
 

 
advances.sciencemag.org/cgi/content/full/4/10/eaat6533/DC1 

 
Supplementary Materials for 

 
Photonic implementation of Majorana-based Berry phases 

 
Jin Shi Xu, Kai Sun, Jiannis K. Pachos, Yong-Jian Han*, Chuan-Feng Li*, Guang-Can Guo 

 
*Corresponding author. Email: smhan@ustc.edu.cn (Y.-J.H.); cfli@ustc.edu.cn (C.-F.L.) 

 
Published 19 October 2018, Sci. Adv. 4, eaat6533 (2018) 

DOI: 10.1126/sciadv.aat6533 
 

This PDF file includes: 
 
Section S1. Theoretical details 
Section S2. Experimental details 
Fig. S1. The circuit of one-step cooling algorithm. 
Fig. S2. The process of anticlockwise braiding of MZMs A and C. 
Fig. S3. The process of clockwise braiding of MZMs A and C. 
Fig. S4. The process to anticlockwise braiding of MZMs C and D. 
Fig. S5. The process of clockwise braiding of MZMs C and D. 
Fig. S6. The process for implementing the phase gate based on the dynamics of MZMs. 
Fig. S7. Spatial modes of the output states for the exchange of MZMs A and C. 
Fig. S8. Spatial modes of the output states corresponding to the basis rotation. 
Fig. S9. Spatial modes of the output states for the exchange of MZMs C and D. 

Fig. S10. Spatial modes of the output states for the 
8


-phase operation. 

Fig. S11. The process to implement the Deutsch-Jozsa algorithm with the braiding of MZMs. 
Fig. S12. Experimental setup for the exchange of MZMs C and D. 

Fig. S13. Experimental setup for the implementation of 
8


-phase gate and error operations. 

Fig. S14. Experimental setup for the quantum process tomography. 

Fig. S15. Experimental density matrices resulting from the π

4
  
 

-phase gate operation. 

Fig. S16. Experimental density matrices resulting from the gate operations in the full basis. 

Fig. S17. Experimental density matrices resulting from the π

8
-phase gate in the full basis. 

Fig. S18. The state evolution in the Deutsch-Jozsa algorithm. 

References (38, 39) 



. T

A. Principle of the imaginary time evolution

Here we explain in detail the basic idea of the imaginary time evolution (ITE) algorithm

based on the cooling algorithm [38]. Each ITE operator can be realised by this method. A

ITE operator can be successfully realised by a set of basic steps with some probability, which

depends on the Hamiltonian and the initial state. Fortunately, in the braiding process for

the KCM, the ITE operator can be efficiently realised.

The circuit for one step of the imaginary time evolution is shown in Figure S1. The key
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F . S1 (Color online). The circuit of one step cooling algorithm. H represents the Hadamard gate operation. R represents

a local phase gate and U is the unitary operation which is dependent on the Hamiltonian Hs.

components of the quantum circuit consists of four gates [38]: (a) two Hadamard gates

H ≡ 1√
2

(|0〉+ |1〉) 〈0|+ 1√
2

(|0〉 − |1〉) 〈1| , (1)

applying to the ancilla qubit (|0〉 and |1〉 are the corresponding two levels) at the beginning

and at the end of the quantum circuit; (b) a local phase gate,

Rz (α) ≡ |0〉 〈0| − ieiα |1〉 〈1| , (2)

where the parameter α is chosen to optimize the efficiency of the algorithm; (c) a two-qubit

controlled unitary operation,

11⊗ |0〉 〈0|+ U ⊗ |1〉 〈1| , (3)

where 11 is the identity operator, and

U (t) = e−iHst (4)

is the real time evolution operator for the system. Hs is the Hamiltonian of the considered

system (L-site KCM here), and t is the time of evolution, which is another parameter we

can use to optimise the efficiency of the algorithm. For a many-body Hamiltonian, we can

approximate well the unitary evolution operator U(t) by the product of a set of local unitary

operators through Trotter-Suzuki expansion [39].

For any given initial state of the system, |ψin〉 =
∑Ns

k=1

√
pk
∑nk

l=1 βk,l |ek,l〉, where Ns is the

number of the eigenvector subspace of Hamiltonian Hs, nk (
∑Ns

k=1 nk = 2L) is the degeneracy

of the k-th eigenvector subspace of the Hamiltonian Hs with eigenvalue Ek, and |ek,l〉 is the

l-th eigenvector in this subspace. The probability to find the state in the k-th eigenvector

-ig .



subspace is denoted by pk. For each k,
∑nk

l=1 βk,l |ek,l〉 is normalised, i.e.
∑nk

l=1 |βk,l|2 = 1.

Generally, we do not need to know the exact form of |ek,l〉.

The quantum circuit then produces the following output state:

1

2

Ns∑
k=1

√
pk(1− ie−i(Ekt−α))

nk∑
l=1

βk,l|ek,l〉 |0〉+
1

2

Ns∑
k=1

√
pk(1 + ie−i(Ekt−α))

nk∑
l=1

βk,l|ek,l〉 |1〉 . (5)

A measurement on the ancilla qubit in the computational basis {|0〉 , |1〉} yields the states

A0

Ns∑
k=1

√
pk(1− ie−i(Ekt−α))

nk∑
l=1

βk,l|ek,l〉, (6)

and

A1

Ns∑
k=1

√
pk(1 + ie−i(Ekt−α))

nk∑
l=1

βk,l|ek,l〉, (7)

respectively, where A0 (A1) is the normalisation factor. It is clear that the coefficient of the

eigenvector subspace is modified by the factor (1− ie−i(Ekt−α)) or (1+ ie−i(Ekt−α)) depending

on the results of the ancilla qubit. As a result, the weight of the eigenvector subspace,

especially the weight of the ground-state subspace, will be modified. To clarify this point,

let us consider the module of the factor (1± ie−i(Ekt−α)),

|(1± ie−i(Ekt−α))|2 = 2 [1± sin(Ekt− α)] . (8)

If the parameters α and t are properly chosen, such that,

−π/2 ≤ Ekt− α ≤ π/2, (9)

for all the eigenvalue Ek, the function sin(Ekt−α) will increase with the energy. Therefore,

1−sin(Ekt−α) (1+sin(Ekt−α)) will decrease (increase) with the increase of the eigenvalue.

