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Materials and Methods 

Mice 
All mouse colonies were maintained in accordance with protocols approved by UK Home 

Office project licenses and the Institutional Animal Care and Use Committee (IACUC) at Yale 
University. Experimental protocols were approved by King’s College London and Yale 
University, School of Medicine welfare committees. Both male and female CD1 mice obtained 
from Charles River Laboratories were used in single-cell RNA sequencing experiments. Nkx2-1-
Cre mice were generously provided by S. Anderson (University of Pennsylvania) (30). Nkx2-1-
Cre;Maffl/fl;RCE mice were generated by breeding Nkx2-1-Cre;RCE mice with Maffl/fl mice, 
which were generously provided by C. Birchmeier (Max Delbrück Center for Molecular 
Medicine) (31). Mice were housed in groups and kept on reverse light/dark cycle (12/12 h) 
regardless of genotype. Time-mated pregnant female mice were housed individually. The day on 
which the vaginal plug was found was considered as embryonic day (E) 0.5. The date of birth 
was considered as postnatal day (P) 0. 

Dissection and single cell dissociation 
Mouse embryos were isolated at E12.5 and E14.5 from timed pregnant CD1 female mice. 

Embryos were stored on ice in 1x PBS. Brains were dissected out, embedded in 1% Ultrapure 
Low Melting Point Agarose and cut in 100 µm thick sections using a vibratome (Leica 
VT1200S). The dorsal MGE (dMGE), ventral MGE (vMGE) and CGE regions were dissected 
from these sections.  Dissected tissue was then immediately transferred to warm (37℃) 
papain/protease/dispase (PPD) solution in a 15ml conical tube and incubated for 30 min at 37℃. 
Tissue was gently stirred by pipetting every 5 min during the incubation. Once tissue pieces were 
no longer visible, the suspension was centrifuged at 300g (0.3 RCF) for 3 min. After 
centrifugation, cells were re-suspended in 1x PBS and filtered through a 40 µm cell strainer.  
Cell concentration was measured using a hemocytometer and adjusted accordingly.  
Single-cell capture and cDNA synthesis 

Cells were captured with small-sized (5-10 µm) RNA-seq IFCs using the Fluidigm C1 
system according to the manufacturer’s instructions. Trypan Blue staining was used immediately 
before cell captures to assess viability. Cell viability was nearly 100% in all experiments. A 
concentration of 1,000–3,000 cells/µl was used for cell loading. After capture, C1 chips were 
examined visually and the number of cells at each capture site was recorded manually. Cells 
captured by C1 were subsequently processed through lysis, reverse transcription and PCR 
amplification to generate single-cell cDNA libraries using the Smarter Ultra Low Input RNA kit 
for Fluidigm (Clontech). cDNAs were harvested the next morning in about 3 µl C1 harvest 
reagent and were transferred to a 96-cell PCR plate in 10 µl C1 DNA dilution reagent. 
Single-cell RNA-seq library preparation  

cDNA concentration was quantified with Quant-iT™ PicoGreen® (Invitrogen™, P7589). 
Samples were diluted to 200 ng/µl with C1 harvest reagent. The resulting cDNA samples were 
indexed using Nextera XT Library Prep Kit (Illumina). We used a high sensitivity dsDNA assay 
in an Agilent Bioanalyzer to assess the quality of all sequencing libraries. 

Sequencing, reads alignment and gene expression quantification 
Libraries of single cells pooled from each C1 IFC were denatured using the Illumina 

protocol. Denatured libraries were diluted to 6 pM, followed by cluster generation on a single-
end HiSeq flow cell using an Illumina cBOT, according to the manufacturer’s instructions. The 
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HiSeq flow cell was run for 100 cycles using a single-read recipe according to the 
manufacturer’s instructions. We used Illumina CASAVA to purify the low-quality and non-
identified reads and FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to 
report the fundamental quality parameters (raw reads number, sequencing base quality score 
distribution and GC content). To avoid adapter contamination and higher error rates in reads 
boundary, we trimmed 12 nucleotides in 5’-end and 13 nucleotides in 3’-end, leaving 75 
nucleotide long reads for sequence alignment. We employed STAR (v2.4.0) to uniquely align the 
filtered reads to mouse reference genome (mm9) with default parameters (32). We used 
RSEQTools and SAMtools to calculate gene expression (33, 34). We used HTSeq (v0.6.1) to 
calculate gene read count values for each annotation entry. 

Quality control 
In addition to FastQC, we implemented a series of quality control measures. First, we 

counted uniquely mapped reads per cell and used only cells with at least 50,000 unique reads 
mapped to coding sequences. Next, we checked exonic read distribution, read distribution across 
different chromosomes, GC content distribution and gene expression distribution. Any cell that 
was 3 standard deviations away from the mean for any of the above-mentioned metrics were 
removed. In total, 666 cells were removed and 2003 high quality single cells were passed on to 
downstream analysis. We also filtered gene expression profile of each cell. Any gene expressed 
by less than 10 cells at less than 5 counts per million (CPM) was removed. Pseudogenes, 
miRNA, rRNA, mitochondrial associated and ribosome related genes from further analysis. 
13,907 genes were kept for downstream analysis. We used R package Seurat (35) to manage our 
dataset. Briefly, raw read counts were used to create Seurat object followed by log normalization 
using NormalizeData function with scale.factor parameter set to 1,000,000. We also reanalyzed 
an adult single cell dataset using the same procedure (8). 

Removal of cell cycle effect  
In order to minimize the effect of cell cycle (CC) in the identification of progenitor cell 

types, we sought to remove CC from our data through regression. Briefly, we used a published 
list of CC genes (36) and calculated G1/S and G2/M phase scores for each cell using function 
CellCycleScoring from R package Seurat. Then, we calculated the difference between G1/S 
phase score and G2/M phase score. This result was used to perform regression on all cells in our 
dataset with Seurat. Using this approach, cell cycle differences among dividing cells were 
regressed out while signals segregating cycling and non-cycling cells were maintained. 

