Supplementary Materials for

Early emergence of cortical interneuron diversity in the mouse embryo

Da Mi, Zhen Li, Lynette Lim, Mingfeng Li, Monika Moissidis, Yifei Yang, Tianliuyun Gao, Tim Xiaoming Hu, Thomas Pratt, David J. Price, Nenad Sestan,[†] & Oscar Marín[†]

[†]Correspondence to: <u>oscar.marin@kcl.ac.uk</u> (OM); <u>nenad.sestan@yale.edu</u> (NS)

This PDF file includes:

Materials and Methods Figs. S1 to S24 Tables S1 to S4

Materials and Methods

Mice

All mouse colonies were maintained in accordance with protocols approved by UK Home Office project licenses and the Institutional Animal Care and Use Committee (IACUC) at Yale University. Experimental protocols were approved by King's College London and Yale University, School of Medicine welfare committees. Both male and female CD1 mice obtained from Charles River Laboratories were used in single-cell RNA sequencing experiments. *Nkx2-1-Cre* mice were generously provided by S. Anderson (University of Pennsylvania) (30). *Nkx2-1-Cre;Maf*^{*I*/*I*};*RCE* mice were generated by breeding *Nkx2-1-Cre;RCE* mice with *Maf*^{*I*/*I*} mice, which were generously provided by C. Birchmeier (Max Delbrück Center for Molecular Medicine) (*31*). Mice were housed in groups and kept on reverse light/dark cycle (12/12 h) regardless of genotype. Time-mated pregnant female mice were housed individually. The day on which the vaginal plug was found was considered as embryonic day (E) 0.5. The date of birth was considered as postnatal day (P) 0.

Dissection and single cell dissociation

Mouse embryos were isolated at E12.5 and E14.5 from timed pregnant CD1 female mice. Embryos were stored on ice in 1x PBS. Brains were dissected out, embedded in 1% Ultrapure Low Melting Point Agarose and cut in 100 μ m thick sections using a vibratome (Leica VT1200S). The dorsal MGE (dMGE), ventral MGE (vMGE) and CGE regions were dissected from these sections. Dissected tissue was then immediately transferred to warm (37°C) papain/protease/dispase (PPD) solution in a 15ml conical tube and incubated for 30 min at 37°C. Tissue was gently stirred by pipetting every 5 min during the incubation. Once tissue pieces were no longer visible, the suspension was centrifuged at 300g (0.3 RCF) for 3 min. After centrifugation, cells were re-suspended in 1x PBS and filtered through a 40 μ m cell strainer. Cell concentration was measured using a hemocytometer and adjusted accordingly.

Single-cell capture and cDNA synthesis

Cells were captured with small-sized (5-10 μ m) RNA-seq IFCs using the Fluidigm C1 system according to the manufacturer's instructions. Trypan Blue staining was used immediately before cell captures to assess viability. Cell viability was nearly 100% in all experiments. A concentration of 1,000–3,000 cells/ μ l was used for cell loading. After capture, C1 chips were examined visually and the number of cells at each capture site was recorded manually. Cells captured by C1 were subsequently processed through lysis, reverse transcription and PCR amplification to generate single-cell cDNA libraries using the Smarter Ultra Low Input RNA kit for Fluidigm (Clontech). cDNAs were harvested the next morning in about 3 μ l C1 harvest reagent and were transferred to a 96-cell PCR plate in 10 μ l C1 DNA dilution reagent.

Single-cell RNA-seq library preparation

cDNA concentration was quantified with Quant-iT[™] PicoGreen[®] (Invitrogen[™], P7589). Samples were diluted to 200 ng/µl with C1 harvest reagent. The resulting cDNA samples were indexed using Nextera XT Library Prep Kit (Illumina). We used a high sensitivity dsDNA assay in an Agilent Bioanalyzer to assess the quality of all sequencing libraries.

Sequencing, reads alignment and gene expression quantification

Libraries of single cells pooled from each C1 IFC were denatured using the Illumina protocol. Denatured libraries were diluted to 6 pM, followed by cluster generation on a singleend HiSeq flow cell using an Illumina cBOT, according to the manufacturer's instructions. The HiSeq flow cell was run for 100 cycles using a single-read recipe according to the manufacturer's instructions. We used Illumina CASAVA to purify the low-quality and non-identified reads and FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to report the fundamental quality parameters (raw reads number, sequencing base quality score distribution and GC content). To avoid adapter contamination and higher error rates in reads boundary, we trimmed 12 nucleotides in 5'-end and 13 nucleotides in 3'-end, leaving 75 nucleotide long reads for sequence alignment. We employed STAR (v2.4.0) to uniquely align the filtered reads to mouse reference genome (mm9) with default parameters (*32*). We used RSEQTools and SAMtools to calculate gene expression (*33, 34*). We used HTSeq (v0.6.1) to calculate gene read count values for each annotation entry.

Quality control

In addition to FastQC, we implemented a series of quality control measures. First, we counted uniquely mapped reads per cell and used only cells with at least 50,000 unique reads mapped to coding sequences. Next, we checked exonic read distribution, read distribution across different chromosomes, GC content distribution and gene expression distribution. Any cell that was 3 standard deviations away from the mean for any of the above-mentioned metrics were removed. In total, 666 cells were removed and 2003 high quality single cells were passed on to downstream analysis. We also filtered gene expression profile of each cell. Any gene expressed by less than 10 cells at less than 5 counts per million (CPM) was removed. Pseudogenes, miRNA, rRNA, mitochondrial associated and ribosome related genes from further analysis. 13,907 genes were kept for downstream analysis. We used R package *Seurat (35)* to manage our dataset. Briefly, raw read counts were used to create Seurat object followed by log normalization using *NormalizeData* function with *scale.factor* parameter set to 1,000,000. We also reanalyzed an adult single cell dataset using the same procedure (8).

Removal of cell cycle effect

In order to minimize the effect of cell cycle (CC) in the identification of progenitor cell types, we sought to remove CC from our data through regression. Briefly, we used a published list of CC genes (*36*) and calculated G1/S and G2/M phase scores for each cell using function *CellCycleScoring* from R package *Seurat*. Then, we calculated the difference between G1/S phase score and G2/M phase score. This result was used to perform regression on all cells in our dataset with *Seurat*. Using this approach, cell cycle differences among dividing cells were regressed out while signals segregating cycling and non-cycling cells were maintained.

Defining highly variable genes

To define highly variable genes (HVGs), we calculated the mean of logged expression values using *Seurat* function *FindVariableGenes*, and plotted it against variance to mean expression level ratio (VMR) for each gene. Genes with log transformed mean expression level between 0.5 and 8, and VMR between 0.5 and 5 were considered as highly variable genes.

Dimension reduction and clustering

We used principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) (37) as our main dimension reduction approaches. PCA was performed with *RunPCA* function (*Seurat*) using HVGs to analyze either all cells (as in Fig. 1) or neuronal cells (as in figs. S15 and S17). For the analysis of progenitor cells (combined or individual E12.5 and E14.5 datasets), we used a combined list of genes that were selected by random forest analysis (see random forest feature selection and classification section for detail) as features for ventricular zone (VZ) and subventricular zone (SVZ) identities, as well as differentially expressed genes between dMGE, vMGE and CGE regions (Tables S2 and S3). Following PCA, we conducted JACKSTRAW analysis with 100 iterations to identify statistically significant (*p*-value < 0.01) principal components (PCs) that were driving systematic variation. We used t-SNE to present data in two-dimensional coordinates, generated by *RunTSNE* function in *Seurat*. Significant PCs identified by JACKSTRAW analysis were used as input. Perplexity was set to 30. t-SNE plots were generated using R package *ggplot2*. Clustering was done with Luvain-Jaccard algorithm using t-SNE coordinates by *FindClusters* function from *Seurat* with *resolution* parameter set to 1.

Differential expression analysis

Differential expression (DE) analyses were conducted using *Seurat* function *FindAllMarkers*. In brief, we took one group of cells and compared it with the rest of the cells, using a binomial model. For any given comparison, we only considered genes that were expressed by at least 25% of cells in either population. Genes that exhibit P values under 0.01 were considered statistically significant.

Random forest feature selection and classification

We used random forest (RF) feature selection and classification technique for a number of analyses in the current study. All the functions described here were from R package *randomForest (38)*. The process can be broken down to the following steps:

1) We started with a list of genes as an initial set of identifiers for the particular biological process of interest to define a tentative identity of each sample in question by hierarchical clustering using R function *hclust* (with average linkage method) if identity was already defined by other metrics, then this step is omitted;

2) We assessed the importance of each HVG in defining identities using the *importance* function and ranked them in descending order (39). We then performed 10-fold cross validation of feature selection on the HVG using the *rfcv* function, with step size set to 0.75. The number of genes (n) that produces the least error is recorded. The top n genes with the highest importance were regarded as features and were used in classification analysis;

3) Lastly, we used the features found in previous step as input to build a RF model. The RF model was then used to generate a likelihood matrix of each identity for every cell in the dataset. We determined the threshold statistically by examine the distribution of maximum likelihood from each cell; a cell was assigned an identity if the likelihood was above population average. Cells that did not meet this criterion or had ties between more than one identities remain unassigned. After the initial assignment, we conducted permutation test, where the above assignment procedure was repeated 10,000 times with 90% of the cells chosen at random. Cells with false discovery rate (FDR) < 5% was kept for downstream analysis.