As a result, the weight of ground state of the system will increase along with the measurement

result |0〉 on the ancilla qubit, and the weight of the ground state will decrease along with

the measurement result |1〉 on the ancilla qubit.

To make the parameters satisfy the condition introduced above, we normalise the Hamil-

tonian of the system to make the eigenvalues of the Hamiltonian to be within the range

[−1, 1]. The general Hamiltonian in our braiding processes of MZMs in the L-site KCM can

be easily normalised as

H ′ =
i

L
[
m∑
j=1

1

2
γ2j−1γ2j +

L∑
j=m+1

γ2jγ2j+1]. (10)



By setting α = 0 and supposing the parameter t satisfies the condition: Ekt� 1, the weight

of the eigenvectors of the Hamiltonian change as

1− sin(Ekt) ≈ e−Ekt, (11)

which is the imaginary time evolution operator for small time t.

To realise an ITE with a large t, we divide it into k steps, where each step satisfies the

condition introduced before. Thus, a total of k steps of ITE are applied on the initial state

(we make no measurement during the cooling; we measure the qubits at the end of the

manipulation). The final state we obtain is

|ψfin〉 =
k∑
j=0

√
Cj
k

( Ns∑
i=1

√
pi(1/2 + ai)k−j(1/2− ai)j

ni∑
l=1

βi,l|ei,l〉|ϕji〉
)
, (12)

where |ϕji〉 is a properly normalised state of the ancilla. ai = 1
2

sin(Eit − α) and α = 0.

After the manipulations, we measure the ancilla. The probability to get j |0〉 (the number

of the success cooling manipulation) is,

Cj
k

2n∑
i=1

pi(1/2 + ai)
k−j(1/2− ai)j. (13)

This is a mixture of several binomial distributions with the first one corresponding to the

ground state. For a standard binomial distribution: Cj
kp

j(1−p)k−j, the expected value is kp

and the variance is np(1− p). Thus, the concentration interval of the binomial distribution

is between k((1
2
− ai)− 1√

k

√
1
4
− a2

i ) and k((1
2
− ai) + 1√

k

√
1
4
− a2

i ). In order to prepare the

ground state of the system, the intersection between different binomial distribution should

be very small. In other words

k((
1

2
− a1)− 1√

k

√
1

4
− a2

1)� k((
1

2
− a2) +

1√
k

√
1

4
− a2

2), (14)

which is equivalent to
√
k(a2 − a1)� 1

2
− (a2

1 + a2
2). (15)

It should be noted that the other binomial distribution corresponding to higher energy have

much less intersection with the distribution corresponding to ground states. Under the

condition Ekt� 1 (k = 1, 2, · · · , 2L), we have

1

2
− (a2

1 + a2
2) ≈

1

2
, a2 − a1 ≈

1

2
∆t, (16)



and the intersection condition can be simplified to

√
k∆t� 1, (17)

where ∆ is the gap of the system. If this condition is satisfied, the binomial distribution of

the ground state is sufficiently separated from the others, and the number of |0〉 outcomes

during the measurement on the ancilla will be concentrated at k(1− 1
2
a1) with probability

p1. Thus, the number of measurements that successfully obtain the ground state of the

system scale as

1

p1(∆t)2
. (18)

The gap of the Hamiltonian during the braiding increases polynomially with L. In addition,

the overlap between the ground state of HMF
i and HMF

i+1 is independent of L. Therefore, the

ITE operator e−Hit with large t is a polynomial of L in the KCM Braiding situation.

B. The state evolution during the exchange of MZMs A and C
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F . S2 The process of anticlockwise braiding MZMs A and C. The Kitaev chains consist of six fermions (numbered from 1

to 6) with four isolated endpoint MZMs A, B, C and D. Each two particles in the blue ellipse form a conventional fermion. The

dashed lines between different Majorana fermions (k and l= 1a, 1b, · · · , 6b) represent the interactions, iγkγl, between them.

a, b, c, d and e correspond to the imaginary-time evolution corresponding to the Hamiltonians of H0, H1, H2, H3 and H0,

respectively. f. The worldline strands corresponding to the anticlockwise braiding.

The process to anticlockwise braid Majorana zero modes (MZMs) A and C is described

ofig .



in Fig. S2. The exchange process is controlled by four Hamiltonians

HM0 = i(γ1bγ2a + γ4bγ5a + γ5bγ6a) + iγ3aγ3b,

Hh1 = i(γ1bγ2a + γ1aγ3a + γ5bγ6a) + iγ4aγ4b,

Hh2 = i(γ1bγ2a + γ1aγ3a + γ3bγ4b + γ5bγ6a),

Hh3 = i(γ1bγ2a + γ1aγ3a + γ4bγ5a + γ5bγ6a).

(19)

The consecutive Hamiltonians are adiabatically connected and Hh3 is finally adiabatically

evolved to the initial Hamiltonian HM0 . The adiabatic transport of the MZMs is imple-

mented with our photonic simulator by imaginary-time evolution (ITE) operators [25].

Under the Jordan-Wigner (JW) transformation, the fermionic Hamiltonians HM0 , Hh1 ,

Hh2 and Hh3 can be transformed to the corresponding spin Hamiltonians H0, H1, H2 and

H3, respectively, where

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 ,

H1 = −σx1σx2 + σy1σ
z
2σ

x
3 + σz4 − σx5σx6 ,

H2 = −σx1σx2 + σy1σ
z
2σ

x
3 + σx3σ

y
4 − σx5σx6 ,

H3 = −σx1σx2 + σy1σ
z
2σ

x
3 − σx4σx5 − σx5σx6 .