Defining highly variable genes 
To define highly variable genes (HVGs), we calculated the mean of logged expression 

values using Seurat function FindVariableGenes, and plotted it against variance to mean 
expression level ratio (VMR) for each gene. Genes with log transformed mean expression level 
between 0.5 and 8, and VMR between 0.5 and 5 were considered as highly variable genes.  
Dimension reduction and clustering 

We used principal component analysis (PCA) and t-distributed stochastic neighbor 
embedding (t-SNE) (37) as our main dimension reduction approaches. PCA was performed with 
RunPCA function (Seurat) using HVGs to analyze either all cells (as in Fig. 1) or neuronal cells 
(as in figs. S15 and S17). For the analysis of progenitor cells (combined or individual E12.5 and 
E14.5 datasets), we used a combined list of genes that were selected by random forest analysis 
(see random forest feature selection and classification section for detail) as features for 
ventricular zone (VZ) and subventricular zone (SVZ) identities, as well as differentially 
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expressed genes between dMGE, vMGE and CGE regions (Tables S2 and S3). Following PCA, 
we conducted JACKSTRAW analysis with 100 iterations to identify statistically significant (p-
value < 0.01) principal components (PCs) that were driving systematic variation.  We used t-
SNE to present data in two-dimensional coordinates, generated by RunTSNE function in Seurat. 
Significant PCs identified by JACKSTRAW analysis were used as input. Perplexity was set to 
30. t-SNE plots were generated using R package ggplot2. Clustering was done with Luvain-
Jaccard algorithm using t-SNE coordinates by FindClusters function from Seurat with resolution 
parameter set to 1.  

Differential expression analysis  
Differential expression (DE) analyses were conducted using Seurat function 

FindAllMarkers. In brief, we took one group of cells and compared it with the rest of the cells, 
using a binomial model. For any given comparison, we only considered genes that were 
expressed by at least 25% of cells in either population. Genes that exhibit P values under 0.01 
were considered statistically significant. 

Random forest feature selection and classification 
We used random forest (RF) feature selection and classification technique for a number of 

analyses in the current study. All the functions described here were from R package 
randomForest (38). The process can be broken down to the following steps: 

1) We started with a list of genes as an initial set of identifiers for the particular biological 
process of interest to define a tentative identity of each sample in question by hierarchical 
clustering using R function hclust (with average linkage method) if identity was already defined 
by other metrics, then this step is omitted; 

2) We assessed the importance of each HVG in defining identities using the importance 
function and ranked them in descending order (39). We then performed 10-fold cross validation 
of feature selection on the HVG using the rfcv function, with step size set to 0.75. The number of 
genes (n) that produces the least error is recorded. The top n genes with the highest importance 
were regarded as features and were used in classification analysis; 

3) Lastly, we used the features found in previous step as input to build a RF model. The RF 
model was then used to generate a likelihood matrix of each identity for every cell in the dataset. 
We determined the threshold statistically by examine the distribution of maximum likelihood 
from each cell; a cell was assigned an identity if the likelihood was above population average. 
Cells that did not meet this criterion or had ties between more than one identities remain 
unassigned. After the initial assignment, we conducted permutation test, where the above 
assignment procedure was repeated 10,000 times with 90% of the cells chosen at random. Cells 
with false discovery rate (FDR) < 5% was kept for downstream analysis. 
Defining progenitors and neurons  

To define progenitor and neuronal populations in our dataset, we first curated a list of 
established progenitor and neuronal markers from literature (Table S1) (40). We then performed 
hierarchical clustering on all single cell samples and split them into tentative “progenitor” or 
“neuron” groups. Following hierarchical clustering, we conducted RF feature selection using the 
curated list of progenitor and neuronal marker expression matrix as input, and the tentative 
“progenitor” or “neuron” group identity of each sample as responses. Through this process we 
were able to identify a refined list of genes that were indicative of progenitor and neuronal 
identity, specific to our dataset. Finally, we conducted RF feature classification on all samples 
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using the expression of selected features as input and the identity with the majority votes (either 
“progenitor” or “neuron”) was assigned to each cell. 

Defining ventricular zone and subventricular zone cells  
We used a similar approach, as in defining progenitors and neurons, to define VZ and SVZ 

cell identities using a different list of markers (41) for hierarchical clustering and RF feature 
selection (Table S2). 

MetaNeighbor analysis 
MetaNeighbor analysis was performed using the R function MetaNeighbor with default 

settings (14). The AUROC (Area under the Receiver Operating Characteristic) scores produced 
by MetaNeighbor analysis indicate the degree of correlation between cell groups. A mean 
AUROC score of 0.7 or above typically suggests a good correlation, while mean AUROC score 
below 0.5 indicates no correlation. The results from the MetaNeighbor analysis were plotted as a 
heatmap using the R function heatmap.3. 
Gene Ontology (GO) enrichment analysis  

We performed GO enrichment analysis using the GO-PCA package in Python (42). A set of 
5,031 GO terms for mouse was obtained using the Gene Ontology structure file (go-basic.obo 
downloaded from http://geneontology.org), with version “releases/2017-07-16” and UniProt 
Gene Ontology Annotation (GOA) gene association file for mouse (goa_mouse.gaf.gz 
downloaded from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/MOUSE), version 156. We used DE 
genes as the inputs for GO-PCA. Correlation threshold was set as 0.3 and all other parameters 
were set as the default settings. Clustering of GO terms was done using pheatmap package with 
default settings. 

Classification of embryonic neurons using information from adult cortical interneurons 
    To classify embryonic neurons, we utilized a publically available dataset of adult 

GABAergic interneurons (766 cells in total) (8). We first found all the shared HVGs in both 
embryonic and adult datasets. Then we performed RF feature selection within the shared HVGs 
that best represented each cell type for all 23 interneuron cell types defined by Tasic and 
colleagues (8), referred hereon as the adult cell type features. We then took two independent 
approaches to define embryonic neurons utilizing the adult cell type features: 

1) For the first approach, we reanalyzed adult cells using the RF feature selection and 
classification method described earlier with the adult cell type features. Through this process we 
were able to reassign the identity of adult cells. Notably, we were not able to reestablish the same 
cell types for all the cells proposed in the original study mainly because we used an intersected 
gene list between embryonic and adult developmental periods. We then used the newly assigned 
cells to construct a RF model which we used to predict cell types for the embryonic cells through 
our RF classification pipeline; we added one criteria after the first cycle where we removed any 
cell identity with less than 5 cells assigned as these cell types tended to show poor accuracy. We 
were able to assign 244 embryonic neurons to 6 adult cell types. 

