Summary of Phantom Limb Pain studies

Robinson et al

Methods	Randomized controlled trial
Participants	Thirty-nine persons with amputation-related
	pain lasting more than 6 months
Interventions	Six-week trial of amitriptyline started at
	10mg daily (titrated up to 125mg/d) or an
	active placebo (benztropine mesylate).
Outcomes	Primary outcomes - average pain intensity
	scores
	Secondary outcomes - disability, satisfaction
	with life, handicap
Results	No significant effect on pain scores between
	the two groups
Conclusions	The authors did not support the use of
	amitriptyline in the treatment of post
	amputation pain

Bone et al

Methods	Randomized, double-blind, placebo-
	controlled, cross-over study
Participants	Nineteen patient with phantom limb pain
Interventions	Six-week trial treatment of both placebo and
	gabapentin titrated in increments of 300 mg
	to 2400 mg or the maximum tolerated dose.
	One week washout period between
	therapies
Outcomes	Primary outcome - visual analogue scale
	(VAS) pain intensity difference (PID)
	compared with baseline at the end of each

	treatment. Secondary outcome - indices of
	sleep interference, depression (Hospital
	Anxiety and Depression [HAD] scale), and
	activities of daily living (Bartel Index)
Results	PID was significantly greater than placebo
	for gabapentin therapy at the end of the
	treatment (3.2 +/- 2.1 v 1.6 +/- 0.7, P =.03).
	No significant differences between placebo
	and gabapentin therapy in terms of the
	number of tablets of rescue medication
	required, sleep interference, HAD scale, or
	Bartel Index
Conclusions	After 6 weeks, gabapentin monotherapy was
	better than placebo in relieving post
	amputation phantom limb pain

Smith et al

Methods	Randomized, double-blind crossover trial
Participants	Twenty-four adults with phantom limb pain
	(PLP) and/or residual limb pain (RLP) with
	pain >3 on NRS
Interventions	Six-week trial treatment of both placebo and
	gabapentin titrated in increments of 300 mg
	to 2400 mg or the maximum tolerated dose.
	One week washout period between
	therapies
Outcomes	Primary - pain intensity
	Secondary - pain interference, depression,
	life satisfaction, and functioning
Results	No significant differences between
	gabapentin and placebo on measures of pain

ConclusionsGabapentin does not provided significantpain relief for patients with PLP

Nikolajsen et al

Methods	Randomized trial
Participants	Forty-six patients scheduled to undergo
	lower limb amputation were randomly
	assigned to receive oral gabapentin or
	placebo
Interventions	Treatment was started on the first
	postoperative day and continued for 30
	days. The daily dose of gabapentin or
	placebo was gradually increased to 2,400
	mg/day
Outcomes	Primary - intensity of stump and phantom
	pain.
	Five interviews were performed after 7, 14,
	and 30 days and after 3 and 6 months
Results	Risk of phantom pain (gabapentin vs.
	placebo) was 55.0% versus 52.6% (risk
	difference, 2.4%; 95% confidence interval, -
	28.9 to 33.7%; P = 0.88; 30 days) and 58.8%
	versus 50.0% (risk difference, 8.8%; 95%
	confidence interval, -23.3 to 40.9%; P = 0.59;
	6 months). The median intensity of phantom
	pain (gabapentin vs. placebo) was 1.5 (range,
	0-9.0) versus 1.2 (range, 0-6.6) (P = 0.60; 30
	days) and 1.0 (range, 0-6.0) versus 0.5
	(range, 0-5.0) (P = 0.77; 6 months). The
	median intensity of stump pain was 0.85

	(range, 0-8.2) versus 1.0 (range, 0-5.4) (P =
	0.68; 30 days) and 0 (range, 0-8.0) versus 0
	(range, 0-5.0) (P = 0.58; 6 months)
Conclusions	Gabapentin administered in the first 30
	postoperative days after amputation does
	not reduce the incidence or intensity of post
	amputation pain.