Defining progenitors and neurons

To define progenitor and neuronal populations in our dataset, we first curated a list of established progenitor and neuronal markers from literature (Table S1) (40). We then performed hierarchical clustering on all single cell samples and split them into tentative "progenitor" or "neuron" groups. Following hierarchical clustering, we conducted RF feature selection using the curated list of progenitor and neuronal marker expression matrix as input, and the tentative "progenitor" or "neuron" group identity of each sample as responses. Through this process we were able to identify a refined list of genes that were indicative of progenitor and neuronal identity, specific to our dataset. Finally, we conducted RF feature classification on all samples

using the expression of selected features as input and the identity with the majority votes (either "progenitor" or "neuron") was assigned to each cell.

Defining ventricular zone and subventricular zone cells

We used a similar approach, as in defining progenitors and neurons, to define VZ and SVZ cell identities using a different list of markers (41) for hierarchical clustering and RF feature selection (Table S2).

MetaNeighbor analysis

MetaNeighbor analysis was performed using the R function *MetaNeighbor* with default settings (14). The AUROC (Area under the Receiver Operating Characteristic) scores produced by MetaNeighbor analysis indicate the degree of correlation between cell groups. A mean AUROC score of 0.7 or above typically suggests a good correlation, while mean AUROC score below 0.5 indicates no correlation. The results from the MetaNeighbor analysis were plotted as a heatmap using the R function *heatmap.3*.

Gene Ontology (GO) enrichment analysis

We performed GO enrichment analysis using the GO-PCA package in Python (42). A set of 5,031 GO terms for mouse was obtained using the Gene Ontology structure file (go-basic.obo downloaded from http://geneontology.org), with version "releases/2017-07-16" and UniProt Gene Ontology Annotation (GOA) gene association file for mouse (goa_mouse.gaf.gz downloaded from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/MOUSE), version 156. We used DE genes as the inputs for GO-PCA. Correlation threshold was set as 0.3 and all other parameters were set as the default settings. Clustering of GO terms was done using *pheatmap* package with default settings.

Classification of embryonic neurons using information from adult cortical interneurons

To classify embryonic neurons, we utilized a publically available dataset of adult GABAergic interneurons (766 cells in total) (8). We first found all the shared HVGs in both embryonic and adult datasets. Then we performed RF feature selection within the shared HVGs that best represented each cell type for all 23 interneuron cell types defined by Tasic and colleagues (8), referred hereon as the adult cell type features. We then took two independent approaches to define embryonic neurons utilizing the adult cell type features:

1) For the first approach, we reanalyzed adult cells using the RF feature selection and classification method described earlier with the adult cell type features. Through this process we were able to reassign the identity of adult cells. Notably, we were not able to reestablish the same cell types for all the cells proposed in the original study mainly because we used an intersected gene list between embryonic and adult developmental periods. We then used the newly assigned cells to construct a RF model which we used to predict cell types for the embryonic cells through our RF classification pipeline; we added one criteria after the first cycle where we removed any cell identity with less than 5 cells assigned as these cell types tended to show poor accuracy. We were able to assign 244 embryonic neurons to 6 adult cell types.

2) For the second approach, we first conducted canonical correlation analysis (CCA) on embryonic and adult single cell datasets using the adult cell type features. Then we performed t-SNE analysis to reduce the dimension of embryonic and adult cell data onto the same twodimensional space. Subsequently, we used the two t-SNE coordinates for adult cells to conduct *k*-nearest neighbors analysis (knn) of the 23 cell types and reassign cell identities for adult cells (k = 30) using the *knn.cv* function from R package *FNN*. Briefly, we calculated the average distance (\bar{d}) and standard deviation (σ) of each cell with each of its 30 neighboring cells and removed any neighbor that was more than $\bar{d} + \sigma$ away. Among the remaining neighbors, we counted the identities represented by the neighbors. A cell was assigned the identity represented by the majority, and at least 10, of its neighbors; in case of ties, the cell remains unassigned. Through this process, we were able to confidently reestablish 422 adult cells to 11 cell types for the adult dataset. The cells unable to be assigned were removed from downstream analysis. Subsequently, we used the same knn approach on embryonic single cells, using adult cells as neighbors (k = 5) and assigned adult identities to embryonic cells. Finally, we repeated the process again with only the assigned embryonic cells as neighbors (k = 5) to find the core cells of each assigned cell type for most accurate representation. Through this process we were able to assign 247 embryonic cells to 11 cell types with high confidence.

Characterization of progenitor lineage identity

To infer lineage identities of progenitor clusters with high accuracy, we sought to firstly combine the results from neuronal lineage assignment using either RF or CCA method and found embryonic neurons that were assigned to the same identities by both methods, which are hereon referred to as consensus neurons. The consensus neurons we found belong to one PV lineage subtype (PV1) and two SST lineage subtypes (SST1 and SST2). We then conducted MetaNeighbor analysis on consensus neurons from PV1, SST1 and SST2 subtypes and progenitor clusters from E12.5 and E14.5 samples respectively. We used an AUROC score > 0.9 as a cutoff to infer the progenitor clusters that were most likely associated with any of the three lineage subtypes.

Data visualization

All violin plots and box plots were generated using *ggplot2*. TSNE plots were generated using *TSNEPlot* function from R package *Seurat*. Except otherwise noted, all heatmaps were generated with R function *heatmap.3 (43)*.

Cloning and virus making

The expression plasmids rv::dio-Gfp and rv::dio-Maf-P2A-Gfp were cloned by PCR into a conditionally expressing retroviral backbone (Addgene 87662) using AscI and PacI as cloning sites. Retroviruses were generated as described previously (44). In brief, HEK293FT cells were plated at 10⁶ cells per well in six 15 cm plates. Upon 70-80% confluence, cells were transfected with retroviral constructs (*pRV-CAG-dio-mtdT*, *pCMVVsv-g*, and *pCMV-GAG-pol*) using TransIt reagent (Mirus, Madison WI). Forty-eight hours post transfection, 120 ml of supernatant were concentrated by two rounds of ultracentrifugation and re-suspended in 80 µl of PBS and stored in 5 µl aliquots at -80°C. Typical virus titers range from 1-5x10⁸ IU/ml.

In utero injections

Viral infection was performed on E12.5 or E14.5 embryos. In brief, pregnant mice were anesthetized with isoflurane (induction, 4%; surgery, 2.5%) along with intraperitoneal 0.1mg/kg of Buprenorphine as analgesic and 50mg/kg of Ritrodine as a muscle relaxant. The uterine horns were exposed by laparotomy and 400 nl of purified viruses were injected into the lateral ventricles of each embryo using a glass capillary needle (3.5"Drummond 3-000-203Glx) coupled to a nanoinjector (World Precision Instruments). Littermates were injected with both control *Gfp* and *Maf* viruses. The uterine horns were then placed back in the abdominal cavity, and the abdominal wall was sutured (Ethicon coated Vicryl 4-0; V-4). The animals were placed in a 32°C recovering chamber for 1 hour post-surgery.

Histology

When *in utero* injected littermates, *Nkx2-1-Cre; Maf*^{+/+};*RCE* and *Nkx2-1-Cre; Maf*^{*l*(*f*)};*RCE* littermates reached P21, they were perfused transcardially with 4% paraformaldehyde (PFA), and their brain removed, post-fixed for 3 hours at 4°C, washed 3 times in PBS over 24 hours, and cryopreserved overnight in sequential 15% and 30% sucrose solutions. Brains were sectioned coronally at 60 (mutant analysis) or 100 μ m (viral infections) using a freezing microtome. Immunohistochemistry was performed on free-floating sections, blocked for 1 h in 10% horse serum, 2% Bovine Serum Albumin (BSA) and 0.25% Triton in PBS (PBS-T). The following primary antibodies in blocking solution at 4°C overnight: chicken anti-GFP (Aves Labs, 1:1000), rat anti-SST (EMD Millipore, 1:200) mouse anti-PV (Swant, 1:1000), rabbit anti-MAF (Bethyl Laboratories, 1:500). Sections were then washed three times for 10 minutes with 0.25% PBS-T, before being incubated in blocking solution with the following secondary antibodies: donkey anti-chicken 488 (1:200), goat anti-rat 555 (1:200), donkey anti-rabbit 555 (1:200), goat anti-mouse 647 (1:200), all from Life Technologies Alexa Fluor®. Sections were finally counterstained with DAPI (5 µM), before being mounted in series with Mowiol-Dabco mounting medium (SigmaAldrich).