2) For the second approach, we first conducted canonical correlation analysis (CCA) on 
embryonic and adult single cell datasets using the adult cell type features. Then we performed t-
SNE analysis to reduce the dimension of embryonic and adult cell data onto the same two-
dimensional space. Subsequently, we used the two t-SNE coordinates for adult cells to conduct 
𝑘-nearest neighbors analysis (knn) of the 23 cell types and reassign cell identities for adult cells 
(𝑘 = 30) using the knn.cv function from R package FNN. Briefly, we calculated the average 
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distance (𝑑) and standard deviation (σ) of each cell with each of its 30 neighboring cells and 
removed any neighbor that was more than 𝑑 + 	σ	away. Among the remaining neighbors, we 
counted the identities represented by the neighbors. A cell was assigned the identity represented 
by the majority, and at least 10, of its neighbors; in case of ties, the cell remains unassigned. 
Through this process, we were able to confidently reestablish 422 adult cells to 11 cell types for 
the adult dataset.  The cells unable to be assigned were removed from downstream analysis. 
Subsequently, we used the same knn approach on embryonic single cells, using adult cells as 
neighbors (𝑘 = 5) and assigned adult identities to embryonic cells. Finally, we repeated the 
process again with only the assigned embryonic cells as neighbors (𝑘 = 5) to find the core cells 
of each assigned cell type for most accurate representation. Through this process we were able to 
assign 247 embryonic cells to 11 cell types with high confidence.  
Characterization of progenitor lineage identity 

To infer lineage identities of progenitor clusters with high accuracy, we sought to firstly 
combine the results from neuronal lineage assignment using either RF or CCA method and found 
embryonic neurons that were assigned to the same identities by both methods, which are hereon 
referred to as consensus neurons. The consensus neurons we found belong to one PV lineage 
subtype (PV1) and two SST lineage subtypes (SST1 and SST2). We then conducted 
MetaNeighbor analysis on consensus neurons from PV1, SST1 and SST2 subtypes and 
progenitor clusters from E12.5 and E14.5 samples respectively. We used an AUROC score > 0.9 
as a cutoff to infer the progenitor clusters that were most likely associated with any of the three 
lineage subtypes.  
Data visualization  

All violin plots and box plots were generated using ggplot2. TSNE plots were generated 
using TSNEPlot function from R package Seurat. Except otherwise noted, all heatmaps were 
generated with R function heatmap.3 (43). 
Cloning and virus making  

The expression plasmids rv::dio-Gfp and rv::dio-Maf-P2A-Gfp were cloned by PCR into a 
conditionally expressing retroviral backbone (Addgene 87662) using AscI and PacI as cloning 
sites. Retroviruses were generated as described previously (44). In brief, HEK293FT cells were 
plated at 106 cells per well in six 15 cm plates. Upon 70-80% confluence, cells were transfected 
with retroviral constructs (pRV-CAG-dio-mtdT, pCMVVsv-g, and pCMV-GAG-pol) using TransIt 
reagent (Mirus, Madison WI). Forty-eight hours post transfection, 120 ml of supernatant were 
concentrated by two rounds of ultracentrifugation and re-suspended in 80 µl of PBS and stored in 
5 µl aliquots at -80°C. Typical virus titers range from 1-5x108 IU/ml. 

In utero injections 
Viral infection was performed on E12.5 or E14.5 embryos. In brief, pregnant mice were 

anesthetized with isoflurane (induction, 4%; surgery, 2.5%) along with intraperitoneal 0.1mg/kg 
of Buprenorphine as analgesic and 50mg/kg of Ritrodine as a muscle relaxant. The uterine horns 
were exposed by laparotomy and 400 nl of purified viruses were injected into the lateral 
ventricles of each embryo using a glass capillary needle (3.5’’Drummond 3-000-203Glx) 
coupled to a nanoinjector (World Precision Instruments). Littermates were injected with both 
control Gfp and Maf viruses. The uterine horns were then placed back in the abdominal cavity, 
and the abdominal wall was sutured (Ethicon coated Vicryl 4-0; V-4). The animals were placed 
in a 32°C recovering chamber for 1 hour post-surgery.  
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Histology  
When in utero injected littermates, Nkx2-1-Cre; Maf+/+;RCE and Nkx2-1-Cre; Maffl/fl;RCE 

littermates reached P21, they were perfused transcardially with 4% paraformaldehyde (PFA), 
and their brain removed, post-fixed for 3 hours at 4°C, washed 3 times in PBS over 24 hours, and 
cryopreserved overnight in sequential 15% and 30% sucrose solutions. Brains were sectioned 
coronally at 60 (mutant analysis) or 100 µm (viral infections) using a freezing microtome. 
Immunohistochemistry was performed on free-floating sections, blocked for 1 h in 10% horse 
serum, 2% Bovine Serum Albumin (BSA) and 0.25% Triton in PBS (PBS-T). The following 
primary antibodies in blocking solution at 4°C overnight: chicken anti-GFP (Aves Labs, 1:1000), 
rat anti-SST (EMD Millipore, 1:200) mouse anti-PV (Swant, 1:1000), rabbit anti-MAF (Bethyl 
Laboratories, 1:500). Sections were then washed three times for 10 minutes with 0.25% PBS-T, 
before being incubated in blocking solution with the following secondary antibodies: donkey 
anti-chicken 488 (1:200), goat anti-rat 555 (1:200), donkey anti-rabbit 555 (1:200), goat anti-
mouse 647 (1:200), all from Life Technologies Alexa Fluor®. Sections were finally 
counterstained with DAPI (5 µM), before being mounted in series with Mowiol-Dabco mounting 
medium (SigmaAldrich).  

For in situ hybridization, embryonic brains were dissected, post-fixed in 4% PFA for 3 
hours at 4°C, washed in PBS overnight, and cryopreserved overnight in sequential 15% and 30% 
sucrose solutions. Brains were then sectioned coronally at 20 µm using a cryostat (Leica) and 
mounted on superfrost slides. Double fluorescent in situ hybridization for Maf was performed 
using RNAscope probes from Advanced Cell Diagnostics and the RNAscope Multiplex 
Fluorescent Reagent Kit V2 (Advanced Cell Diagnostics) following the manufacturer’s 
recommendations. In situ hybridization images were obtained with a 63x objective (1.4 NA) with 
LSM800 Airyscan mode (Zeiss). 

Neuronal quantification 
Nkx2-1-Cre; Maf+/+;RCE and Nkx2-1-Cre; Maffl/fl;RCE coronal sections were imaged using 

the 10x objective of an inverted confocal microscope (Leica TCS SP8). Images of cell bodies 
expressing GFP, PV and SST were analyzed using software written in Matlab (Mathworks). Cell 
bodies were segmented using disk morphological shape function, size, and intensity 
thresholding. Background and high-density noise were removed via filtering. For each brain, 10-
12 images spanning rostral to caudal regions of the somatosensory cortex were taken. Data were 
statistically analyzed using One-way ANOVA with Tukey correction. 

Coronal sections of P21 brains infected with Gfp or Gfp-Maf viruses were imaged using the 
20x objective of an inverted confocal microscope (Leica TCS SP8). Images of cell bodies 
expressing GFP and PV were analyzed in the same way as described above, using custom written 
software in MatLab (Mathworks).  The proportion of GFP+ cells co-expressing SST was 
quantified manually, using ImageJ software. Data were statistically analyzed using chi-squared 
test with post-hoc binomial test pairwise comparison with Bonferroni correction. 