(20)

The JW transformation between the fermionic and spin Hamiltonians preserves their spec-

trum. So the adiabatic transport of the fermions system can be studied in the corresponding

spin description. We can further simplify the process of ITE as many of the terms in H0,

H1, H2 and H3 commute with each other. The ground states of the corresponding Hamilto-

nians can be expressed in terms of the eigenvectors {|x〉, |x̄〉}, {|y〉, |ȳ〉} and {|z〉, |z̄〉} of the

corresponding Pauli operators σx, σy and σz, with eigenvalues {1,−1}, respectively. The

detailed evolution in the spin system during the exchange is calculated as follows.

After the ITE of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (21)

which corresponds to creating the MZMs A, B, C and D, the state becomes

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉, (22)

where α, β, µ and ν are complex amplitudes satisfying |α|2 + |β|2 + |µ|2 + |ν|2 = 1.



Then, the state |φ0〉 is sent to the ITE operation of the second Hamiltonian

H1 = −σx1σx2 + σy1σ
z
2σ

x
3 + σz4 − σx5σx6 , (23)

which corresponds to transporting the MZM A to site 3 and MZM C to site 5. The Hamil-

tonians H0 and H1 share the terms −σx1σx2 and −σx5σx6 . Therefore, we only implement the

additional ITE operations of σz4 and σy1σ
z
2σ

x
3 . Then the output state becomes

|φ1〉 = [α(1 + i) + β(1− i)]|ȳ1z2x3z̄4x5x6〉

+ [−α(1 + i) + β(1− i)]|ȳ1z̄2x̄3z̄4x5x6〉

+ [α(1− i)− β(1 + i)]|y1z̄2x3z̄4x5x6〉

+ [−α(1− i)− β(1 + i)]|y1z2x̄3z̄4x5x6〉

+ [−µ(1 + i)− ν(1− i)]|ȳ1z2x3z̄4x̄5x̄6〉

+ [µ(1 + i)− ν(1− i)]|ȳ1z̄2x̄3z̄4x̄5x̄6〉

+ [−µ(1− i) + ν(1 + i)]|y1z̄2x3z̄4x̄5x̄6〉

+ [µ(1− i) + ν(1 + i)]|y1z2x̄3z̄4x̄5x̄6〉.

(24)

Subsequently, the state |φ1〉 is sent to the ITE operation of the third Hamiltonian

H2 = −σx1σx2 + σy1σ
z
2σ

x
3 + σx3σ

y
4 − σx5σx6 , (25)

which corresponds to transporting MZM A to site 4. We need only consider the ITE oper-

ation of σx3σ
y
4 giving the output state

|φ2〉 = [α(1 + i) + β(1− i)]|ȳ1z2x3ȳ4x5x6〉

− [−α(1 + i) + β(1− i)]|ȳ1z̄2x̄3y4x5x6〉

+ [α(1− i)− β(1 + i)]|y1z̄2x3ȳ4x5x6〉

− [−α(1− i)− β(1 + i)]|y1z2x̄3y4x5x6〉

+ [−µ(1 + i)− ν(1− i)]|ȳ1z2x3ȳ4x̄5x̄6〉

− [µ(1 + i)− ν(1− i)]|ȳ1z̄2x̄3y4x̄5x̄6〉

+ [−µ(1− i) + ν(1 + i)]|y1z̄2x3ȳ4x̄5x̄6〉

− [µ(1− i) + ν(1 + i)]|y1z2x̄3y4x̄5x̄6〉.

(26)

The state |φ2〉 is sent to the ITE operation of the forth Hamiltonian

H3 = −σx1σx2 + σy1σ
z
2σ

x
3 − σx4σx5 − σx5σx6 , (27)



which corresponds to transporting MZM C to site 3. We need only consider the ITE oper-

ation of −σx4σx5 . The state becomes

|φ3〉 = (α− iβ)|ȳ1z2x3x4x5x6〉 − i(α− iβ)|y1z̄2x3x4x5x6〉

+ i(α + iβ)|ȳ1z̄2x̄3x4x5x6〉+ (α + iβ)|y1z2x̄3x4x5x6〉

+ i(−µ+ iν)|ȳ1z2x3x̄4x̄5x̄6〉+ (−µ+ iν)|y1z̄2x3x̄4x̄5x̄6〉

− (µ+ iν)|ȳ1z̄2x̄3x̄4x̄5x̄6〉+ i(µ+ iν)|y1z2x̄3x̄4x̄5x̄6〉.

(28)

Finally, we employ the ITE operation to move back to the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 . (29)

This operation corresponds to transporting MZM C back to site 1. For that we need to only

consider the ITE operation of σz3. The output state becomes

|φ3〉 = (α− iβ)|ȳ1z2z̄3x4x5x6〉 − i(α− iβ)|y1z̄2z̄3x4x5x6〉

− i(α + iβ)|ȳ1z̄2z̄3x4x5x6〉 − (α + iβ)|y1z2z̄3x4x5x6〉

+ i(−µ+ iν)|ȳ1z2z̄3x̄4x̄5x̄6〉+ (−µ+ iν)|y1z̄2z̄3x̄4x̄5x̄6〉

+ (µ+ iν)|ȳ1z̄2z̄3x̄4x̄5x̄6〉 − i(µ+ iν)|y1z2z̄3x̄4x̄5x̄6〉.

(30)

In order to compare this final state with the initial one, we change the basis of modes 1 and

2 to |x〉 and |x̄〉 (basis rotation). The state becomes

|φ4〉 = (α + β)|x1x2z̄3x4x5x6〉+ (µ− ν)|x1x2z̄3x̄4x̄5x̄6〉

+ (β − α)|x̄1x̄2z̄3x4x5x6〉+ (µ+ ν)|x̄1x̄2z̄3x̄4x̄5x̄6〉.
(31)

As shown in the main text, the unitary transformation that corresponds to the anticlock-

wise braiding of MZMs A and C reads

U =
1√
2


1 0 0 −1

0 1 −1 0

0 1 1 0

1 0 0 1

 , (32)

written in the basis {|00g〉, |01g〉, |10g〉, |11g〉}.