For in situ hybridization, embryonic brains were dissected, post-fixed in 4% PFA for 3 hours at 4°C, washed in PBS overnight, and cryopreserved overnight in sequential 15% and 30% sucrose solutions. Brains were then sectioned coronally at 20 µm using a cryostat (Leica) and mounted on superfrost slides. Double fluorescent in situ hybridization for *Maf* was performed using RNAscope probes from Advanced Cell Diagnostics and the RNAscope Multiplex Fluorescent Reagent Kit V2 (Advanced Cell Diagnostics) following the manufacturer's recommendations. In situ hybridization images were obtained with a 63x objective (1.4 NA) with LSM800 Airyscan mode (Zeiss).

Neuronal quantification

Nkx2-1-Cre; Maf^{+/+};*RCE* and *Nkx2-1-Cre; Maf*^{4//1};*RCE* coronal sections were imaged using the 10x objective of an inverted confocal microscope (Leica TCS SP8). Images of cell bodies expressing GFP, PV and SST were analyzed using software written in Matlab (Mathworks). Cell bodies were segmented using disk morphological shape function, size, and intensity thresholding. Background and high-density noise were removed via filtering. For each brain, 10-12 images spanning rostral to caudal regions of the somatosensory cortex were taken. Data were statistically analyzed using One-way ANOVA with Tukey correction.

Coronal sections of P21 brains infected with *Gfp* or *Gfp-Maf* viruses were imaged using the 20x objective of an inverted confocal microscope (Leica TCS SP8). Images of cell bodies expressing GFP and PV were analyzed in the same way as described above, using custom written software in MatLab (Mathworks). The proportion of GFP+ cells co-expressing SST was quantified manually, using ImageJ software. Data were statistically analyzed using chi-squared test with post-hoc binomial test pairwise comparison with Bonferroni correction.

In all experiments, each animal was considered as a biological replicate.

Fig. S1. Quality control in single-cell RNA-seq experiments. (A) Bar plots showing distribution of total reads, uniquely mapped reads (unique reads) and reads mapped to exons (exonic reads). Horizontal axes are log 10 transformed read counts, whereas vertical axes are number of cells. Dashed lines in red indicate three standard deviations from the mean (SDs). Cells beyond three standard deviations for any of the metrics were removed. (B) Box plot showing number of total reads and unique reads from each of the C1 single cell capture and RNA-seq runs (C1 runs). Vertical axis shows log 10 transformed read counts. (C) Box plot showing number of genes (transcriptome coverage) expressed at above 0, 0.5, 1 or 5 counts per million (CPM) in each of the C1 runs. Cells from runs that show low transcriptome coverage are removed from downstream analysis. (D) Box plot showing chromosome coverage from single cells that pass quality control (QC). Vertical axis indicates the percentage of total reads from one cell mapped to a given chromosome. All chromosomes are evenly covered in the current dataset. (E) Scatterplot showing gene coverage in each single cell passed QC. Horizontal axis shows log 10 transformed read counts, whereas vertical axis shows log 10 transformed transcriptome coverage. Among single cells passed QC, the transcriptome coverage is uniform. (F) Number of analyzed cells according to the region of origin and stage. (G) Principal component analysis (PCA) scatterplots before (left) and after (right) cell cycle regression. PCA was performed using a published list of cell cycle related genes (see Methods).

-1 0 1

Fig. S2. Differential gene expression analysis on progenitor cells from dMGE, vMGE and CGE. (A) Heatmap showing the expression pattern of top 20 differentially expressed (DE) genes between E12.5 progenitors from dMGE, vMGE and CGE. Some of the DE genes are well-known markers for distinct progenitor domains in the mouse embryonic subpallium. For example, *Nkx6-2* is highly expressed in the ventricular zone of dMGE; *Lhx8* is enriched in the subventricular zone of vMGE, and *Pax6* is expressed in the progenitor domain of CGE. (B) Heatmap showing the expression pattern of top 20 differentially expressed (DE) genes between E14.5 progenitors from dMGE, vMGE and CGE.

-1 0 1

Fig. S3. Differential gene expression analysis on neurons from dMGE, vMGE and CGE.

(A) Heatmap showing the expression pattern of top 20 differentially expressed (DE) genes between E12.5 neurons from dMGE, vMGE and CGE. A number of well-known region-specific markers for subventricular zone progenitor cells and newborn neurons, such as *Lhx8*, *Meis2* and *Pax6*, exhibit expression patterns that are consistent with previous studies on single genes. For example, *Neto1*, a lineage marker for SST+ interneurons, is enriched in dMGE neurons, consistent with the notion that dMGE is poised to produce SST+ interneurons, while *Sp8*, a lineage marker for VIP+ interneurons, is highly expressed in the CGE neurons, also in line with prior knowledge that CGE gives rise to VIP+ interneuron lineages. (**B**) Heatmap depicting the expression pattern of top 20 DE genes between E14.5 neurons from dMGE, vMGE and CGE.

Fig. S4. Expression pattern of canonical progenitor and neuronal markers in single cells at E12.5. (A) Visualization of progenitor cells and neurons by t-SNE in the ganglionic eminences at E12.5. (B) The same t-SNE plots are used to illustrate gene expression in all cells at E12.5. Cells are colored according to gene expression levels (blue, high; grey, low). Among the marker genes, *Hes1, Hes5, Olig2, Slc1a3, Sall3, Notch1, Pdpn, Sparc, Tacc3, Fabp7* and *Top2a* are known to be expressed specifically by neural progenitor cells; *Mki67, Pcna, Cenpm, Mcm5, Mcm6, Ccnd1, Ccnd2, Ccnb1* and *Ccnb2* are canonical proliferating and cell cycle markers; and *Stmn2, Lhx6, Gria2, Gad1, Erbb4, Mapt, Gng3, Dcx, Mllt11, Sox6, Npy* and *Sst* are highly expressed in migrating postmitotic neurons.

Fig. S5. Expression pattern of canonical progenitor and neuronal markers in single cells at E14.5. (A) Visualization of progenitor cells and neurons by t-SNE in the ganglionic eminences at E14.5. (B) The same t-SNE plots are used to illustrate gene expression in all cells at E12.5. Cells are colored according to gene expression levels (blue, high; grey, low). Among the marker genes, *Notch1, Top2a, Vim, Tacc3, Fabp7, Slc1a3, Sparc, Sall3, Btg2, Cenpf, Zswim5* and *Olig2* are canonical neural progenitor markers; *Mki67, Cdk1, Cdk6, Mcm5, Mcm6, Ccnd1, Ccnd2* and *Ccnb1* are proliferating and cell cycle markers; *Lhx6, Gad1, Gad2, Sox6, Arx, Maf, Npy, Erbb4, Runx1t1, Mllt11, Gng3* and *Mapt* are highly expressed in migrating postmitotic neurons.

Fig. S6. Characterization of progenitor diversity at E12.5 and E14.5. (A) t-SNE plot depicting progenitor clusters by semi-supervised Luvain-Jaccard clustering with all progenitors. Progenitors from E12.5 and E14.5 datasets were jointly classified together into 14 clusters. Cells are colored by cluster identity. (B and C) The same t-SNE plot as in (A) highlights the stage (B) and (C) region of origin of single cells. Progenitors from E12.5 and E14.5 are largely separated in the t-SNE plot, except for CGE progenitors. This suggests that CGE progenitors are transcriptionally more homogeneous during embryonic development (E12.5 and E14.5) than MGE progenitors, which segregate according to the stage. (D) Histograms showing the percentage of cells from dMGE, vMGE or CGE (left) and from E12.5 or E14.5 samples (right) in each of the progenitor clusters.

Fig. S7. Identification of VZ and SVZ progenitor cells. (**A**) Heatmaps illustrating the expression of genes selected by random forest analysis that best represent VZ and SVZ identities at E12.5 and E14.5. (**B**) VZ and SVZ identities at E12.5 and E14.5 are shown in the same t-SNE space as in Figure 2A.

Fig. S8. Cell cycle status in progenitor cells. (**A** and **C**) t-SNE plots as in Fig. 2A illustrate cell cycle state in E12.5 (A) and E14.5 (C) progenitor cells. Cells are colored by cell cycle state based on a cell cycle score (see Methods). (**B** and **D**) Histograms show percentages of cells in either G1/S or G2/M phase in each of the E12.5 (B) and E14.5 (D) progenitor clusters.

Fig. S9. Expression patterns of differentially expressed genes in the subpallium. Sagittal sections through the E13.5 telencephalon showing mRNA expression for representative genes expressed in progenitor cells in the MGE and CGE. Images were obtained from the Allen Developing Mouse Brain Atlas from the Allen Institute for Brain Science.