In all experiments, each animal was considered as a biological replicate. 
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Fig. S1. Quality control in single-cell RNA-seq experiments. (A) Bar plots showing 
distribution of total reads, uniquely mapped reads (unique reads) and reads mapped to exons 
(exonic reads). Horizontal axes are log 10 transformed read counts, whereas vertical axes are 
number of cells. Dashed lines in red indicate three standard deviations from the mean (SDs). 
Cells beyond three standard deviations for any of the metrics were removed. (B) Box plot 
showing number of total reads and unique reads from each of the C1 single cell capture and 
RNA-seq runs (C1 runs). Vertical axis shows log 10 transformed read counts. (C) Box plot 
showing number of genes (transcriptome coverage) expressed at above 0, 0.5, 1 or 5 counts per 
million (CPM) in each of the C1 runs. Cells from runs that show low transcriptome coverage are 
removed from downstream analysis. (D) Box plot showing chromosome coverage from single 
cells that pass quality control (QC). Vertical axis indicates the percentage of total reads from one 
cell mapped to a given chromosome. All chromosomes are evenly covered in the current dataset. 
(E) Scatterplot showing gene coverage in each single cell passed QC. Horizontal axis shows log 
10 transformed read counts, whereas vertical axis shows log 10 transformed transcriptome 
coverage. Among single cells passed QC, the transcriptome coverage is uniform. (F) Number of 
analyzed cells according to the region of origin and stage. (G) Principal component analysis 
(PCA) scatterplots before (left) and after (right) cell cycle regression. PCA was performed using 
a published list of cell cycle related genes (see Methods). 
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Fig. S2. Differential gene expression analysis on progenitor cells from dMGE, vMGE and 
CGE. (A) Heatmap showing the expression pattern of top 20 differentially expressed (DE) genes 
between E12.5 progenitors from dMGE, vMGE and CGE. Some of the DE genes are well-
known markers for distinct progenitor domains in the mouse embryonic subpallium. For 
example, Nkx6-2 is highly expressed in the ventricular zone of dMGE; Lhx8 is enriched in the 
subventricular zone of vMGE, and Pax6 is expressed in the progenitor domain of CGE. (B) 
Heatmap showing the expression pattern of top 20 differentially expressed (DE) genes between 
E14.5 progenitors from dMGE, vMGE and CGE. 
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Fig. S3. Differential gene expression analysis on neurons from dMGE, vMGE and CGE. 
(A) Heatmap showing the expression pattern of top 20 differentially expressed (DE) genes 
between E12.5 neurons from dMGE, vMGE and CGE. A number of well-known region-specific 
markers for subventricular zone progenitor cells and newborn neurons, such as Lhx8, Meis2 and 
Pax6, exhibit expression patterns that are consistent with previous studies on single genes. For 
example, Neto1, a lineage marker for SST+ interneurons, is enriched in dMGE neurons, 
consistent with the notion that dMGE is poised to produce SST+ interneurons, while Sp8, a 
lineage marker for VIP+ interneurons, is highly expressed in the CGE neurons, also in line with 
prior knowledge that CGE gives rise to VIP+ interneuron lineages. (B) Heatmap depicting the 
expression pattern of top 20 DE genes between E14.5 neurons from dMGE, vMGE and CGE.  
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Fig. S4. Expression pattern of canonical progenitor and neuronal markers in single cells at 
E12.5. (A)  Visualization of progenitor cells and neurons by t-SNE in the ganglionic eminences 
at E12.5. (B) The same t-SNE plots are used to illustrate gene expression in all cells at E12.5. 
Cells are colored according to gene expression levels (blue, high; grey, low). Among the marker 
genes, Hes1, Hes5, Olig2, Slc1a3, Sall3, Notch1, Pdpn, Sparc, Tacc3, Fabp7and Top2a are 
known to be expressed specifically by neural progenitor cells; Mki67, Pcna, Cenpm, Mcm5, 
Mcm6, Ccnd1, Ccnd2, Ccnb1 and Ccnb2 are canonical proliferating and cell cycle markers; and 
Stmn2, Lhx6, Gria2, Gad1, Erbb4, Mapt, Gng3, Dcx, Mllt11, Sox6, Npy and Sst are highly 
expressed in migrating postmitotic neurons. 
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Fig. S5. Expression pattern of canonical progenitor and neuronal markers in single cells at 
E14.5. (A) Visualization of progenitor cells and neurons by t-SNE in the ganglionic eminences at 
E14.5. (B) The same t-SNE plots are used to illustrate gene expression in all cells at E12.5. Cells 
are colored according to gene expression levels (blue, high; grey, low). Among the marker genes, 
Notch1, Top2a, Vim, Tacc3, Fabp7, Slc1a3, Sparc, Sall3, Btg2, Cenpf, Zswim5 and Olig2 are 
canonical neural progenitor markers; Mki67, Cdk1, Cdk6, Mcm5, Mcm6, Ccnd1, Ccnd2 and 
Ccnb1 are proliferating and cell cycle markers; Lhx6, Gad1, Gad2, Sox6, Arx, Maf, Npy, Erbb4, 
Runx1t1, Mllt11, Gng3 and Mapt are highly expressed in migrating postmitotic neurons. 
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Fig. S6. Characterization of progenitor diversity at E12.5 and E14.5. (A) t-SNE plot 
depicting progenitor clusters by semi-supervised Luvain-Jaccard clustering with all progenitors. 
Progenitors from E12.5 and E14.5 datasets were jointly classified together into 14 clusters. Cells 
are colored by cluster identity. (B and C) The same t-SNE plot as in (A) highlights the stage (B) 
and (C) region of origin of single cells. Progenitors from E12.5 and E14.5 are largely separated 
in the t-SNE plot, except for CGE progenitors. This suggests that CGE progenitors are 
transcriptionally more homogeneous during embryonic development (E12.5 and E14.5) than 
MGE progenitors, which segregate according to the stage. (D) Histograms showing the 
percentage of cells from dMGE, vMGE or CGE (left) and from E12.5 or E14.5 samples (right) in 
each of the progenitor clusters. 
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Fig. S7. Identification of VZ and SVZ progenitor cells. (A) Heatmaps illustrating the expression 
of genes selected by random forest analysis that best represent VZ and SVZ identities at E12.5 and 
E14.5. (B) VZ and SVZ identities at E12.5 and E14.5 are shown in the same t-SNE space as in 
Figure 2A. 	
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Fig. S8. Cell cycle status in progenitor cells. (A and C) t-SNE plots as in Fig. 2A illustrate cell 
cycle state in E12.5 (A) and E14.5 (C) progenitor cells. Cells are colored by cell cycle state 
based on a cell cycle score (see Methods). (B and D) Histograms show percentages of cells in 
either G1/S or G2/M phase in each of the E12.5 (B) and E14.5 (D) progenitor clusters. 
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Fig. S9.  Expression patterns of differentially expressed genes in the subpallium. Sagittal 
sections through the E13.5 telencephalon showing mRNA expression for representative genes 
expressed in progenitor cells in the MGE and CGE. Images were obtained from the Allen 
Developing Mouse Brain Atlas from the Allen Institute for Brain Science. 
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Fig. S10.  MetaNeighbor analysis of E12.5 and E14.5 progenitor clusters. (A) Correlation 
analysis among E12.5 and E14.5 progenitor clusters. Heatmap of mean AUROC (Area under the 
Receiver Operating Characteristic) scores (produced by MetaNeighbor analysis, see Methods) 
indicating the degree of correlation between clusters. A mean AUROC score of 0.7 or above 
typically suggests a good correlation, while mean AUROC score below 0.5 indicates no 
correlation. Hierarchical clustering of mean AUROC score profiles recapitulate the biological 
properties of progenitor clusters. Notably, major branches represent the separation of VZ and 
SVZ identities. (B) Heatmap of mean AUROC scores showing correlations among E12.5 and 
E14.5 progenitor clusters. Hierarchical clustering of mean AUROC score profiles shows a 
separation of E12.5 and E14.5 clusters with only a few exceptions, suggesting that majority of 
the progenitor clusters are relatively distinct at E12.5 and E14.5. 
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Fig. S11. Differential gene expression among E12.5 progenitor clusters. (A) Visualization of 
progenitor cells at E12.5 by t-SNE. (B) t-SNE plots show the expression of marker genes in 
