTCUTGTACTCGATGCUGT TTCTCCTATCTCTGAGECTCAGAACTGTCTTCAGTTTCCGTACAAGGGTAAAAAGGCGCTCTCTGCCCCATCCCCCCGACCTCGGG <mark>AACAAGG</mark> TTCCGC PRA & PRB-424 ATTGAACCAGGTGI <u>GAATGTT</u> CTCTCTCATTCTGCGCCGTTCCCGCCCTCCCCCAGCCGCGCCCCGCCCCCGCACTGCACCTC <u>GGGTGTGT</u> PRA & PRB-397 PRA & PRB-318
-617 -517 -417 -317	PRA & PRB-872 CGCTTTGCACTGAATTAGGGCTAGAATTGGGGATGGGGGGTAGGGGGGCATTCCTTCGGGAGCCGAGGCTTAAGTCCTCGGGGTCCTGTACTCGATGCCGT TTCTCCTATCTCTGAGCCTCAGAACTGTCTTCAGTTTCCGTACAAGGGGTAAAAAGGCGCTCTCTGCCCCATCCCCCGACCTCGGGACCAAGGTCCGC PRA & PRB-424 ATTGAACCAGGTGTGAATGTTCTCTCTCATTCTGCGCCGTCCCGCCCCCCCC
-617 -517 -417 -317 -217	primer - R PRA & PRB-\$72 DGCTTTGCACTGAATTAGGGCTAGAATTGGGGATGGGGGGTAGGGGGCGATGGCGAGCCGAGGCCTAAGTCCTCGGGGGTCCTGTACTCGATGCCGT TTCTCCTATCTCTGAGCCTCAGAACTGTCTTCAGTTTCCGTACAAGGGTAAAAAGGCGCTCTCTGCCCCATCCCCCCGACCTCGGGAACCAAGGTTCCGC PRA & PRB-424 ATTGAACCAGGTGCGAACTGTCTCCATTCTGCGCCGTTCCCGCCCCCGCGCCCCGCGCCCCCGCACTGCACCTCGCGCCCCCGCACTGCACCTCGGGGGCCCCCGCCCCGCCCCGCACTGCACCTCGCGCCCCCGCACTGCACCTCGCGCCCCCCGCACTGCACCTCGGGCGCCCCCGCACTGCGCCCCCGCACTGCGCCCCCGCCCCGCACTGCGCCCCCGCGCCCCCGCACTGCGCCCCCGCGCCCCCGCACTGCGCCCCCCGCACTGCGCCCCCCGCACTGCGCCCCCCGCACTGCGCCCCCCGCACTGCGCCCCCCGCCCCCGCCCCCGCCCCCGCCCCCGCACTGCGCCCCCCGCACTGCGCCCCCCGCACTGCGCCCCCCGCACTGCGCCCCCCCGCACTGCGCAACTGCCCACGGGCCCCACGAGCCCCCCGCGCCCCCGCGACCTCTGAGACCACGCGCACTGCGAAATGCTCACGAGCACTGCGAAATGCTCACGACACGGACCTCCACGAGCCCCCCCGCGCCCCCGCGCCCCCGCGCCCCCGCGAGCCCCCC
-617 -517 -417 -317 -217 -117	primer - R PRA & PRB-\$72 DGCTTTGLACTGAATTAGGGCTAGAATTGGGGATGGGGGTAGGGGGTAGGGGGCGATTCCTTCGGGGAGCCGAGGCTTAAGTCCTCGGGGGTCCTGTACTCGATGCCGT TTCTCCTATCTCTGAGCCTCAGAACTGTCTTCAGTTCCCGTACAAGGGTAAAAAGGCGCTCTCTGCCCCATCCCCCGACCCTCGGGGAACAAGGTCCGC PRA & PRB-424 ATTGAACCAGGTGTGAATTGTTCTCTCATTCTGCGCCGTTCCCGCCCCCGCGCGCG
-617 -517 -417 -317 -217 -117 -17	primer - R PRA & PRB*72 DGUTTTGLACTGAATTAGGGUTAGAATTGGGGATGGGGGTAGGGGGUGCATTOUTTCGGGAGCCGAGGUTTAAGTCUTCGGGGGUCCUGGGGGUCCUGGGUCCUGGGUCCUGGUCCUGGGUCCUGGUCCUGGACCAGGGTUCCGUCGAGUCCUGGAACAAGGTUCCGUCAAAGGUTUCCUCUCAGUCGUGGUGGUGGUCCUGGUTUUCUUCGAACAAGGUTUCGUCGUCUUGGUTUUCUUCUCUCUGGUGUGUGUGU