Fig. S10. MetaNeighbor analysis of E12.5 and E14.5 progenitor clusters. (A) Correlation analysis among E12.5 and E14.5 progenitor clusters. Heatmap of mean AUROC (Area under the Receiver Operating Characteristic) scores (produced by MetaNeighbor analysis, see Methods) indicating the degree of correlation between clusters. A mean AUROC score of 0.7 or above typically suggests a good correlation, while mean AUROC score below 0.5 indicates no correlation. Hierarchical clustering of mean AUROC score profiles recapitulate the biological properties of progenitor clusters. Notably, major branches represent the separation of VZ and SVZ identities. (B) Heatmap of mean AUROC score showing correlations among E12.5 and E14.5 progenitor clusters. Hierarchical clustering of mean AUROC score profiles shows a separation of E12.5 and E14.5 clusters with only a few exceptions, suggesting that majority of the progenitor clusters are relatively distinct at E12.5 and E14.5.

Fig. S11. Differential gene expression among E12.5 progenitor clusters. (**A**) Visualization of progenitor cells at E12.5 by t-SNE. (**B**) t-SNE plots show the expression of marker genes in progenitor cells among progenitor cell clusters at E12.5. Single cells are colored based on expression levels.

Fig. S12. Differential gene expression among E14.5 progenitor clusters. (**A**) Visualization of progenitor cells at E14.5 by t-SNE. (**B**) t-SNE plots show the expression of marker genes in progenitor cells among progenitor cell clusters at E14.5. Single cells are colored based on expression levels.

P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	
STATES OF		n as _p der	$\sim 20^{\circ}$	36.5	1. B.		sites;	n ngana U da	n i tri	٩,	(k, k)		1190002h23Rik Psat1 Idua Otx2 Txndc5 Prixotto
	dire. Tak			14 A	e^{i}	i dala		664		8	da ja	ling ha	Alpl Reet1d Sucig2 Arthpel6 Inpp5b Bag2
				0.04	16	nggar	ha dir. Marin dir.	6. N. B	2.94		de H	117	Rhpn1 Misd2a Tnfajp8 Akin0a1 Chst3 Napeold
					de de	12 17 17	de la	Sec. 10	t yr y		in enz	at high	Fglri1 Pleh1 Lsm5 Gm17284 Pyer2 Nat3bp
		ere s		ynd:		188 L			n de la depai	5			Lärp4b Cenpw Pdlim1 Gstm1 Idl1 Gst2l2
		6 G.		à Nili			dia.		頭住長	ĥ	4,25	Sec.	Hist1h2ag Snx9 4930579g24Rik Haus2 Lsmd1 1110008p14Rik
1979 (1979) 1979 (1979)	97.000	tadi Uniternitati	ration in The second	ar da in. U Vice		Men A.		ACTOR MA		1.00			Mrp152 Gm9234 Tead1 Snrpa1 Alg9 Haus4
i na svýpali Latitur vypali			a i Jariji W	5.934		$M_{\rm eff}$	n (fairs			1.			Aw146020 Hk2 Alkbh7 Opa3 Rel1 Gpatch4
	(iii)				M^{2}			D dia	n 1100, 11. 1 No. 1.	ų,	$ \emptyset_{ij} $		Nuclean Sic7a1 Pim1 Lrm1 Adipor2 Zto768
83.C.:	an a		T_{p,q_2}^{pr}		6,01			n in the second s		53		A Charles	Eure Tcl712 D10wsu102e Rxrb Scamp2 Dhrs7b
					270 WT	85.	e tre e	1.1.1.10	\mathbf{r}	e g		1.36	Linx8 Serpine2 Smarca2 4933407k13Bik Sez8 Anne
	Si tin na dat	M M		n de la Charlinn Anna an Anna a Anna an Anna an		hi Ya		190a			in a f	iv	B230120h23Rik Elp3 Piscr1 Att2 Akna Reen1
	1699			1.690	a an	din Ç	i di si la Licitizza	ŝ ĥu		Ū.	n Car	C.C.T.	Asnsd1 Palb2 Paxip1 Zlp553 Codc14 Gabob1
		1.	il and	aha waarta	CSUL.	n yy i		1. · · · ·	(,	Pogl5 Ltx8 Crabp2 Zic1 A730020e08Rik Dach1
	100 A.A		iye deve		(girl	Yo 81 5.	i li di	1400	, dan d	1	in dia.	4.994	Dec Pde1c Sult2 Trp53inp1 Shd St8aal1
					្រុះប៉ុណ្ណ	3243	an din sa	144 milion 1947 milion	n nin In giri	1			Sic10a4 Fam190a Bc031353 Eph03 Lhfpi4 Rap2a
1997 - 1991. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997						no din di						V 1. 1	1110008/16Pik Zlp141 D16art/3472e Nkx2-1 Lhx6 Asb4
t Carding.		i dan				Y J. CAVIC Management	6.5.6	(in a	p(0)	l.w	985 L	SW.	1810037117rik Npy Zlp143 Magnet1 Xpot Mpped2
	б¦Й					builds	12.64				346		Spl Cede 138 Tc/12 Ppp1r2 Camsap1 Sox2
4.1.10 W	$p_{f_{i}}$	T. and			PAC 1		44.95	N. Carto	<u>.</u>	8.4	d and a		Aarche Zswim5 Magi3 Sik25 Cbx3 Hecw1 TheCw1
a a status Calendaria	y ⁿ is						iyana . Analata	Sec. 64	64 X		in a start i	Miller	Arih1 Woh6 Nrp1 Fam65b Six1b Ande1
				n an	1.19.1			66e	i di	\mathcal{P}	1. A		Hba-a1 Scrt2 Cdc42ep4 Erbb4 Plcxd3 Pkdt1
	59 K	rns^{n}	349.45	lal alla silan Propinsi da	$\phi \phi \gamma$		19 ⁶ .7	$\gamma \dot{g} \dot{a} \dot{c}$		77	137	sector, s	Cede112 Pedh17 Guey1a3 1810013i24Rik Ids Zbtb34
						WC.			Č.C	ζh.	ni "li li No li li	试验 设	Ppp1r1a Nirk2 2610034m16Rik Sic1a3 Pax6 Bab1
		$\{i_i,i_j\}$, Pé		anna 6 Mailte	ang gan Santak	100		262	i.	MI3 Gast Mmd2 Tnfrs119 Meg110 Pde1b Gisa
	ĥ	and the second sec	4.2.44					l, nPal	()	5			Apit Gil3 Win(7b Tiyh1 Mic1 Lunn1
		S.				16 ⁻¹ -1			Щ. (U ny kapanga Tang ng kapanganganganganganganganganganganganganga	Veph1 Epha5 Gli2 Ptn Gas1 Anks1b
and the spin Logic plane on		i vitat	elan orașe e Reference	an thai baile Margarith	7799 68999				n yf yn y y	Ľ,	ia je		More2a Gap43 Esrgg Sic38a10 Agpat6 Rab8b
i and		i de	1.62	12.50	12.	8.49	i de la				3.79	藏語	Reta18 Ppp1r12b Nacc2 Rect2 Ina Mapk8ip3
	靜斷			n a sin an a' a Na tanàna ka	andar officiality Michael State	ang ang Tang dari	33,460				and a state		Map3k12 D5etd579e Gm13826 Anxa5 Ntu1 Moo
	422	i shijili		M_{μ} is:		e de la	d de	di Ma		R	e e e		Code101 Alp Med9 Gm6457 Cpst2 Sm14
		11. 11.	1.19	ing a part	-11.1			(1.6)			Qú, ú,	ar war	Nr2t2 Lxn Swi5 1110020g09Rik My86 Tic19
498 a Com		<u>1667 (</u>	14, 14 AV	3: Weisy 	Rephy							19 30	Supt6h Siah1b Hmaci Rn/6 Ztp184 Nxt2
	134	hand					轮船	la B	0,0,				Gad2 Ccdo43 Ccdc28b Usp8x Six1b Synrg
Wears.	35		TRE:	n of the state		: Kati	667	N.	透微	Ψį.	pM_{1}^{*}	1 Jacob	Samd14 Pyroxd1 Grip1 Tmem35 Xpo4 Acox1
$a/\Delta g$	nder de la	42.00	i caratan Terregian	PY AN IN			Repair	31.37			11.161		Jammou Dzip1 Fbxo45 Mapk14 Pex7 Acsl5 Gm3200
	phieta							an chi		Y)		1997) 1997 - 1997	Clec16a Uba52 Timm8b Chchd8 Tdp1 Vdac1
Make		litte.	841364				Yel	1.14			\$kdi		Gm5900 Gnao1 Fxn Bola1 Mpl22 Mrps12
										¥1			Acol7 Atp5l Dynitb1 Fxc1 Psmb5 Cpeb4
		in lagrad	u din i	a de la come	e verse ve			in in	$\psi i $			E Padia.	Ndutb2 Spopl Cacng2 Msi1 Gm10800 Epha5
	11 - A	C.M.			368	W des	Υ ^ρ ιγ			ų.	QUX,		Magi2 Nol4 Sel113 Ztp846 Cbl Neb
g in the			h child	en helle		William .			April 1			11 ⁴¹ 81	Gm10716 Lrrc16a Zfbx4 Tmem67 Arrdc3 2410004N09Rik Calho
394 J	11.3	10.00	a and		107.1.9	E 6447 - 1	uu u		JUCK	F	1.011	7-SCOT	Anks1b Meg3
									-	1	0 1	2 30016	

Fig. S13. Heatmap of top 20 differentially expressed genes among E12.5 progenitor clusters.