progenitor cells among progenitor cell clusters at E12.5. Single cells are colored based on 
expression levels.  
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Fig. S12. Differential gene expression among E14.5 progenitor clusters. (A) Visualization of 
progenitor cells at E14.5 by t-SNE. (B) t-SNE plots show the expression of marker genes in 
progenitor cells among progenitor cell clusters at E14.5. Single cells are colored based on 
expression levels.  
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Fig. S13. Heatmap of top 20 differentially expressed genes among E12.5 progenitor 
clusters. 
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Fig. S14. Heatmap of top 20 differentially expressed genes among E14.5 progenitor 
clusters. 
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Fig. S15. Characterization of neuronal clusters. (A) t-SNE plot showing neuronal clusters by 
unsupervised Luvain-Jaccard clustering with all neurons. Neurons from E12.5 and E14.5 sample 
were jointly classified together into 13 clusters. Cells are colored by cluster identity. (B and C) 
The same t-SNE plot as in (A) highlights the stage (B) and (C) region of origin of single cells. 
Neurons from E12.5 and E14.5 are largely separated in the t-SNE plot. Similarly, MGE (purple) 
and CGE (orange) neurons are largely segregated in the t-SNE plot. These results reveal 
significant transcriptomic differences among neurons from both stages and regions. (D) 
Histograms showing the percentage of cells from dMGE, vMGE or CGE (left) and from E12.5 
or E14.5 samples (right) in each of the neuronal clusters established through unsupervised 
clustering. (E) Heatmap showing gene ontology (GO) signatures for several aspects of neuronal 
functions, including synaptogenesis, neurotransmission, neuronal projection and development of 
axon and dendrite. The dendrogram generated by hierarchical clustering of GO enrichment 
profile suggests that the identified 13 neuronal clusters can also be broadly classified into two 
main groups that are distinguished by their maturation status. (F) Heatmap illustrating average 
expression of known interneuron lineage associated genes in the identified neuronal clusters. 
Lhx6, Npy, Neto1, Maf, Mafb, Sst and Calb1 are enriched in MGE-derived interneuron lineages 
(SST+ and PV+ interneurons), while Meis2, Zfhx3, Syt6, Foxp1 and Foxp2 are enriched in CGE-
derived interneuron lineages (VIP+ and NDNF+). 
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Fig. S16. Heatmap of top 10 differentially expressed genes between neuronal clusters. 
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Fig. S17. Characterization of neuronal clusters. (A and C) t-SNE plots showing neuronal 
clusters by unsupervised Luvain-Jaccard clustering of separate E12.5 (A) and E14.5 (C) datasets. 
Cells are colored by cluster identity. Neurons from E12.5 and E14.5 were classified into 8 and 9 
clusters, respectively. (B and D) The same t-SNE plots as in (A) and (C) highlight the region of 
origin of single cells for E12.5 (B) and E14.5 (D) neurons. Regional identity is more clearly 
defined at E14.5 than at E12.5. This may suggest that neurons are more transcriptionally 
homogeneous at early stages of development. Alternatively, CGE dissections may contain a 
heterogeneous pool of neurons, including many with molecular features similar to those of 
neurons generated in the MGE. This is consistent with the idea that the progenitor cells in the 
CGE are molecularly heterogeneous (see schema in Fig. 1A). 
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Fig. S18. Heatmap of top 40 differentially expressed genes among the 6 embryonic 
interneuron classes assigned through random forest analysis. 
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Fig. S19. MetaNeighbor analysis of 6 assigned embryonic interneuron cell types (random 
forest) and 23 adult interneuron types. Heatmap of mean AUROC scores (Area under the 
Receiver Operating Characteristic) indicates the degree of correlation among the 6 assigned 
embryonic classes and the 23 adult cortical interneuron cell types. The color bar indicates the 
origin (embryonic or adult) of each cluster. Hierarchical clustering indicates good correlation 
between assigned embryonic interneuron classes and the corresponding adult cortical interneuron 
cell types, with major branches representing PV, SST, VIP and NDNF lineages. The table shows 
mean AUROC scores between assigned embryonic interneuron classes and adult cortical 
interneuron cell types. A mean AUROC score of 0.7 or above typically suggests a good 
correlation, while mean AUROC score below 0.5 indicates no correlation. 
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Fig. S20.  Heatmap of top 20 differentially expressed genes among the 11 embryonic 
interneuron classes assigned through canonical correlation analysis and k-nearest 
neighbor. 
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Fig. S21. MetaNeighbor analysis of 11 assigned embryonic interneuron classes (canonical 
correlation analysis and k-nearest neighbor) and 23 adult interneuron types. Heatmap of 
mean AUROC scores (Area under the Receiver Operating Characteristic) indicates the degree of 
correlation among 11 assigned embryonic classes and the 23 adult cortical interneuron cell types. 
The color bar indicates the origin (embryonic or adult) of each cluster. Hierarchical clustering 
indicates good correlation between assigned embryonic interneuron classes and the 
corresponding adult cortical interneuron cell types, with major branches representing PV, SST, 
VIP and NDNF lineages. The table shows mean AUROC scores between assigned embryonic 
interneuron classes and adult cortical interneuron cell types.  A mean AUROC score of 0.7 or 
above typically suggests a good correlation, while mean AUROC score below 0.5 indicates no 
correlation.	 	
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Fig. S22. Temporal analysis of embryonic neurons with assigned subtype identity. (A) All 
embryonic neurons are represented in the same t-SNE space as in Fig. 3B. Neurons are colored 
based on the stage (E12.5 or E14.5) of origin. (B) Assigned embryonic neurons are represented 
in the same t-SNE space as in Fig. 3C. Neurons are colored based on their stage (E12.5 or E14.5) 
of origin. 
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Fig. S23. MetaNeighbor analysis of progenitor clusters and assigned embryonic 
interneurons. Heatmaps of mean AUROC scores (Area under the Receiver Operating 
Characteristic) indicating the degree of correlation among E12.5 (left) and E14.5 (right) 
progenitor cell clusters and the 3 most conserved assigned embryonic interneuron cell types. 
Hierarchical clustering indicates correlations among progenitor clusters and with embryonic 
interneuron cell types. The table shows mean AUROC scores among E14.5 progenitor cell 
clusters and the 3 “consensus” embryonic interneuron classes (AUROC scores above 0.9). The 
corresponding table for E12.5 progenitor cell clusters and “consensus” embryonic interneurons is 
shown in Fig. 4A. 
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Figure S24. Maf is an early determinant of SST+ interneuron fate. (A) Schematic of 
experimental design. (B) Coronal sections through the P21 somatosensory cortex immunostained 
for GFP and MAF following viral infection with Gfp and Maf-Gfp expressing retroviruses in the 
MGE of Nkx2-1-Cre embryos at E12.5 or E14.5. (C and D) Coronal sections through the 
somatosensory cortex of P21 mice immunostained for GFP, PV and SST following viral 
infection in the MGE of Nkx2-1-Cre embryos at E12.5 (C) or E14.5 (D). Green, white and red 
arrows respectively point at PV-/SST-, PV+ and SST+ infected cells. Higher magnification 
images illustrate cortical interneuron fate changes following Maf-P2A-Gfp expression in MGE 
progenitor cells. (E) Quantification of the proportion of PV-/SST-, PV+ and SST+ interneurons 
in the cortex of P21 mice following viral infection with Gfp and Maf-Gfp expressing retroviruses 
in the MGE of Nkx2-1-Cre embryos at E14.5; n = 5 brains for each experimental condition; 𝛸2-
square test, ***p < 0.001. Post-hoc binomial test pairwise comparison with Bonferroni 
correction; PV-/SST- vs PV+ *** p < 0.001, PV+ vs SST+ * p < 0.05. Scale bars equal 50 µm 
(B and small insets in C and D) and 100 µm (C and D).  
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Table S1. Progenitor and neuronal markers. 