If we focus on the even fermionic parity space spanned by |00g〉 and |11g〉, the unitary

transformation becomes

U =
1√
2

 1 −1

1 1

 . (33)



As a result, the braiding of A and C corresponds to a Hadamard gate operation. Note that

this is not the standard Hadamard gate, which equals to H ·R2. With a similar calculation,

we can verify that the clockwise braiding of the MZMs A and C can be realised as shown in

Fig. S3.
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F . S3 The process of clockwise braiding of MZMs A and C. The Kitaev chains consist of six fermions (numbered from 1 to

6) with four isolated endpoint MZMs A, B, C and D. Each two particles in the blue ellipse form a conventional fermion. The

dashed lines between different Majorana fermions (k and l= 1a, 1b, · · · , 6b) represent the interactions, iγkγl, between them. a,

b, c, d and e correspond to the imaginary-time evolution of the Hamiltonians similar to the clockwise braiding situation. f.

The worldline strands of the clockwise braiding of the MZMs A and C.

C. The state evolution during the exchange of MZMs C and D

The process to anticlockwise braiding the MZMs C and D is described in Fig. S4. With

the same arguments, the braiding of the MZMs C and D can be implemented by the ITE

opertors based on the following Hamiltonians

HM0 = i(γ1bγ2a + γ4bγ5a + γ5bγ6a) + iγ3aγ3b,

Hr1 = i(γ1bγ2a + γ5bγ6a) + i(γ3aγ3b + γ4aγ4b),

Hr2 = i(γ1bγ2a + γ4bγ6b + γ5bγ6a) + iγ3aγ3b.

(34)

The braiding process can be simulated by the spin system with the corresponding Hamil-

ig .
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F . S4 The process to anticlockwise braiding of C and D. The Kitaev chains consist of six fermions (numbered

from 1 to 6) with four isolated endpoint MZMs A, B, C and D. Each two particles in the blue ellipse form a conventional

fermion. The dashed lines between different Majorana fermions (k and l= 1a, 1b, · · · , 6b) represent the interactions, iγkγl,

between them. a, b, c, d correspond to the imaginary-time evolution of Hamiltonian of H0, H′1, H′2 and H0, respectively. e.

The worldline strands representing the anticlockwise braiding between the C and D MZMs.

tonians

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 ,

H ′1 = −σx1σx2 + σz3 + σz4 − σx5σx6 ,

H ′2 = −σx1σx2 + σz3 − σx4σz5σ
y
6 − σx5σx6 .

(35)

The detailed evolution of the corresponding spin state during the MZMs exchange is

calculated as follows. After the ITE operation of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (36)

which corresponds to creating the MZMs A, B, C and D, the state becomes

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉, (37)

where α, β, µ and ν are complex amplitudes satisfying |α|2 + |β|2 + |µ|2 + |ν|2 = 1. The first

step is the same as that of the braiding of A and C.

The state is then sent to the second ITE operation with Hamiltonian

H ′1 = −σx1σx2 + σz3 + σz4 − σx5σx6 , (38)

which corresponds to transporting the MZM C to site 5. We need only consider the ITE

operation of σz4 and the state becomes

|φ′1〉 = α|x1x2z̄3z̄4x5x6〉+ β|x̄1x̄2z̄3z̄4x5x6〉 − µ|x1x2z̄3z̄4x̄5x̄6〉 − ν|x̄1x̄2z̄3z̄4x̄5x̄6〉. (39)

MZMsig .



The state |φ′1〉 is then sent to the ITE operation of H ′2

H ′2 = −σx1σx2 + σz3 − σx4σz5σ
y
6 − σx5σx6 , (40)

which corresponds to transporting MZM D to site 4. For this operation only −σx4σz5σ
y
6 needs

to be considered. The state becomes

|φ′2〉 = α((1− i)|x1x2z̄3x4z5y6〉+ (1 + i)|x1x2z̄3x4z̄5ȳ6〉 − (1 + i)|x1x2z̄3x̄4z̄5ȳ6〉 − (1− i)|d1d2v3k4v5l6〉)

+ β((1− i)|x̄1x̄2z̄3x4z5y6〉+ (1 + i)|x̄1x̄2z̄3x4z̄5ȳ6〉 − (1 + i)|k1k2v3k4h5r6〉 − (1− i)|k1k2v3k4v5l6〉)

− µ((1 + i)|x1x2z̄3x4z5y6〉 − (1− i)|x1x2z̄3x4z̄5ȳ6〉 − (1− i)|x1x2z̄3x̄4z5ȳ6〉+ (1 + i)|x1x2z̄3x̄4z̄5y6〉)

− ν((1 + i)|x̄1x̄2z̄3x4z5y6〉 − (1− i)|x̄1x̄2z̄3x4z̄5ȳ6〉 − (1− i)|x̄1x̄2z̄3x̄4z5ȳ6〉+ (1 + i)|x̄1x̄2z̄3x̄4z̄5y6〉).

(41)

This state can be rewritten as

|φ′2〉 = (α(1− i)− µ((1 + i))|x1x2z̄3x4z5y6〉+ (α(1 + i) + µ(1− i))|x1x2z̄3x4z̄5ȳ6〉

+ (−α(1 + i) + µ(1− i))|x1x2z̄3x̄4z5ȳ6〉+ (−α(1− i)− µ(1 + i))|x1x2z̄3x̄4z̄5y6〉

+ (β(1− i)− ν(1 + i))|x̄1x̄2z̄3x4z5y6〉+ (β(1 + i) + ν(1− i))|x̄1x̄2z̄3x4z̄5ȳ6〉

+ (−β(1 + i) + ν(1− i))|x̄1x̄2z̄3x̄4z5ȳ6〉+ (−β(1− i)− ν(1 + i))|x̄1x̄2z̄3x̄4z̄5y6〉.