Eichenberger et al

Methods	Randomized, double-blind, crossover
Participants	Twenty patients with chronic PLP
Interventions	4 i.v. infusions of: 200 IE calcitonin; ketamine
	0.4 mg/kg (only 10 patients); 200 IE of
	calcitonin combined with ketamine 0.4
	mg/kg; placebo, 0.9% saline
Outcomes	Primary - VAS for PLP intensity recorded
	before, during, at the end, and the 48 h after
	each infusion
	Pain thresholds after electrical, thermal, and
	pressure stimulation were recorded before
	and during each infusion.
Results	Ketamine, but not calcitonin, reduced
	phantom limb pain. The combination was
	not superior to ketamine alone. There was
	no difference in basal pain thresholds
	between the amputated and contralateral
	side except for pressure pain. Pain
	thresholds were unaffected by calcitonin.
	The analgesic effect of the combination of
	calcitonin and ketamine was associated with
	a significant increase in electrical thresholds,

but with no change in pressure and heat thresholds. Conclusions Ketamine, but not calcitonin, affects central sensitization processes that are probably involved in the pathophysiology of phantom limb pain.

Jaeger et al

Methods	Randomized, double-blind, crossover
Participants	Twenty patients with chronic PLP who
	underwent major amputations and
	developed severe PLP 0-7 days after surgery
Interventions	For each patient a matched pair of infusions
	was prepared containing either 200 IU of s-
	CT or placebo. When PLP reached a level of
	more than 3 on a numeric analogue scale
	(NAS) the first infusion was administered
Outcomes	primary - NAS pain scores
Results	Using s-CT infusion, PLP was eased from a
	median of 7 to 4 on NAS in both groups (P
	less than 0.001)
	Placebo did not change pain scores (median
	7 on NAS, P greater than 0.1)
Conclusions	s-CT is a valuable treatment for PLP in the
	early postoperative period

Nikolajsen, Hansen et al

Methods	Double-blind saline-controlled study
Participants	11 patients with established stump and
	phantom limb pain
Interventions	Ketamine (bolus at 0.1 mg/kg/5 min

	fellowed by an infusion of 7
	followed by an infusion of 7
	micrograms/kg/min) was administered
	intravenously
Outcomes	Primary - visual analogue scale (VAS) and
	McGill Pain Questionnaire (MPQ)
Results	Ketamine increased pressure-pain
	thresholds significantly
	Wind-up like pain (pain evoked by
	repeatedly tapping the dysaesthetic skin
	area) was reduced significantly by ketamine
	no effect was seen on pain evoked by
	repeated thermal stimuli
Conclusions	NMDA receptor antagonists may have a
	potential in the treatment of stump and
	phantom limb pain.

Abraham et al

Methods	Double-blind crossover trial
Participants	3 cancer amputee patients
Interventions	Oral dextromethorphan (120-180 mg daily)
	was administered to three selected cancer
	patients during a 3-week period and an
	additional 1 month of treatment
Outcomes	Primary - pain intensity
	Secondary – mood, sedation levels
Results	All patients reported a >50% decrease in
	pain intensity, better mood, and lower
	sedation
Conclusions	Dextromethorphan reduces persistent
	phantom limb pain satisfactorily

Wiech e	et al
---------	-------

Methods	Placebo-controlled double-blinded crossover trial
Participants	8 patients with chronic PLP
Interventions	30 mg memantine
Outcomes	Primary - intensity of PLP was rated hourly
	by the patients on a visual analog scale
	during baseline and both treatment periods
	Secondary – functional organization of the
	primary somatosensory cortex (SI) was
	determined by neuromagnetic source
	imaging.
Results	No effect on the intensity of chronic PLP.
	No significant changes in the functional
	organization of SI observed
Conclusions	Memantine is ineffective in the treatment of
	chronic PLP and is also ineffective for the
	reduction of associated neural plasticity in
	the primary SI