  

Gene name Identity
Gfap Progenitor
Slc1a3 Progenitor
Fabp7 Progenitor
Hes1 Progenitor
Hes5 Progenitor
Lhx2 Progenitor
Notch1 Progenitor
Notch2 Progenitor
Notch3 Progenitor
Vim Progenitor
Sox2 Progenitor
Sall3 Progenitor
Sparc Progenitor
Pdpn Progenitor
Tubb3 Neuron
Mapt Neuron
Dcx Neuron
Nrxn3 Neuron
Stmn2 Neuron
Stmn3 Neuron
Gng3 Neuron
Scn3a Neuron
Map2 Neuron
Gap43 Neuron
Tmem130 Neuron
L1cam Neuron
Gria2 Neuron
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 Table S2. Progenitor cell selection markers (E12.5). 

Gene Name Identity Source Gene Name Identity Source
Fabp7 VZ Random forest features Esrrg CGE Differential expression analysis
Slc1a3 VZ Random forest features Foxp2 CGE Differential expression analysis
1190002h23Rik VZ Random forest features Gas1 CGE Differential expression analysis
Snap23 VZ Random forest features Fktn CGE Differential expression analysis
Fgfbp3 VZ Random forest features Lix1 CGE Differential expression analysis
Rhpn1 VZ Random forest features Gli2 CGE Differential expression analysis
Rsrc2 SVZ Random forest features Ntrk2 CGE Differential expression analysis
Nrxn3 SVZ Random forest features Anks1b CGE Differential expression analysis
St18 SVZ Random forest features Chmp2a CGE Differential expression analysis
Cd24a SVZ Random forest features Runx1t1 Neuron Random forest features
Dlx6os1 SVZ Random forest features Dcx Neuron Random forest features
Nrxn1 dMGE Differential expression analysis Gad2 Neuron Random forest features
Jag1 dMGE Differential expression analysis Gad1 Neuron Random forest features
Nkx6-2 dMGE Differential expression analysis Nrxn3 Neuron Random forest features
Gm5069 dMGE Differential expression analysis Dlx60s1 Neuron Random forest features
Npy dMGE Differential expression analysis Gm14204 Neuron Random forest features
Nek7 dMGE Differential expression analysis Lhx6 Neuron Random forest features
8430410k20Rik dMGE Differential expression analysis Mapk10 Neuron Random forest features
Mks1 dMGE Differential expression analysis Maged1 Neuron Random forest features
Nrp1 dMGE Differential expression analysis Mapt Neuron Random forest features
Ebf1 dMGE Differential expression analysis Erbb4 Neuron Random forest features
Hspa12a dMGE Differential expression analysis Gng2 Neuron Random forest features
Wnk3-ps dMGE Differential expression analysis Crmp1 Neuron Random forest features
2310014h01Rik dMGE Differential expression analysis Tubb3 Neuron Random forest features
Mavs dMGE Differential expression analysis Slain1 Neuron Random forest features
Lgals1 dMGE Differential expression analysis Mllt11 Neuron Random forest features
Zfp568 dMGE Differential expression analysis Gap43 Neuron Random forest features
Ptdss2 dMGE Differential expression analysis Gabrg2 Neuron Random forest features
Got2 dMGE Differential expression analysis 2900011008Rik Neuron Random forest features
C130036l24Rik dMGE Differential expression analysis Myo10 Progenitor Random forest features
Lhx8 vMGE Differential expression analysis Gpr98 Progenitor Random forest features
Nkx2-1 vMGE Differential expression analysis Ednrb Progenitor Random forest features
Zic1 vMGE Differential expression analysis Ddah1 Progenitor Random forest features
Mbip vMGE Differential expression analysis Slc1a3 Progenitor Random forest features
Asb4 vMGE Differential expression analysis Fabp7 Progenitor Random forest features
Sulf2 vMGE Differential expression analysis Ccne2 Progenitor Random forest features
Sez6 vMGE Differential expression analysis Hells Progenitor Random forest features
Crabp2 vMGE Differential expression analysis Olig1 Progenitor Random forest features
Lhx6 vMGE Differential expression analysis Hat1 Progenitor Random forest features
Dach1 vMGE Differential expression analysis Mcm3 Progenitor Random forest features
Serpine2 vMGE Differential expression analysis Mcm4 Progenitor Random forest features
Th vMGE Differential expression analysis Ccnd2 Progenitor Random forest features
Cdkn1c vMGE Differential expression analysis Nasp Progenitor Random forest features
Pde1c vMGE Differential expression analysis Mcm6 Progenitor Random forest features
Etv1 vMGE Differential expression analysis Tacc3 Progenitor Random forest features
Spp1 vMGE Differential expression analysis Kif22 Progenitor Random forest features
Lipg vMGE Differential expression analysis Cdc6 Progenitor Random forest features
Ephb3 vMGE Differential expression analysis Clspn Progenitor Random forest features
Zic4 vMGE Differential expression analysis Mki67 Progenitor Random forest features
2610035d17Rik vMGE Differential expression analysis Top2a Progenitor Random forest features
Pax6 CGE Differential expression analysis Rrm2 Progenitor Random forest features
Nr2f2 CGE Differential expression analysis Psmc4 Progenitor Random forest features
Epha5 CGE Differential expression analysis Ska1 Progenitor Random forest features
Nr2f1 CGE Differential expression analysis Nde1 Progenitor Random forest features
Sp8 CGE Differential expression analysis Aspm Progenitor Random forest features
Ube2ql1 CGE Differential expression analysis Cenpe Progenitor Random forest features
Rbm28 CGE Differential expression analysis Pfas Progenitor Random forest features
Bax CGE Differential expression analysis Zfp367 Progenitor Random forest features
Fbxw8 CGE Differential expression analysis Faim2 Progenitor Random forest features