(42)

Finally, we move back to H0 which corresponds to transporting MZM C to site 6. After the

ITE of −σx4σx5 , the state becomes

|φ′3〉 = (α(1− i)− µ(1 + i))|x1x2z̄3x4x5y6〉+ (α(1 + i) + µ(1− i))|x1x2z̄3x4x5ȳ6〉

+ (−α(1 + i) + µ(1− i))|x1x2z̄3x̄4x̄5ȳ6〉 − (−α(1− i)− µ(1 + i))|x1x2z̄3x̄4x̄5y6〉

+ (β(1− i)− ν(1 + i))|x̄1x̄2z̄3x4x5y6〉+ (β(1 + i) + ν(1− i))|x̄1x̄2z̄3x4x5ȳ6〉

+ (−β(1 + i) + ν(1− i))|x̄1x̄2z̄3x̄4x̄5ȳ6〉 − (−β(1− i)− ν(1 + i))|x̄1x̄2z̄3x̄4x̄5y6〉.

(43)

After the ITE of −σx5σx6 , the state becomes

|φ′3〉 = (α− iµ)|x1x2z̄3x4x5x6〉+ (α− iµ)|x1x2z̄3x4x5x6〉

+ (−iα + µ)|x1x2z̄3x̄4x̄5x̄6〉 − (iα− µ)|x1x2z̄3x̄4x̄5x̄6〉

+ (β − iν)|x̄1x̄2z̄3x4x5x6〉+ (β − iν)|x̄1x̄2z̄3x4x5x6〉

+ (−iβ + ν)|x̄1x̄2z̄3x̄4x̄5x̄6〉 − (iβ − ν)|x̄1x̄2z̄3x̄4x̄5x̄6〉.

(44)

The final state can be rewritten as

|φ′3〉 = (α− iµ)|x1x2z̄3x4x5x6〉+ (−iα + µ)|x1x2z̄3x̄4x̄5x̄6〉

+ (β − iν)|x̄1x̄2z̄3x4x5x6〉+ (−iβ + ν)|x̄1x̄2z̄3x̄4x̄5x̄6〉.
(45)



To show the resulting gate operation we consider the logical basis. The transforma-

tions are given by |x1x2〉 = (|012〉 + |112〉)/
√

2, |x̄1x̄2〉 = (|012〉 − |112〉)/
√

2, |x4x5x6〉 =

(|0456〉 + |1456〉)/
√

2 and |x̄4x̄5x̄6〉 = (|1456〉 − |0456〉)/
√

2 (see Methods part). As a result,

|0120456〉|z̄3〉 = |00g〉, |0121456〉|z̄3〉 = |01g〉, |1120456〉|z̄3〉 = |10g〉 and |1121456〉|z̄3〉 = |11g〉.

The initial state (ground state of H0) can be written as

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉

= (α + β − µ− ν)|00g〉+ (α + β + µ+ ν)|01g〉

+ (α− β − µ+ ν)|10g〉+ (α− β + µ− ν)|11g〉.

(46)

After the exchange process, the final state becomes in the logic basis

|φ′3〉 = (α− iµ)|x1x2z̄3x4x5x6〉+ (−iα + µ)|x1x2z̄3x̄4x̄5x̄6〉

+ (β − iν)|x̄1x̄2z̄3x4x5x6〉+ (−iβ + ν)|x̄1x̄2z̄3x̄4x̄5x̄6〉.

= i(α + β − µ− ν)|00g〉+ (α + β + µ+ ν)|01g〉

+ i(α− β − µ+ ν)|10g〉+ (α− β + µ− ν)|11g〉

(47)

As a result, the unitary transformation of the anticlockwise braiding of MZMs C and D

reads as

U =


1 0 0 0

0 −i 0 0

0 0 1 0

0 0 0 −i

 , (48)

given in the basis {|00g〉, |01g〉, |10g〉, |11g〉}. If we focus on the even fermionic parity space

spanned by |00g〉 and |11g〉, the unitary transformation becomes

U =

 1 0

0 −i

 . (49)

A similar calculation can be performed to determine the evolution of the clockwise braid-

ing of the MZMs C and D, as shown in Fig. S5.
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D. The state evolution during the π
8 -phase gate

The process that implements the π
8
-phase gate, which is not topologically protected, is

described in Fig. S6. This gate is implemented by the following fermionic Hamiltonians

HM0 = i(γ1bγ2a + γ4bγ5a + γ5bγ6a) + iγ3aγ3b,

Hp1 = i(γ1bγ2a + γ2bγ3a + γ4bγ5a + γ5bγ6a),

Hp2 = i(γ1bγ2a + γ2bγ4a + γ4bγ5a + γ5bγ6a),

He = −iγ3aγ3b,

Hp1 = i(γ1bγ2a + γ2bγ3a + γ4bγ5a + γ5bγ6a).

(50)

The adiabatic evolution for the implementation of this gate can be simulated in terms of

spins. The corresponding Hamiltonians are given by

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 ,

H ′′1 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 ,

H ′′2 = −σx1σx2 + σx2σ
z
3σ

x
4 − σx4σx5 − σx5σx6 ,

H ′′e = −σz3,

H ′′1 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 .

(51)

The evolution of the ground state during the adiabatic transitions is calculated as follows.

After the ITE operation of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (52)

which corresponds to creating the MZMs A, B, C and D, the state becomes

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉, (53)

where α, β, µ and ν are complex amplitudes satisfying |α|2 + |β|2 + |µ|2 + |ν|2 = 1. The

first step is the same as that from braiding the MZMs A and C. The state is then sent to

the second ITE operation with the Hamiltonian

H ′′1 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (54)



which corresponds to transporting MZM B to site 3. To perform this step we only need to

consider the ITE operation of −σx2σx3 and the state becomes

|φ′′1〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉

= α|x1x2(x3 − x̄3)x4x5x6〉+ β|x̄1x̄2(x3 − x̄3)x4x5x6〉

+ µ|x1x2(x3 − x̄3)x̄4x̄5x̄6〉+ ν|x̄1x̄2(x3 − x̄3)x̄4x̄5x̄6〉

= α|x1x2x3x4x5x6〉 − β|x̄1x̄2x̄3x4x5x6〉+ µ|x1x2x3x̄4x̄5x̄6〉 − ν|x̄1x̄2x̄3x̄4x̄5x̄6〉.