-1 0 1

Fig. S14. Heatmap of top 20 differentially expressed genes among E14.5 progenitor clusters.

Fig. S15. Characterization of neuronal clusters. (A) t-SNE plot showing neuronal clusters by unsupervised Luvain-Jaccard clustering with all neurons. Neurons from E12.5 and E14.5 sample were jointly classified together into 13 clusters. Cells are colored by cluster identity. (**B** and **C**) The same t-SNE plot as in (A) highlights the stage (B) and (C) region of origin of single cells. Neurons from E12.5 and E14.5 are largely separated in the t-SNE plot. Similarly, MGE (purple) and CGE (orange) neurons are largely segregated in the t-SNE plot. These results reveal significant transcriptomic differences among neurons from both stages and regions. (D) Histograms showing the percentage of cells from dMGE, vMGE or CGE (left) and from E12.5 or E14.5 samples (right) in each of the neuronal clusters established through unsupervised clustering. (E) Heatmap showing gene ontology (GO) signatures for several aspects of neuronal functions, including synaptogenesis, neurotransmission, neuronal projection and development of axon and dendrite. The dendrogram generated by hierarchical clustering of GO enrichment profile suggests that the identified 13 neuronal clusters can also be broadly classified into two main groups that are distinguished by their maturation status. (\mathbf{F}) Heatmap illustrating average expression of known interneuron lineage associated genes in the identified neuronal clusters. Lhx6, Npy, Neto1, Maf, Mafb, Sst and Calb1 are enriched in MGE-derived interneuron lineages (SST+ and PV+ interneurons), while Meis2, Zfhx3, Syt6, Foxp1 and Foxp2 are enriched in CGEderived interneuron lineages (VIP+ and NDNF+).

0 1 -1

Fig. S16. Heatmap of top 10 differentially expressed genes between neuronal clusters.

Fig. S17. Characterization of neuronal clusters. (**A** and **C**) t-SNE plots showing neuronal clusters by unsupervised Luvain-Jaccard clustering of separate E12.5 (A) and E14.5 (C) datasets. Cells are colored by cluster identity. Neurons from E12.5 and E14.5 were classified into 8 and 9 clusters, respectively. (**B** and **D**) The same t-SNE plots as in (A) and (C) highlight the region of origin of single cells for E12.5 (B) and E14.5 (D) neurons. Regional identity is more clearly defined at E14.5 than at E12.5. This may suggest that neurons are more transcriptionally homogeneous at early stages of development. Alternatively, CGE dissections may contain a heterogeneous pool of neurons, including many with molecular features similar to those of neurons generated in the MGE. This is consistent with the idea that the progenitor cells in the CGE are molecularly heterogeneous (see schema in Fig. 1A).

Fig. S18. Heatmap of top 40 differentially expressed genes among the 6 embryonic interneuron classes assigned through random forest analysis.

Fig. S19. MetaNeighbor analysis of 6 assigned embryonic interneuron cell types (random forest) and 23 adult interneuron types. Heatmap of mean AUROC scores (Area under the Receiver Operating Characteristic) indicates the degree of correlation among the 6 assigned embryonic classes and the 23 adult cortical interneuron cell types. The color bar indicates the origin (embryonic or adult) of each cluster. Hierarchical clustering indicates good correlation between assigned embryonic interneuron classes and the corresponding adult cortical interneuron cell types, with major branches representing PV, SST, VIP and NDNF lineages. The table shows mean AUROC scores between assigned embryonic interneuron classes and adult cortical interneuron cell types. A mean AUROC score of 0.7 or above typically suggests a good correlation, while mean AUROC score below 0.5 indicates no correlation.