Pak3 CGE Differential expression analysis Pip5kl1 Progenitor Random forest features
Ppp1r1a CGE Differential expression analysis Frmpd1 Progenitor Random forest features
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Table S3. Progenitor cell selection markers (E14.5). 

Gene Name Identity Source Gene Name Identity Source
Mfge8 VZ Random forest features Camk1 CGE Differential expression analysis
Sparc VZ Random forest features Vps37b CGE Differential expression analysis
Ednrb VZ Random forest features 1500011H22Rik CGE Differential expression analysis
Slc1a3 VZ Random forest features Cno CGE Differential expression analysis
Fabp7 VZ Random forest features Cnih2 CGE Differential expression analysis
Myo10 VZ Random forest features Stard3nl CGE Differential expression analysis
Gpr98 VZ Random forest features Ntrk2 CGE Differential expression analysis
Tubb3 SVZ Random forest features Kxne1l CGE Differential expression analysis
Lhx6 SVZ Random forest features Ier5l CGE Differential expression analysis
St18 SVZ Random forest features Foxp2 CGE Differential expression analysis
Nrxn3 SVZ Random forest features Pid1 CGE Differential expression analysis
Dlx6os1 SVZ Random forest features Runx1t1 Neuron Random forest features
Nudt4 SVZ Random forest features Dcx Neuron Random forest features
Gad2 SVZ Random forest features Gad2 Neuron Random forest features
Dcx SVZ Random forest features Gad1 Neuron Random forest features
Runx1t1 SVZ Random forest features Nrxn3 Neuron Random forest features
Gm10837 dMGE Differential expression analysis Dlx6os1 Neuron Random forest features
Gm10717 dMGE Differential expression analysis Gm14204 Neuron Random forest features
Gm6984 dMGE Differential expression analysis Lhx6 Neuron Random forest features
Gm10282 dMGE Differential expression analysis Mapk10 Neuron Random forest features
Atp5g1 dMGE Differential expression analysis Maged1 Neuron Random forest features
Gm10801 dMGE Differential expression analysis mapt Neuron Random forest features
Eid2 dMGE Differential expression analysis Erbb4 Neuron Random forest features
Uqcr11 dMGE Differential expression analysis Gng2 Neuron Random forest features
Serf2 dMGE Differential expression analysis Crmp1 Neuron Random forest features
Sfi1 dMGE Differential expression analysis Tubb3 Neuron Random forest features
Gm8730 dMGE Differential expression analysis Slain1 Neuron Random forest features
Gm9846 dMGE Differential expression analysis Mllt11 Neuron Random forest features
Gm8759 dMGE Differential expression analysis Gap43 Neuron Random forest features
Atp5g2 dMGE Differential expression analysis Gabrg2 Neuron Random forest features
Gm10106 dMGE Differential expression analysis 2900011O08Rik Neuron Random forest features
Gria3 dMGE Differential expression analysis Myo10 Progenitor Random forest features
Cwc22 dMGE Differential expression analysis Gpr98 Progenitor Random forest features
Sepw1 dMGE Differential expression analysis Ednrb Progenitor Random forest features
Gm10718 dMGE Differential expression analysis Ddah1 Progenitor Random forest features
Cdk6 vMGE Differential expression analysis Slc1a3 Progenitor Random forest features
Rbm15 vMGE Differential expression analysis Fabp7 Progenitor Random forest features
Sept2 vMGE Differential expression analysis Ccne2 Progenitor Random forest features
Gm3272 vMGE Differential expression analysis Hells Progenitor Random forest features
Set vMGE Differential expression analysis Olig1 Progenitor Random forest features
Poldip3 vMGE Differential expression analysis Hat1 Progenitor Random forest features
Ptges3 vMGE Differential expression analysis Mcm3 Progenitor Random forest features
Nkx2-1 vMGE Differential expression analysis Mcm4 Progenitor Random forest features
Skil vMGE Differential expression analysis Ccnd2 Progenitor Random forest features
Sez6 vMGE Differential expression analysis Nasp Progenitor Random forest features
Rbm26 vMGE Differential expression analysis Mcm6 Progenitor Random forest features
Lhx8 vMGE Differential expression analysis Tacc3 Progenitor Random forest features
Zswim5 vMGE Differential expression analysis Kif22 Progenitor Random forest features
Ttr vMGE Differential expression analysis Cdc6 Progenitor Random forest features
Map3k1 vMGE Differential expression analysis Clspn Progenitor Random forest features
Limd1 vMGE Differential expression analysis Mki67 Progenitor Random forest features
Mt1 vMGE Differential expression analysis Top2a Progenitor Random forest features
Crabp2 vMGE Differential expression analysis Rrm2 Progenitor Random forest features
Ai597468 vMGE Differential expression analysis Psmc4 Progenitor Random forest features
Gm12940 vMGE Differential expression analysis Ska1 Progenitor Random forest features
Jund CGE Differential expression analysis Nde1 Progenitor Random forest features
Ube2s CGE Differential expression analysis Aspm Progenitor Random forest features
Glrx5 CGE Differential expression analysis Cenpe Progenitor Random forest features
Med30 CGE Differential expression analysis Pfas Progenitor Random forest features
Dnajb9 CGE Differential expression analysis Zfp367 Progenitor Random forest features
Rnf126 CGE Differential expression analysis Faim2 Progenitor Random forest features
Gm8327 CGE Differential expression analysis Pip5kl1 Progenitor Random forest features
Podxl2 CGE Differential expression analysis Frmpd1 Progenitor Random forest features
Rap1b CGE Differential expression analysis