(55)

The state |φ′′1〉 is then sent to the ITE operation of

H ′′2 = −σx1σx2 + σx2σ
z
3σ

x
4 − σx4σx5 − σx5σx6 , (56)

which corresponds to transporting MZM C to the same site 3. Only the term of σx2σ
z
3σ

x
4

needs to be implemented. The state then becomes

|φ′′2〉 = α|x1x2x3x4x5x6〉 − β|x̄1x̄2x̄3x4x5x6〉+ µ|x1x2x3x̄4x̄5x̄6〉 − ν|x̄1x̄2x̄3x̄4x̄5x̄6〉

= α|x1x2(z3 + z̄3)x4x5x6〉 − β|x̄1x̄2(z3 − z̄3)x4x5x6〉

+ µ|x1x2(z3 + z̄3)x̄4x̄5x̄6〉 − ν|x̄1x̄2(z3 − z̄3)x̄4x̄5x̄6〉

= α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉.

(57)

We then implement the real time evolution of H ′′e on site 3 with the evolution operation

eiσ
z
3τ , where τ is the corresponding evolution time, resulting to

|φ′′2〉τ = e−iτα|x1x2z̄3x4x5x6〉 − eiτβ|x̄1x̄2z3x4x5x6〉+ eiτµ|x1x2z3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉.

(58)

The state then further passes through ITE of the the Hamiltonian

H ′′1 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (59)

which corresponds to transporting MZM C back to site 4. From this Hamiltonian we only

need to consider the term of −σx2σx3 for the application of the ITE. The state then becomes

|φ′′3〉 = e−iτα|x1x2z̄3x4x5x6〉 − eiτβ|x̄1x̄2z3x4x5x6〉+ eiτµ|x1x2z3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉

= e−iτα|x1x2(x3 − x̄3)x4x5x6〉 − eiτβ|x̄1x̄2(x3 + x̄3)x4x5x6〉

+ eiτµ|x1x2(x3 + x̄3)x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2(x3 − x̄3)x̄4x̄5x̄6〉

= e−iτα|x1x2x3x4x5x6〉 − eiτβ|x̄1x̄2x̄3x4x5x6〉

+ eiτµ|x1x2x3x̄4x̄5x̄6〉 − e−iτν|x̄1x̄2x̄3x̄4x̄5x̄6〉.

(60)



Finally, we project the state back to the ground state space of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (61)

which corresponds to transporting MZM B back to site 2. The state becomes

|φ′′4〉 = e−iτα|x1x2x3x4x5x6〉 − eiτβ|x̄1x̄2x̄3x4x5x6〉

+ eiτµ|x1x2x3x̄4x̄5x̄6〉 − e−iτν|x̄1x̄2x̄3x̄4x̄5x̄6〉

= e−iτα|x1x2(z3 + z̄3)x4x5x6〉 − eiτβ|x̄1x̄2(z3 − z̄3)x4x5x6〉

+ eiτµ|x1x2(z3 + z̄3)x̄4x̄5x̄6〉 − e−iτν|x̄1x̄2(z3 − z̄3)x̄4x̄5x̄6〉

= e−iτα|x1x2z̄3x4x5x6〉+ eiτβ|x̄1x̄2z̄3x4x5x6〉+ eiτµ|x1x2z̄3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉

(62)

To determine the effect of these evolutions on the logical space, we translate the basis by

|x1x2〉 = (|012〉+ |112〉)/
√

2, |x̄1x̄2〉 = (|012〉 − |112〉)/
√

2, |x4x5x6〉 = (|0456〉+ |1456〉)/
√

2 and

|x̄4x̄5x̄6〉 = (|1456〉 − |0456〉)/
√

2. The logical basis is then defined as |0120456〉|z̄3〉 = |00g〉,

|0121456〉|z̄3〉 = |01g〉, |1120456〉|z̄3〉 = |10g〉 and |1121456〉|z̄3〉 = |11g〉.

The initial state (ground state of H0) becomes

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉

= (α + β − µ− ν)|00g〉+ (α + β + µ+ ν)|01g〉

+ (α− β − µ+ ν)|10g〉+ (α− β + µ− ν)|11g〉.

(63)

After the phase gate operation the final state becomes

|φ′4〉 = (e−iτα + eiτβ − eiτµ− e−iτν)|0120456〉|v3〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|0121456〉|v3〉

+ (e−iτα− eiτβ − eiτµ+ e−iτν)|1120456〉|v3〉+ (e−iτα− eiτβ + eiτµ− eiτν)|1121456〉|v3〉

= [(α + β − µ− ν) cos τ − (α− β + µ− ν)i sin τ ]|00g〉

+ [(α + β + µ+ ν) cos τ − (α− β − µ+ ν)i sin τ ]|01g〉

+ [(α− β − µ+ ν) cos τ − (α + β + µ+ ν)i sin τ ]|10g〉

+ [(α− β + µ− ν) cos τ − (α + β − µ− ν)i sin τ ]|10g〉.

(64)



Compared to the initial state, the operation is written as

U =


cos τ 0 0 −i sin τ

0 cos τ −i sin τ 0

0 −i sin τ cos τ 0

−i sin τ 0 0 cos τ

 , (65)

expressed in the basis {|00g〉, |01g〉, |10g〉, |11g〉}.