	PV1	PV2	PV3	PV4	SST1	SST2	SST3	VIP1	VIP2	VIP3	NDNF	1
	1000	Ū.	999 A.Y	906. 1	MKX	530	200	68	ųЛ,	South States	88	Ywhaz Clip2 Zfp191 Gm5805
	07.90	80	di karan			138	325	13	Ċ.			U4atac Ndula13 Lima1 Scaper
H	1997		1.00	. PY	1.1	53	June 1	Ŀ.,			45	Fam110a Clasrp S100a16 1810009a15Rik
ņi.	البريكة فرر	£1	10.00	\sim 10	in the second	μe	設め		d h	16 May 162 May	č)ė	Fam100a Tomm20 Gm17306 Pdcd11 Sic29ad
Û,	1.20		(P. J. Su	n er	er de la composition de la composition La composition de la c	e fin	Jur P		Ŷ.	a state of the second		Usl1 Fkbp3 Ptprg Fam190a
Ų.	10 g 10	\mathcal{N}	1.10	$M \subseteq \mathbb{C}$	2 Y -	۰Ľ.	150			ale States and		Zlp398 Tmom5 Tli1 4921531c22Rik
Į.	1876	b,	1000	, 99 a	e (e t	etti i	1974 1	NS J		11. 11. 11 (L. 19)	2.7	Thoc5 Lcm11 Rsph3a Spata13
5	16.77		12.10	in di P	- Yer	ų,	Y.	1.0		E Sa they	$\{\cdot\}_{i}$	Dyrk1b Elp3 Kil26a 3830406c13Rik
h	1.5 8 1	$\langle A \rangle$		ч té,	(a,b)	11	. 1	a de la	¢Ľ.	ata ini kata da kata d	16	Exoc6 Atp1a2 Rabl3 D11wsu47e Robut1
h.	- Nors		112 5 64	516	16°	132	60	ы,	S.,	6 Y	c_{P}	4930412/15Rik Pi4kb Amph Acp6
ġ.	N (M	ΝŤ	19133	-2k	N 137 M	1977	190	Lu:	а.	ini katalah s	me	Erbb4 Letm1 Trps1 Cep135 Ceb1
1	100.0	СČ	n avit s		1.1	174	$M_{\rm e}$	67	- 2	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	. Wi	Cpix1 Cxcr7 Prkd2 Synj2bp Rnf139
	11 () () ()	1	UNA	1 Y	1.11	jê (Why	<u>)</u> ,	and the second	525	Gucy1a3 Rbbp5 1810014b01Rik 4933421e11Rik
de la	3.9° .	. T	er Kinder	₩×.	,alla - g	1.	6 <u>, </u>	. W	\mathcal{T}	a da seguine para se	1.1	Dnmbp Rnf138 Nmn AT2 7sk Gm17659
),	11.	1.1	$\{0,1\}$	an P	A faces	ц÷т.		с și		a contra	įμ.	B430010i23Rik Decr2 Zlyve9 Hist1h4d
	9.0	0.1	100 100	ės 🖓	Ang in the		1991	1.00	$^{(1)}$	a land a state of the	10	Itpr1 Tiam2 Foxn3 Abt1 Pam
Y.	4. A -	1.1	(ϕ, ϕ)	<u>ары</u> ,	Si C	110	19	1.4	h.	an a	12.5	Lyst Abcd2 Gpbp111 Ipmk
i.	1.00	Υ.	e de la		118 5	н,		6.3	į.,	Sec. Cakelin	ne.	Atg2b Dom3z Tef Secisbp2l
P	100 C.	33	100		1. S. 1	1.0	10		Ű.	and density of the second states of the second states of the second states of the second states of the second s	61	Man1 Calm3 Sst Gm10257 Son5
1	AP 51		L_{122}				497	346	4	6. – T. N. T.		Calb1 Ina 1110032a03Rik Gng10
	and the second		1.00	Cale of the second	10.00	iii.	10°.	182	\mathcal{D}	t de la Citat de la Citat	12. J	Pcsk1n Gm1673 Hist1h2al Romo1
	•• • ••C3		165.01	8 W.	16a e		$\rho_{\rm CC}$	944	G,	A. P. B. Barris	ųω,	A430005i14Rik Ckap4 H2alj Rab4a
I,	$\mathcal{M}(\mathcal{C})$	14	ta dina	1 M	5 P.C. 1	L Lin	i de la constante de la consta	$i_{i}(a)$	50	a supplicing and	Ъ,	Gsk3a Nxph1 Chchd6 Uchl3
1	1 1 1 1 1		$M \in \mathcal{M}$	12.	197 P.	ΜŤ1	-74	ы. 1		a bai a sanƙaria a	3ð,	Acta1 Parl Tbcel Degs1
h	- Cherry		$c_{M_{1}}$,	100	717.0	57	4.0	- 19	1	Sec. Mallin 1	Щ,	Shisa5 Calb1 9630033120Rik Ier2
X	$(1)_{i\in I}$	12	X 22	~ 10	1727.0	191) (30	12.3		En la Carlo Carlos	Ϋ́,	Dync111 Itm2b Sanp3 Nubp2 Kibde2
ų,	i se qu			5.36		100			π^{c}			Ugdh Chic2 Alf2 2700029m09Rik
ų,	3. Week	14	-30%	-8	C (22)	26.7	100	di la	ςΫ,	LAN STORE	÷.,	Smc6 Spp1 Plaa Sqlo Bhou
	". gi ij	. W	1115	i (Ng	-i/gh	M^{\dagger}	70 P	۳. H	4.0	a Lingt Sugar he	ŝγ4 _i	Prom1 Xbp1 Itt27 Smurf1
У.	a de la composición d	P I	12.76.16	1.72	.; W. a	194	(1. L	$\sim p$		5 Br 3 BC 19	5514	Epdr1 Zlp512 Com2 Nos1
7	and a disc	W				p_{ij}	218° -	0.7	585	3. C. M.	10 m	Dnaja2 Dab1 Hiat/1 Slx1b
	6 () (an file to	- 7	4.17	. Y	С.,	100	1.1	1.16.19.14.13.	17	Snhg3 Asnsd1 Min1 Sp8
	1999 (M. 1997)	14	1.1	10	1. C. 1		011	18 C	3	and a second	c_{0}	Chr1 D930016d06Rik Gm17566 Pdzrn3 Adwth2
h.	$1, N_{\rm c}$		(f, t_{ij})	113	1.14	•	60	1919		1.1.1.1.1.1	<u>к</u> , с	Trim9 Vps33b Fam174a St6galnac3
ψŶ	de de la co	60	den ber			à. s	(de	80 B		26,022,0867	560	Ddx55 Depdc5 Ubash3b Vps37a Ev11
	1111	9			Y. 1		101	101		1990 B 100		Zlp704 Ubiad1 2310061i04Rik Pigt
Ľ,	1.00	\mathbb{R}^{6}	ale alle	<u>ene</u> .	-77- A	11 I	1 The	M^{*}	56		ς'n	Pi4k2a Mrpi30 Psmg1 Adarb2 Newb7
h P	0.07	17	1.500 100	0.4	1000	100	192.	722	63	1. S. 18 18	Ο.	Commd4 Kdm3a Hyls1 Dakd
1		$\mathcal{A}_{\mathcal{A}}$	1000	35.5	1999		de la	565	1	1 . 1966 64	, 141 1 141	Trib1 2700033n17Rik Phc1 Pcnt
١Ľ	Sugar	e:	12-66	46%	0.357	855	(2, a)	Θ_{i}	йų,	10.561.086	322	Brp44 Vezt Ph15a Aurkaip1 Zirv444
÷.	3.7.11	ι NΥ	2115	4.49	- 10 C		6 6 , 6			C. KI (K		Zip622 Ccnl1 Cxcl14 4930526a20Rik
ų¢.	286	63	40.66	461	date.	1.11	(6)	-158	14		W	Ric2 Larp4b Nap114 Mapre2
Q.	200	ЧÇ	$q \sim 1$	1000	. V. H.	60.0	6 de la	-75	ЧĽ.	1994 - California	, ein	5730590g19Rik Dmpk Baz1a Hecw1
ЧĄ	S . A .	- 6	6.657.3	$R_{\rm H}$	6 (A)	63	1.10	1.1	c_{k}	CALL OF THE LOCAL		Spop TIN4 Ngdn Lir1
١X	والبانويين	65	Luit-	6hv	i por por la	100	96 ^{- 10}	<u> 1997</u>	d, i		Che	Plag/1 Notch1 Dut Pou3/2 Nat5
				i i	ول ب				1		ŝ.	Asb6 Aacs Chst12 Chaf1a
1.1	wiji na ji			12.20	m_{1}^{2} , M	81.7		1/2	4	1. 11. 11. 11.	(0)	Isl1 Tsc22d2 Tstd2 Ascc2 Sic16a12
١,		μ,		-ir	$\mathcal{A}^{(n)}$		5.19	(1)	ίĿ.	S. 1. 4 8 8 1	(\mathbf{r})	Vps8 Mapk11 Slc48a1 Upp2
1		\mathcal{V}			228μ	(1,1,2)	2.14	$\in G$	ja j	الإدراقية ويعاد		Zlp943 Haus4 Conpw Gtt2ird2
	1.1	. '					- D.	11				Bambi Cspo5

37

-1 0 1

Fig. S20. Heatmap of top 20 differentially expressed genes among the 11 embryonic interneuron classes assigned through canonical correlation analysis and k-nearest neighbor.

Fig. S21. MetaNeighbor analysis of 11 assigned embryonic interneuron classes (canonical correlation analysis and k-nearest neighbor) and 23 adult interneuron types. Heatmap of mean AUROC scores (Area under the Receiver Operating Characteristic) indicates the degree of correlation among 11 assigned embryonic classes and the 23 adult cortical interneuron cell types. The color bar indicates the origin (embryonic or adult) of each cluster. Hierarchical clustering indicates good correlation between assigned embryonic interneuron classes and the corresponding adult cortical interneuron cell types, with major branches representing PV, SST, VIP and NDNF lineages. The table shows mean AUROC scores between assigned embryonic interneuron classes and adult cortical interneuron cell types. A mean AUROC score of 0.7 or above typically suggests a good correlation, while mean AUROC score below 0.5 indicates no correlation.

Fig. S22. Temporal analysis of embryonic neurons with assigned subtype identity. (**A**) All embryonic neurons are represented in the same t-SNE space as in Fig. 3B. Neurons are colored based on the stage (E12.5 or E14.5) of origin. (**B**) Assigned embryonic neurons are represented in the same t-SNE space as in Fig. 3C. Neurons are colored based on their stage (E12.5 or E14.5) of origin.

Fig. S23. MetaNeighbor analysis of progenitor clusters and assigned embryonic

interneurons. Heatmaps of mean AUROC scores (Area under the Receiver Operating Characteristic) indicating the degree of correlation among E12.5 (left) and E14.5 (right) progenitor cell clusters and the 3 most conserved assigned embryonic interneuron cell types. Hierarchical clustering indicates correlations among progenitor clusters and with embryonic interneuron cell types. The table shows mean AUROC scores among E14.5 progenitor cell clusters and the 3 "consensus" embryonic interneuron classes (AUROC scores above 0.9). The corresponding table for E12.5 progenitor cell clusters and "consensus" embryonic interneurons is shown in Fig. 4A.

Figure S24. Maf is an early determinant of SST+ interneuron fate. (A) Schematic of experimental design. (B) Coronal sections through the P21 somatosensory cortex immunostained for GFP and MAF following viral infection with *Gfp* and *Maf-Gfp* expressing retroviruses in the MGE of *Nkx2-1-Cre* embryos at E12.5 or E14.5. (C and D) Coronal sections through the somatosensory cortex of P21 mice immunostained for GFP, PV and SST following viral infection in the MGE of *Nkx2-1-Cre* embryos at E12.5 (C) or E14.5 (D). Green, white and red arrows respectively point at PV-/SST-, PV+ and SST+ infected cells. Higher magnification images illustrate cortical interneuron fate changes following *Maf-P2A-Gfp* expression in MGE progenitor cells. (E) Quantification of the proportion of PV-/SST-, PV+ and SST+ interneurons in the Cortex of P21 mice following viral infection with *Gfp* and *Maf-Gfp* expressing retroviruses in the MGE of *Nkx2-1-Cre* embryos at E14.5; n = 5 brains for each experimental condition; X^2 -square test, ***p < 0.001. Post-hoc binomial test pairwise comparison with Bonferroni correction; PV-/SST- vs PV+ *** p < 0.001, PV+ vs SST+ * p < 0.05. Scale bars equal 50 μ m (B and small insets in C and D) and 100 μ m (C and D).

Gene name	Identity
Gfap	Progenitor
Slc1a3	Progenitor
Fabp7	Progenitor
Hes1	Progenitor
Hes5	Progenitor
Lhx2	Progenitor
Notch1	Progenitor
Notch2	Progenitor
Notch3	Progenitor
Vim	Progenitor
Sox2	Progenitor
Sall3	Progenitor
Sparc	Progenitor
Pdpn	Progenitor
Tubb3	Neuron
Mapt	Neuron
Dcx	Neuron
Nrxn3	Neuron
Stmn2	Neuron
Stmn3	Neuron
Gng3	Neuron
Scn3a	Neuron
Map2	Neuron
Gap43	Neuron
Tmem130	Neuron
L1cam	Neuron
Gria2	Neuron

Table S1. Progenitor and neuronal markers.