 $+184 \quad \texttt{CCGGCTTTGCCTAACCGCCACGATGATGTTCTCGGGCTTCAACGCCAGACTACGAGGCGTCATCCTCCCGGCGGCAGGCGGCCGGGGGGATAGC}$

B. Sequence of human PTGES gene

-1385	TQATGACCCCCAGGGCCCCGAGGGGGGGGGGGGGGGGGGG
-1285	GGGGTGAAAGAGDGGTTTTAAGGGGACCATDEAAGECAAGAAAGCAAGGAGCAAAGAGAAGAGCTCAGCAGCTCTDEECAGACCDETDEADETTGAGETT
-1185	GGGAAGTGGAGGGCGGTGGGGAAAGTTGGGGAGGAAAAGTGTGAGGGTTGATGGTGTGGAGGGGAGATGTACGGAGGGGCGTGGGGGGAGGGA
-1085	TGGGGATGGGGGAGGGATGGGGTATGAAAGGGAGGCGTGGGGGGGTGTGGAGAAGGGGTGGATATGGAAGGGGAGGGGTAGGGGTGGGGTGGGGTGTGGGGA
-985	TGAGTGTGGGGGAGGGGTGGGTATGGAAAGGAGGGGCAGGGGTCGGGGTGGTTGTGGGGGAAGATTGGGACATGGAAGGGAGGG
-885	GTTGGGGATGTGTGTGGGGGAGGATTGGGGTATGGAAGGAAGACAGGGTGGGGTGGGGTGAGGGTGTTGTGGGAGTGGTGDGTATGGAAGGGAGGC
-785	TTGGGTTGGGGTGGGGTGGGGTGGGGGGGGGGGGGGGG
-685	GGAGGGGCTAAAGGGATCAGCAGTGIGGGGTCADHAGCCTCTGGCCCCTTATCAGGGAGTCTGGGGCTGTGGGGTCADHCCGGGGATGGGCTTGGCATGGCCTG C-Fos-659 C-Fos-610
-585	GUTTTGTTTDUTAAGAGGACUTUTGGUTUTGUUGTGGGAGGGGAGGGGAG
-485	CCCAGTGGCTTGGACAGTCCCCTGGCTACTCGCCCAGGAGCTGGAGGAGCCGGGGGGGG
-385	GGCGTGGTTCTCATGCCCACCTACCCTGCCACGTGCGGCAGGTGGGCAGGAGGCAGCGAGGCAGGTGCCAGGTGCCCAGGTGCCCAGGCTC C-Fos- ³⁵⁰
-285	ATCATTOCCTAGAAGGCAGGCACCACCACATGCTCCCACACTGTAGATAAGGAAACAGCTTTGAAACAGATTTGAAAGTGTTTGAGGATTTGCCTGGAAG
-185	GAGGGCTCCAGAGCCAGGGACTGGGTCDGGGACACCDGGAGACTCTCTGCTTCTTGGAGCTCCGGCAACTGCTTGTCTTTCTCTTCACAGGAGAAGGGGG
-85	CCCTGCTGCDGCTGCDGTGGGGGGGGGGGGGGGGGGGGG
+15	AGETGATCACACCCACAGTTGAGETGGCGETGGCCAGAG <mark>ATG</mark> EETGEECACAGECTGGTGATGAGEAGECOGGEECTCCOGGEETTCETG

C. Sequence of human SLCO2A1 gene

-1434	GGETGAATTEAGGGTEEAGETEEACEACETGETAGETGTGTGGETTTEAGAEAGETTTETTAGEEGAETGETETAGEATEETTGTTGTGGAGTEEAGAE
-1334	TCCATCAGTACCTATACCTGTAGGGCTAACGTTGGGGCTTCATGAAATCATGCATG
-1234	GCT DEATGET GGTACET GTCCTT GTGT GECAT GTTCTCCCAGTGGACAGAT GGGACET GGAAT TCATGECT CET CTGGGGET GGGGET GGGGET GCTACA
-1134	GTGCTGTGGAAAGCCTGTCAGFATGTACCTCGCTCTGTGGCTGAGTGAAGAGGCCAGAGGCTGCCCACTGTTCAACATCTTTGGAATGCTGCCGTGTCCA
-1034	GGGAACTTGGGTDGCAGGTGGATAGAAGCCDCCAAGDCCAGGCCAGACCAGGCCCAGAAAGGTATCAGGTCTTGGGTAGAATAAGAAGDCTATGT
-934	GGTCTATCTATCCTGTGGCCTTTGTCTTAGCCAAAGCCTCCTGGATA <mark>TTGACGGC</mark> ATCTTTTCCTGGGTTTGGGGTGGGCTTGGAGAGGTTCCCTCTGCA C-Fos -878
-834	
-734	CTCACTGTCTCTTCTO3GOGCTTGGAATCCTGTTAGTAGAAAATCTTGGGGAAAAAATAAACCCCACTATTCATTC
-634	
-534	TACETTEGETCAGETCEAGAGAETTEGGGECCEAGECCECCACETTTECACETTGTTACCEAGECCECTETCEAGEGCAAAGAGEAGTTTAAATATAAATCA
-434	GTEETEAACACAAAACAGAGETGEAGEGAGTETEAGAGECATEACEGGAACTGAGGGECEAGGTTTTETGEGAGTGEAAACAAGEAGAGACTGGETEEGTA
-334	AATCTCCCCAAGAACGTCGGGAGGGGTGCTGGGGGTCCCCCCCC
-234	CTTOCTGCCCCCAGOCCTGCCAACCTCTTTCTCCATCCCCTCCACCCTACCCT
-134	
-34	
+66	CGAGGAAAAGAGGGAGGAGGAGGGGGGGGGGGGGGGGGG
+166	AATCTCCTCOGGCCACTGCCGCCGCGCGCCGCCCGCCGCCGCCGCGCCG
+266	CCGEAGDCATGGGGCTCCTGCCCAAGCTCGGCGDGTCCCAGGGCAGCGCACACCTCTACTAGCCGAGCCG