If we focus on the even fermionic parity basis of |00g〉 and |11g〉, the phase operation

becomes

U =

 cos τ −i sin τ

−i sin τ cos τ

 . (66)

With the help of the Hadamard gate H we can obtain the phase gate as H†MH =

e−iτ

 1 0

0 e2iτ

. Thus, the π
8
-phase gate can be achieved by controlling the time to be

τ = π
8
.

E. Effect of the phase errors on site 4 during the phase gate

As discussed in [31], phase errors, caused by c†jcj, are dominant in fermionic system.

Generally, the error operator can be written as e−ic
†
jcjt where t is the interaction time. We

can expand the operator as

eic
†c t =

∞∑
n=0

(ic†c t)n

n!
= 1 + (e−it − 1)c†c. (67)

Hence, to demonstrate the influence of the phase error, we only need to consider the action

of the operator c†c (which is transformed to (1 + σz)/2 in the spin representation) in the

ground-state space. We first consider the action of the noise on site 4. In this case, at most

one MZM is effected, so we expect the information encoded in the MZMs to be robust. To

demonstrate this characteristic, we assume that the error happens during the phase gate

operation.

The evolution of the state during the phase gate with the presence of the phase error is

determined as follows. After the ITE operation of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (68)



the state becomes

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉. (69)

The phase error operation is then implemented and the state becomes

|φ0〉err = 1/2(α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉)

+ 1/2(α|x1x2z̄3x̄4x5x6〉+ β|x̄1x̄2z̄3x̄4x5x6〉+ µ|x1x2z̄3x4x̄5x̄6〉+ ν|x1x2z̄3x4x̄5x̄6〉).

(70)

There is a probability of 0.5 that the state of particle 4 changes from x4 to x̄4. The state is

then transformed by the second ITE operation with the Hamiltonian

H ′′1 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 . (71)

The terms disturbed by the operation σz4 is discarded due to the ITE operation of the similar

Hamiltonian −σx4σx5 and the state becomes

|φ′′1〉 = α|x1x2x3x4x5x6〉 − β|x̄1x̄2x̄3x4x5x6〉+ µ|x1x2x3x̄4x̄5x̄6〉 − ν|x̄1x̄2x̄3x̄4x̄5x̄6〉. (72)

The phase error operation is then implemented and the state becomes

|φ′′1〉err = 1/2(α|x1x2x3x4x5x6〉 − β|x̄1x̄2x̄3x4x5x6〉+ µ|x1x2x3x̄4x̄5x̄6〉 − ν|x̄1x̄2x̄3x̄4x̄5x̄6〉)

+ 1/2(α|x1x2x3x̄4x5x6〉 − β|x̄1x̄2x̄3x̄4x5x6〉+ µ|x1x2x3x4x̄5x̄6〉 − ν|x1x2x̄3x4x̄5x̄6〉).

(73)

The next ITE operation is with respect to

H ′′2 = −σx1σx2 + σx2σ
z
3σ

x
4 − σx4σx5 − σx5σx6 , (74)

and the state becomes

|φ′′2〉 = α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉. (75)

The phase error operation is again implemented and the state becomes

|φ′′2〉err = 1/2(α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉)

+ 1/2(α|x1x2z̄3x̄4x5x6〉 − β|x̄1x̄2z3x̄4x5x6〉+ µ|x1x2z3x4x̄5x̄6〉+ ν|x̄1x̄2z̄3x4x̄5x̄6〉).

(76)



By implementing the real time evolution of eiσ
z
3 on site 3 with the time τ , the state

becomes

|φ′′2〉τerr = 1/2(e−iτα|x1x2z̄3x4x5x6〉 − eiτβ|x̄1x̄2z3x4x5x6〉+ eiτµ|x1x2z3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉)

+ 1/2(e−iτα|x1x2z̄3x̄4x5x6〉 − eiτβ|x̄1x̄2z3x̄4x5x6〉+ eiτµ|x1x2z3x4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x4x̄5x̄6〉).

(77)

The state is then further transformed by the ITE of Hamiltonian

H ′′3 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (78)

and becomes

|φ′′3〉 = e−iτα|x1x2x3x4x5x6〉 − eiτβ|x̄1x̄2x̄3x4x5x6〉+ eiτµ|x1x2x3x̄4x̄5x̄6〉 − e−iτν|x̄1x̄2x̄3x̄4x̄5x̄6〉.

(79)

The phase error operation is subsequently implemented and the state becomes

|φ′′3〉err = 1/2(e−iτα|x1x2x3x4x5x6〉 − eiτβ|x̄1x̄2x̄3x4x5x6〉+ eiτµ|x1x2x3x̄4x̄5x̄6〉 − e−iτν|x̄1x̄2x̄3x̄4x̄5x̄6〉)

+ 1/2(e−iτα|x1x2x3x̄4x5x6〉 − eiτβ|x̄1x̄2x̄3x̄4x5x6〉+ eiτµ|x1x2x3x4x̄5x̄6〉 − e−iτν|x̄1x̄2x̄3x4x̄5x̄6〉).

(80)

Finally, the state is projected back to the ground-state space of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (81)

and the state becomes

|φ′′4〉 = e−iτα|x1x2z̄3x4x5x6〉+ eiτβ|x̄1x̄2z̄3x4x5x6〉+ eiτµ|x1x2z̄3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉,

= (e−iτα + eiτβ − eiτµ− e−iτν)|0120456〉|v3〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|0121456〉|v3〉

+ (e−iτα− eiτβ − eiτµ+ eiτν)|1120456〉|v3〉+ (e−iτα− eiτβ + eiτµ− e−iτν)|1121456〉|v3〉

= (e−iτα + eiτβ − eiτµ− e−iτν)|00g〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|01g〉

+ (e−iτα− eiτβ − eiτµ+ eiτν)|10g〉+ (e−iτα− eiτβ + eiτµ− e−iτν)|11g〉,

(82)

which is the same as that without error.