Gene Name	Identity	Source	Gene Name	Identity	Source
Fabp7	VZ	Random forest features	Esrrg	CGE	Differential expression analysis
Slc1a3	VZ	Random forest features	Foxp2	CGE	Differential expression analysis
1190002h23Rik	VZ	Random forest features	Gas1	CGE	Differential expression analysis
Snap23	VZ	Random forest features	Fktn	CGE	Differential expression analysis
Fgfbp3	VZ	Random forest features	Lix1	CGE	Differential expression analysis
Rhpn1	VZ	Random forest features	Gli2	CGE	Differential expression analysis
Rsrc2	SVZ	Random forest features	Ntrk2	CGE	Differential expression analysis
Nrxn3	SVZ	Random forest features	Anks1b	CGE	Differential expression analysis
St18	SVZ	Random forest features	Chmp2a	CGE	Differential expression analysis
Cd24a	SVZ	Random forest features	Runx1t1	Neuron	Random forest features
Dlx6os1	SVZ	Random forest features	Dcx	Neuron	Random forest features
Nrxn1	dMGE	Differential expression analysis	Gad2	Neuron	Random forest features
Jag1	dMGE	Differential expression analysis	Gad1	Neuron	Random forest features
Nkx6-2	dMGE	Differential expression analysis	Nrxn3	Neuron	Random forest features
Gm5069	dMGE	Differential expression analysis	Dlx60s1	Neuron	Random forest features
Npy	dMGE	Differential expression analysis	Gm14204	Neuron	Random forest features
Nek7	dMGE	Differential expression analysis	Lhx6	Neuron	Random forest features
8430410k20Rik	dMGE	Differential expression analysis	Mapk10	Neuron	Random forest features
Mks1	dMGE	Differential expression analysis	Maged1	Neuron	Random forest features
Nrp1	dMGE	Differential expression analysis	Mapt	Neuron	Random forest features
Ebf1	dMGE	Differential expression analysis	Erbb4	Neuron	Random forest features
Hspa12a	dMGE	Differential expression analysis	Gna2	Neuron	Random forest features
Wnk3-ps	dMGE	Differential expression analysis	Crmp1	Neuron	Random forest features
2310014h01Rik	dMGE	Differential expression analysis	Tubb3	Neuron	Random forest features
Mavs	dMGE	Differential expression analysis	Slain1	Neuron	Random forest features
Laals1	dMGE	Differential expression analysis	Milt11	Neuron	Random forest features
Zfp568	dMGE	Differential expression analysis	Gap43	Neuron	Random forest features
Ptdss2	dMGE	Differential expression analysis	Gabra2	Neuron	Random forest features
Got2	dMGE	Differential expression analysis	2900011008Rik	Neuron	Random forest features
C130036l24Rik	dMGE	Differential expression analysis	Mvo10	Progenitor	Random forest features
Lhx8	vMGE	Differential expression analysis	Gpr98	Progenitor	Random forest features
Nkx2-1	vMGE	Differential expression analysis	Ednrb	Progenitor	Bandom forest features
Zic1	vMGE	Differential expression analysis	Ddah1	Progenitor	Random forest features
Mbip	vMGE	Differential expression analysis	Slc1a3	Progenitor	Random forest features
Asb4	vMGE	Differential expression analysis	Fabp7	Progenitor	Random forest features
Sulf2	vMGE	Differential expression analysis	Ccne2	Progenitor	Random forest features
Sez6	vMGE	Differential expression analysis	Hells	Progenitor	Random forest features
Crabp2	vMGE	Differential expression analysis	Olia1	Progenitor	Random forest features
Lhx6	vMGE	Differential expression analysis	Hat1	Progenitor	Random forest features
Dach1	vMGE	Differential expression analysis	МстЗ	Progenitor	Random forest features
Serpine2	vMGE	Differential expression analysis	Mcm4	Progenitor	Random forest features
Th	vMGE	Differential expression analysis	Ccnd2	Progenitor	Random forest features
Cdkn1c	vMGE	Differential expression analysis	Nasp	Progenitor	Random forest features
Pde1c	vMGE	Differential expression analysis	Мст6	Progenitor	Random forest features
Etv1	vMGE	Differential expression analysis	Tacc3	Progenitor	Random forest features
Spp1	vMGE	Differential expression analysis	Kif22	Progenitor	Random forest features
Lipa	vMGE	Differential expression analysis	Cdc6	Progenitor	Random forest features
Ephb3	vMGE	Differential expression analysis	Clspn	Progenitor	Random forest features
Zic4	vMGE	Differential expression analysis	Mki67	Progenitor	Random forest features
2610035d17Rik	vMGE	Differential expression analysis	Top2a	Progenitor	Random forest features
Pax6	CGE	Differential expression analysis	Rrm2	Progenitor	Random forest features
Nr2f2	CGE	Differential expression analysis	Psmc4	Progenitor	Random forest features
Epha5	CGE	Differential expression analysis	Ska1	Progenitor	Random forest features
Nr2f1	CGE	Differential expression analysis	Nde1	Progenitor	Random forest features
Sp8	CGE	Differential expression analysis	Aspm	Progenitor	Random forest features
Ube2al1	CGE	Differential expression analysis	Cenpe	Progenitor	Random forest features
Rbm28	CGE	Differential expression analysis	Pfas	Progenitor	Random forest features
Bax	CGE	Differential expression analysis	Zfp367	Progenitor	Random forest features
Fbxw8	CGE	Differential expression analysis	Faim2	Progenitor	Random forest features
Pak3	CGE	Differential expression analysis	Pip5kl1	Progenitor	Random forest features
Ppp1r1a	CGE	Differential expression analysis	Frmpd1	Progenitor	Random forest features

Table S2. Progenitor cell selection markers (E12.5).

Gene Name	Identity	Source	Gene Name	Identity	Source
Mfge8	VZ	Random forest features	Camk1	CGE	Differential expression analysis
Sparc	VZ	Random forest features	Vps37b	CGE	Differential expression analysis
Ednrb	VZ	Random forest features	1500011H22Rik	CGE	Differential expression analysis
Slc1a3	VZ	Random forest features	Cno	CGE	Differential expression analysis
Fabp7	VZ	Random forest features	Cnih2	CGE	Differential expression analysis
Myo10	VZ	Random forest features	Stard3nl	CGE	Differential expression analysis
Gpr98	VZ	Random forest features	Ntrk2	CGE	Differential expression analysis
Tubb3	SVZ	Random forest features	Kxne1l	CGE	Differential expression analysis
Lhx6	SVZ	Random forest features	ler5l	CGE	Differential expression analysis
St18	SVZ	Random forest features	Foxp2	CGE	Differential expression analysis
Nrxn3	SVZ	Random forest features	Pid1	CGE	Differential expression analysis
Dlx6os1	SVZ	Random forest features	Runx1t1	Neuron	Random forest features
Nudt4	SVZ	Random forest features	Dcx	Neuron	Random forest features
Gad2	SVZ	Random forest features	Gad2	Neuron	Random forest features
Dcx	SVZ	Random forest features	Gad1	Neuron	Random forest features
Runx1t1	SVZ	Random forest features	Nrxn3	Neuron	Random forest features
Gm10837	dMGE	Differential expression analysis	Dlx6os1	Neuron	Random forest features
Gm10/1/	dMGE	Differential expression analysis	Gm14204	Neuron	Random forest features
Gm6984	dMGE	Differential expression analysis	Lhx6	Neuron	Random forest features
Gm10282	dMGE	Differential expression analysis	Mapk10	Neuron	Random forest features
Atp5g1	dMGE	Differential expression analysis	Maged1	Neuron	Random forest features
Gm10801	dMGE	Differential expression analysis	mapt	Neuron	Random forest features
Eld2	dMGE	Differential expression analysis	Erbb4	Neuron	Random forest features
Uqcr11	dMGE	Differential expression analysis	Gng2	Neuron	Random forest features
Serf2	dMGE	Differential expression analysis	Crmp1	Neuron	Random forest features
Still	dMGE	Differential expression analysis		Neuron	Random forest features
Gm8/30	dMGE	Differential expression analysis	Slain1	Neuron	Random forest features
Gm9846	dMGE	Differential expression analysis	Milt11	Neuron	Random forest features
Gm8759	dMGE	Differential expression analysis	Gap43	Neuron	Random forest features
Atp5g2	dNGE	Differential expression analysis	Gabrg2	Neuron	Random forest features
Gm10106	dNGE	Differential expression analysis	2900011008RIK	Neuron	Random forest features
Griad		Differential expression analysis	Myolu Carol	Progenitor	Random forest features
CWC22		Differential expression analysis	Gpr98	Progenitor	Random forest features
Sepw1		Differential expression analysis	Eanro Ddah1	Progenitor	Random forest features
GIIII0710		Differential expression analysis	Duann	Progenitor	Random forest features
Cuko Dhm15		Differential expression analysis	Sic 183 Echo7	Progenitor	Random forest features
Sont?		Differential expression analysis	Cano?	Progenitor	Random forest features
Gm3272		Differential expression analysis	Holle	Progenitor	Random forest features
Sot		Differential expression analysis	Olia1	Progenitor	Random forest features
Poldin3	VMGE	Differential expression analysis	Hat1	Progenitor	Bandom forest features
Ptaes3	VMGE	Differential expression analysis	Mcm3	Progenitor	Bandom forest features
Nkx2-1	vMGE	Differential expression analysis	Mcm4	Progenitor	Bandom forest features
Skil	VMGE	Differential expression analysis	Cond2	Progenitor	Bandom forest features
Sez6	vMGE	Differential expression analysis	Nasn	Progenitor	Bandom forest features
8620 Rbm26	vMGE	Differential expression analysis	Мст6	Progenitor	Random forest features
I hx8	vMGF	Differential expression analysis	Tacc3	Progenitor	Random forest features
Zswim5	vMGE	Differential expression analysis	Kif22	Progenitor	Random forest features
Ttr	vMGE	Differential expression analysis	Cdc6	Progenitor	Random forest features
Map3k1	vMGE	Differential expression analysis	Clspn	Progenitor	Random forest features
Limd1	vMGE	Differential expression analysis	Mki67	Progenitor	Random forest features
Mt1	vMGE	Differential expression analysis	Top2a	Progenitor	Random forest features
Crabp2	vMGE	Differential expression analysis	Rrm2	Progenitor	Random forest features
Ai597468	vMGE	Differential expression analysis	Psmc4	Progenitor	Random forest features
Gm12940	vMGE	Differential expression analysis	Ska1	Progenitor	Random forest features
Jund	CGE	Differential expression analysis	Nde1	Progenitor	Random forest features
Ube2s	CGE	Differential expression analysis	Aspm	Progenitor	Random forest features
Glrx5	CGE	Differential expression analysis	Cenpe	Progenitor	Random forest features
Med30	CGE	Differential expression analysis	Pfas	Progenitor	Random forest features
Dnajb9	CGE	Differential expression analysis	Zfp367	Progenitor	Random forest features
Rnf126	CGE	Differential expression analysis	Faim2	Progenitor	Random forest features
Gm8327	CGE	Differential expression analysis	Pip5kl1	Progenitor	Random forest features
Podxl2	CGE	Differential expression analysis	Frmpd1	Progenitor	Random forest features
Rap1b	CGE	Differential expression analysis			