+366 TAAG

D. Sequence of human ABCC4 gene

-1534	CAACEAGEATATTETGGGEAETTETEATGEAEACTGGEEATCEAEGGGAGAEAGGEEATGETTAGAEATAGGETTATTGEAAATEATGTTTTATEETT
-1434	TCTTGGCTCTAAGACTGGACAAGTTCTGCCTTTCAGCTTCACCTTCCTCATCTATAAAGTAAGGATAACCTTGAATGGGGCACTGATAGAATTAAAAGTG
-1334	AGATAATTGGTCGGGDGTGGTGGTGGTACATGCCTGTAATCCTAGCACTTTGGGAGGDCADGGTGGGAGGATCACTTGAGCCTAGGAGTTTGAGACCAGDCTG
-1234	
-1134	ATGACAATCATTTGGCTTCAAAAAATTATCAGTATTTGAACTTGGAGCCTTTGATTTTTGATTTTTGCATCTCTACAAAAATTACAAAAATATGAGCCGGGTG
-1034	TGGTGGD3GGTGD2TGTAGTCCTAGCTACTTAAACTGAGTTGGGAGGATTGCTTGAGCCCTGGGAGGTCGAGGGTGCAATGAGCCATAATQ GTGACACT
-934	TGTGTGAGACTGOCACACACACACACACACACACACACACTAGTGAGGCTACGCACTCAGAAATGCACATGAACATCACTGGTATTCTGGAAOCCACGTGTC
-834	2 nd primer - R GTTTGCCACTGTTATCTGTTAGGCTTTAGGGTTTGACGACAGGAAATCATCAGGCAGTCTCTCTTTCCTCTTATATTCCTTTCCCAATCTAAGGGGGGGG
-734	C-FOS ⁻⁷⁵⁵ AAAAAGCTCAGAGGTCCACCGTAGCATGCAACATGTGAGATGCCTAAAGCCCGCCC
-634	ATACTCTCGAGTTACCCGGCTTTCTTGAGGTCTTGCAGCTCTACAAGGATAATCTGTGGCTAAACTTTGCTGTCGTCCAAAGGTCAAATGTTTGGCTCACA
-534	1 st primer - R GGTTGAAGAGELTDECATGGCACCGTCGTTTGGTCCTGAGAAGGGAAAGGCGCCCCAGGGGGGGG
-434	CCAAACDCGTAGDCGAGGGGGGTTTCTGCGGCGCAGGGGGGGGGCACAGCCGACGCCTCCCTGCTCCACCTTCTGTGTOGGDGCCTAGACTCGGATAGTG
-334	AATTTCGGAAAGTTTCACTCGGGTTCGTGCACGTGGGCACCTCCGGACCCGGGCCTCCTTGCCGCGCGCTCTGCTACCCTCCACCAGCGGCGCAGGCG
-234	
-134	CGGDCGDGCTCGCACGCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCG
-34	
+66	CEGGA GDECGEGGECAECGECGECTGATCA GEGGGACECCGEGECGEGECEGGECEGGECAA GATGET GDECGTGTAECA GGAGGTGAA GDECAAEC

Supplementary Fig. 1: Transcription factor binding motifs in nucleotide sequences of promoter regions for human FOS, *PTGES*, *SLCO2A1*, and *ABCC4*.

Promoter sequences of human *FOS* (A), *PTGES* (B), *SLCO2A1* (C), and *ABCC4* (D) were analyzed using a genomic library. Nucleotide sequences are numbered from TSS at +1. The sequences of the oligonucleotide primers are colored in red. Putative PRA, PRB, or c-FOS transcription factor binding sites (highlighted in black boxes) are predicted by TFSEARCH.

Supplemental Fig. 2: Immunohistochemical analyses of human periovulatory follicles with the antibody for JUND and rabbit IgG as a negative control.

Paraffin-embedded sections of dominant follicles collected during the late ovulatory period were subjected to immunohistochemical analyses by incubating with the antibody for JUND (A) and concentration matching normal rabbit IgG (B) as a negative control. The red/pink staining represents immunopositive staining for JUND. The section was lightly stained with hematoxylin (blue) for nuclear staining. Gc, granulosa cells; Tc, theca cells. Scale bar, 100 μ M for all the images.

Supplemental Fig. 3: Effect of FOS inhibitor on the expression of mRNA for STAR in hGLC.

Primary hGLC were treated with or without T-5224 (FOS inhibitor, 20 μ M) in the absence or presence of hCG (1 IU/ml). The levels of mRNA for *STAR* at 12 h were measured by qPCR. The levels of transcripts were normalized to those of *RNA18S5* mRNA in each sample (n = 3 independent experiments). Bars with no common superscripts in each time point are significantly different (p < 0.05).