Schley et al

Methods	Randomized, double-blind, controlled trial
Participants	9 patients with acute traumatic amputation
	of the upper extremity
Interventions	All patients received postoperative analgesia
	by continuous brachial plexus anesthesia
	(ropivacaine 0.375% 5ml/h) for at least 7
	days. In addition, the patients received
	either memantine (20–30mg daily, <i>n</i> =10) or
	placebo (<i>n</i> =9) for 4 weeks.
Outcomes	Primary - Number of ropivacaine bolus
	injections required

	Secondary - PLP prevalence and intensity
Results	Memantine treatment reduced the number
	of requested ropivacaine bolus injections
	during the first week and resulted in a
	significant decrease of PLP prevalence and
	intensity at 4 weeks and 6 months follow up,
	but not at 12 months follow up.
Conclusions	Memantine can reduce intensity of phantom
	limb pain and might also prevent the
	development of PLP. However, despite the
	very early begin of treatment; no long-term
	effect on established PLP was evident.

Huse et al

Methods	Double-blind crossover design
Participants	12 patients with phantom limb pain after
	unilateral leg or arm amputation
Interventions	Two treatment phases of 4 weeks each were
	initiated with an intravenous test infusion of
	MST or Placebo. The titration phase was 2
	weeks. The dose of MST was titrated to at
	least 70 mg/day and at highest 300 mg/day.
Outcomes	Primary - Pain intensity was assessed hourly
	on visual analogue scales during a 4-week
	treatment-free phase, both treatment
	phases and at two follow-ups (6 and 12
	months).
	Secondary - Perception and pain thresholds

Results	A clinically relevant response to MST (pain
	reduction of more than 50%) was evident in
	42%, a partial response (pain reduction of
	25-50%) in 8% of the patients.
	Neuromagnetic source imaging of three
	patients showed initial evidence for reduced
	cortical reorganization under MST
	concurrent with the reduction in pain
	intensity
Conclusions	Opioids show efficacy in the treatment of
	phantom limb pain and may potentially
	influence also cortical reorganization

Wu et al

Methods	Randomized double-blind, active placebo- controlled, crossover trial
Participants	31 patients. Eleven subjects had both stump
	and phantom pains, 11 and 9 subjects had
	stump and phantom pain alone, respectively
Interventions	An intravenous bolus followed by an
	intravenous infusion of morphine (0.05
	mg/kg bolus + 0.2 mg/kg infusion over 40
	min), lidocaine (1 mg/kg bolus + 4 mg/kg
	infusion) and the active placebo,
	diphenhydramine (10 mg bolus + 40 mg
	infusion), were performed on three
	consecutive days.
Outcomes	Phantom and stump pain ratings and
	sedation scores were recorded at 5-min
	intervals using a 0-100 visual analog scale.
	Pain measures were initiated 30 min before
	drug infusion and continued until 30 min

	after the end of infusion. Subjects' self-
	reported pain relief and satisfaction were
	assessed at the end of each infusion.
Results	Compared with placebo, morphine reduced
	both stump and phantom pains significantly
	(P < 0.01). In contrast, lidocaine decreased
	stump (P < 0.01), but not phantom pain. The
	changes in sedation scores for morphine and
	lidocaine were not significantly different
	from placebo. Compared with placebo, self-
	reported stump pain relief was significantly
	greater for lidocaine (P < 0.05) and morphine
	(P < 0.01), while phantom pain relief was
	greater only for morphine (P < 0.01).
	Satisfaction scores were significantly higher
	for lidocaine (mean +/- SD: 39.3 +/- 37.8, P <
	0.01) and morphine (45.9 +/- 35.5, P < 0.01)
	when compared with placebo (9.6 +/- 21.0).
Conclusions	Stump pain was diminished both by
	morphine and lidocaine, while phantom pain
	was diminished only by morphine,
	suggesting that the mechanisms and
	pharmacological sensitivity of stump and
	phantom pains are different