Table S3. Progenitor cell selection markers (E14.5).

Gene name	Identity	Gene name	Identity	Gene name	Identity
Dkc1	VZ	E2f5	VZ	Ldha	VZ
Ckb	VZ	Mycn	VZ	Mki67	VZ
E2f1	VZ	Hist1h3e	VZ	Gm8096	VZ
Mcm6	VZ	Notch2	VZ	Phgdh	VZ
Isen15	VZ	Sox2ot	VZ	Adk Familia	VZ
HISTIN2AN Histih2ai	VZ	Snrnp25	VZ VZ	Fam IU2D Pola	VZ VZ
Hist1112ai Hist1h2an	VZ VZ	Fon1	VZ	FUIG Dil	VZ VZ
Hist1h2an Hist1h2ad	VZ VZ	Hist2h2ac	VZ VZ	Clenn	VZ VZ
Cdca5	VZ VZ	Snan23	VZ VZ	Crh2	VZ VZ
lsm3	VZ	Nr2f1	VZ VZ	Idi1	VZ
Aen	VZ	Slc25a5	VZ	Ppat	VZ
Vim	VZ	Srm	VZ	Fbl	VZ
E2f2	VZ	Hmga2	VZ	Hspa8	VZ
Fgfr2	VZ	Vrk1	VZ	Rps2	VZ
Raver1	VZ	Mcm7	VZ	Ddah1	VZ
Pprc1	VZ	Ppia	VZ	Skp2	VZ
Lix 1	VZ	Sox21	VZ	Gldc	VZ
Ltv1	VZ	Zfp238	VZ	1190002H23Rik	VZ
Timm23	VZ	Hist1h4d	VZ	H2afx	VZ
2810417H13Rik	VZ	Hist1h4j	VZ	Ttyh1	VZ
Mthtd1	VZ	Hist1h4a	VZ	Lyar	VZ
Hmgn2	VZ	HISt1n4K	VZ	SICTAS	VZ
Fgtrif	VZ	HISt1n4t	VZ	BC048355	VZ
ASCII	VZ	HISTIN4D	VZ	RIMI Dela	VZ
HISTINIE Reagen1	VZ VZ	Hanaz App22b	VZ VZ	PDK Mif	VZ VZ
Cond1	VZ VZ	Anpozo Soxa	VZ VZ	ivili Gkap1	VZ VZ
0610007L01Rik	VZ VZ	Hist1h1d	VZ VZ	Ton2a	VZ VZ
Peal5a	VZ VZ	Cks2	VZ VZ	Mcm2	VZ VZ
Samd1	VZ VZ	Rtkn2	VZ VZ	Rol12	VZ VZ
Larn4	VZ	Hes5	VZ VZ	Acss1	VZ
Pdpn	VZ	Ednrb	VZ	Hip1	VZ
Hist1h2af	VZ	Kif15	VZ	Nasp	VZ
Notch1	VZ	Nol8	VZ	Tmpo	VZ
Eif2a	VZ	Psmc3ip	VZ	Hprt	VZ
Dut	VZ	Pcna	VZ	Fancd2	VZ
Uhrf1	VZ	Hdac1	VZ	Acaa2	VZ
Myo10	VZ	Cdca3	VZ	Rps6ka6	VZ
Rrm2	VZ	Mcm5	VZ	lldr2	VZ
Usp39	VZ	Efhd2	VZ	Msh6	VZ
Msl3	VZ	C2cd3	VZ	lgbp1	VZ
Pold1	VZ	Rtc4	VZ	Usp1	VZ
Sival Verma	VZ	Ckap2 Den	VZ	MCM3	VZ
Coot	VZ VZ	Gandh	VZ VZ	CUC73	VZ
Nos	VZ VZ	Slbp	VZ VZ	IKI Hist1b2ak	VZ VZ
Saoli	VZ VZ	Olia2	VZ VZ	Fam136a	VZ VZ
Kif11	VZ	Grb10	VZ VZ	Rcc1	VZ
Lmo1	VZ	Gnl3	VZ	Fafr3	VZ
Nr2f6	VZ	Naa50	VZ	Dnajc19	VZ
Nr2e1	VZ	Gart	VZ	Hmgb2	VZ
Hist1h1b	VZ	Lhx2	VZ	Kif4	VZ
Mybl2	VZ	Lfng	VZ	St18	SVZ
Tuba1b	VZ	Sall3	VZ	Bcl11b	SVZ
Jun	VZ	Grwd1	VZ	Epha4	SVZ
Haus5	VZ	Id4	VZ	Top2b	SVZ
Tox3	VZ	Rnaseh2b	VZ	ORF19	SVZ
Big2	VZ	HISTIN2DI	VZ	SOXII	SVZ
nzaiz Adda	VZ VZ	Mom4	VZ VZ	AIX	SVZ
Nodd1	VZ VZ	Holle	VZ VZ	Nryn3	SVZ
Gadd45a	VZ VZ	Yan1	VZ VZ	DIx5	SVZ
Rad23a	VZ	Tbra4	VZ	Pdcd4	SVZ
Hsp90aa1	VZ	Hist2h2ab	VZ	Rai2	SVZ
Nek6	VZ	Psat1	VZ	Pgm1	SVZ
Dek	VZ	Snhg1	VZ	Dix1as	SVZ
Ccna2	VZ	Hist1h2aa	VZ	Sox6	SVZ
Nap1/1	VZ	Tcf19	VZ	Arl4d	SVZ
Wnt7b	VZ	Eed	VZ	Sp9	SVZ
Cdca8	VZ	Dbi	VZ	Dlg1	SVZ
Cenpq	VZ	Wdr76	VZ	Atg2b	SVZ
AI314976	VZ	Ipo5	VZ	Fam48a	SVZ
Pa2g4	VZ	r-gtbp3	VZ	I msb4x	SVZ
Lat	VZ	Hspa1	VZ	Dix1	SVZ
nall Mubbete	VZ VZ	JdM2 Nun27	VZ VZ	Dall2	SVZ
ічіурор і а	٧Z	мир37	٧Z	DCIK2	372

Table S4. Ventricular zone and subventricular zone markers.