 
 

46 
 

 

Table S4. Ventricular zone and subventricular zone markers. 

Gene name Identity Gene name Identity Gene name Identity
Dkc1 VZ E2f5 VZ Ldha VZ
Ckb VZ Mycn VZ Mki67 VZ
E2f1 VZ Hist1h3e VZ Gm8096 VZ
Mcm6 VZ Notch2 VZ Phgdh VZ
Tsen15 VZ Sox2ot VZ Adk VZ
Hist1h2ah VZ Snrnp25 VZ Fam102b VZ
Hist1h2ai VZ Tacc3 VZ Polg VZ
Hist1h2an VZ Fen1 VZ Dtl VZ
Hist1h2ad VZ Hist2h2ac VZ Clspn VZ
Cdca5 VZ Snap23 VZ Crb2 VZ
Lsm3 VZ Nr2f1 VZ Idi1 VZ
Aen VZ Slc25a5 VZ Ppat VZ
Vim VZ Srm VZ Fbl VZ
E2f2 VZ Hmga2 VZ Hspa8 VZ
Fgfr2 VZ Vrk1 VZ Rps2 VZ
Raver1 VZ Mcm7 VZ Ddah1 VZ
Pprc1 VZ Ppia VZ Skp2 VZ
Lix1 VZ Sox21 VZ Gldc VZ
Ltv1 VZ Zfp238 VZ 1190002H23Rik VZ
Timm23 VZ Hist1h4d VZ H2afx VZ
2810417H13Rik VZ Hist1h4j VZ Ttyh1 VZ
Mthfd1 VZ Hist1h4a VZ Lyar VZ
Hmgn2 VZ Hist1h4k VZ Slc1a3 VZ
Fgfrl1 VZ Hist1h4f VZ BC048355 VZ
Ascl1 VZ Hist1h4b VZ Rrm1 VZ
Hist1h1e VZ Hdhd2 VZ Pbk VZ
Racgap1 VZ Anp32b VZ Mif VZ
Ccnd1 VZ Sox9 VZ Gkap1 VZ
0610007L01Rik VZ Hist1h1d VZ Top2a VZ
Pea15a VZ Cks2 VZ Mcm2 VZ
Samd1 VZ Rtkn2 VZ Rpl12 VZ
Larp4 VZ Hes5 VZ Acss1 VZ
Pdpn VZ Ednrb VZ Hip1 VZ
Hist1h2af VZ Kif15 VZ Nasp VZ
Notch1 VZ Nol8 VZ Tmpo VZ
Eif2a VZ Psmc3ip VZ Hprt VZ
Dut VZ Pcna VZ Fancd2 VZ
Uhrf1 VZ Hdac1 VZ Acaa2 VZ
Myo10 VZ Cdca3 VZ Rps6ka6 VZ
Rrm2 VZ Mcm5 VZ Ildr2 VZ
Usp39 VZ Efhd2 VZ Msh6 VZ
Msl3 VZ C2cd3 VZ Igbp1 VZ
Pold1 VZ Rfc4 VZ Usp1 VZ
Siva1 VZ Ckap2 VZ Mcm3 VZ
Vamp3 VZ Ran VZ Cdc73 VZ
Gcat VZ Gapdh VZ Tk1 VZ
Nes VZ Slbp VZ Hist1h2ak VZ
Sgol1 VZ Olig2 VZ Fam136a VZ
Kif11 VZ Grb10 VZ Rcc1 VZ
Lmo1 VZ Gnl3 VZ Fgfr3 VZ
Nr2f6 VZ Naa50 VZ Dnajc19 VZ
Nr2e1 VZ Gart VZ Hmgb2 VZ
Hist1h1b VZ Lhx2 VZ Kif4 VZ
Mybl2 VZ Lfng VZ St18 SVZ
Tuba1b VZ Sall3 VZ Bcl11b SVZ
Jun VZ Grwd1 VZ Epha4 SVZ
Haus5 VZ Id4 VZ Top2b SVZ
Tox3 VZ Rnaseh2b VZ ORF19 SVZ
Btg2 VZ Hist1h2bf VZ Sox11 SVZ
H2afz VZ Hist1h2bj VZ Arx SVZ
Add3 VZ Mcm4 VZ Lhx6 SVZ
Nedd1 VZ Hells VZ Nrxn3 SVZ
Gadd45g VZ Yap1 VZ Dlx5 SVZ
Rad23a VZ Tbrg4 VZ Pdcd4 SVZ
Hsp90aa1 VZ Hist2h2ab VZ Rai2 SVZ
Nek6 VZ Psat1 VZ Pgm1 SVZ
Dek VZ Snhg1 VZ Dlx1as SVZ
Ccna2 VZ Hist1h2aa VZ Sox6 SVZ
Nap1l1 VZ Tcf19 VZ Arl4d SVZ
Wnt7b VZ Eed VZ Sp9 SVZ
Cdca8 VZ Dbi VZ Dlg1 SVZ
Cenpq VZ Wdr76 VZ Atg2b SVZ
AI314976 VZ Ipo5 VZ Fam48a SVZ
Pa2g4 VZ Fgfbp3 VZ Tmsb4x SVZ
Cad VZ Hspd1 VZ Dlx1 SVZ
Hat1 VZ Jam2 VZ Dach2 SVZ
Mybbp1a VZ Nup37 VZ Dclk2 SVZ