F. Effect of the phase errors on site 3 during the phase gate

We now consider the effect of the phase error on site 3. Since two MZMs will simulta-

neously appear on this site, the phase error, given by the operator c†c, will induce error in

the logical state during the implementation of the π
8
-phase gate. To demonstrate exactly

the effect of the error, we suppose it only operates on site 3 when two MZMs are both

transported there. The state evolution during the phase gate with the error is calculated as

follows.

After the ITE operation of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (83)

the state becomes

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉. (84)

The state is then sent to the second ITE operation corresponding to the Hamiltonian

H ′′1 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (85)

and the state becomes

|φ′′1〉 = α|x1x2x3x4x5x6〉 − β|x̄1x̄2x̄3x4x5x6〉+ µ|x1x2x3x̄4x̄5x̄6〉 − ν|x̄1x̄2x̄3x̄4x̄5x̄6〉. (86)

The next ITE operation is with respect to H ′′2

H ′′2 = −σx1σx2 + σx2σ
z
3σ

x
4 − σx4σx5 − σx5σx6 , (87)

and the state becomes

|φ′′2〉 = α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉. (88)

The phase error operation is then implemented and the state becomes

|φ′′2〉err = (α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉)/2

+ (−α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉 − ν|x̄1x̄2z̄3x̄4x̄5x̄6〉)/2

= β|x̄1x̄2z3x4x5x6〉 − µ|x1x2z3x̄4x̄5x̄6〉.

(89)



There are interferences between the disturbed (the operation of σz3) and undisturbed

terms. By implementing the real time evolution of eiσ
z
3 on site 3 with the time τ , the state

becomes

|φ′′2〉τ = eiτβ|x̄1x̄2z3x4x5x6〉 − eiτµ|x1x2z3x̄4x̄5x̄6〉. (90)

After the ITE operation of the Hamiltonian

H ′′3 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (91)

the state becomes

|φ′′3〉 = β|x̄1x̄2x̄3x4x5x6〉 − µ|x1x2x3x̄4x̄5x̄6〉. (92)

Finally, the state is projected back to the ground-state space of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (93)

and becomes

|φ′′4〉 = β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉

= (β − µ)|0120456〉|v3〉+ (β + µ)|0121456〉|v3〉

− (β + µ)|1120456〉|v3〉 − (β − µ)|1121456〉|v3〉,

(94)

which is different from the final state without error

|φ4〉 = e−iτα|x1x2z̄3x4x5x6〉+ eiτβ|x̄1x̄2z̄3x4x5x6〉+ eiτµ|x1x2z̄3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉,

= (e−iτα + eiτβ − eiτµ− e−iτν)|0120456〉|v3〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|0121456〉|v3〉

+ (e−iτα− eiτβ − eiτµ+ eiτν)|1120456〉|v3〉+ (e−iτα− eiτβ + eiτµ− e−iτν)|1121456〉|v3〉.

= (e−iτα + eiτβ − eiτµ− e−iτν)|00g〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|01g〉

+ (e−iτα− eiτβ − eiτµ+ eiτν)|10g〉+ (e−iτα− eiτβ + eiτµ− e−iτν)|11g〉.

(95)

G. Effect of the flip errors between the nearest sites 4 and 5 during the phase gate

The influence of flip error perturbations in the Kitaev chain is significantly suppressed

[31]. To study their effect in our simulator we consider the perturbation c†kck+1 + c†k+1ck,



which is a two site error, during the phase gate operation. This operator can be written in

terms of spins as (σykσ
y
k+1 + σxkσ

x
k+1)/2. Similarly to the phase error the influence of the flip

error dependents on the sites where the error happens. When the error only acts on at most

one MZM, it can not influence the information encoded in the MZMs. To demonstrate this

characteristic, we assume the error operates on sites 4 and 5 during the whole process of the

gate operation.

The state evolution during the phase gate in the presence of flip errors on sites 4 and 5

is calculated as follows. After the ITE operation of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (96)

the state becomes

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉. (97)

The flip error operation is then implemented and the state becomes

|φ0〉err = (α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉)/2

− (α|x1x2z̄3x̄4x̄5x6〉+ β|x̄1x̄2z̄3x̄4x̄5x6〉+ µ|x1x2z̄3x4x5x̄6〉+ ν|x̄1x̄2z̄3x4x5x̄6〉)/2.

(98)

There is a probability of 0.5 that the states of particle 4 and 5 disturbed by the operation

σx4σ
x
5 , and a probability of 0.5 disturbed by the operation σy4σ

y
5 . The state is then sent to

the second ITE operation with the Hamiltonian

H ′′1 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (99)

and becomes

|φ′′1〉 = α|x1x2x3x4x5x6〉 − β|x̄1x̄2x̄3x4x5x6〉+ µ|x1x2x3x̄4x̄5x̄6〉 − ν|x̄1x̄2x̄3x̄4x̄5x̄6〉. (100)

The disturbed terms with the operation of σy4σ
y
5 are discarded by the ITE of the Hamiltonian

−σx5σx6 . The flip error is further implemented and the state becomes

|φ′′1〉err = (α|x1x2x3x4x5x6〉 − β|x̄1x̄2x̄3x4x5x6〉+ µ|x1x2x3x̄4x̄5x̄6〉 − ν|x̄1x̄2x̄3x̄4x̄5x̄6〉)/2

− (α|x1x2x3x̄4x̄5x6〉 − β|x̄1x̄2x̄3x̄4x̄5x6〉+ µ|x1x2x3x4x5x̄6〉 − ν|x̄1x̄2x̄3x4x5x̄6〉)/2.

(101)



The next ITE operation corresponds to the Hamiltonian

H ′′2 = −σx1σx2 + σx2σ
z
3σ

x
4 − σx4σx5 − σx5σx6 , (102)

which leads to the state

|φ′′2〉 = α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉. (103)

The flip error operation is implemented and the state becomes

|φ′′2〉err = (α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉)/2

− (α|x1x2z̄3x̄4x̄5x6〉 − β|x̄1x̄2z3x̄4x̄5x6〉+ µ|x1x2z3x4x5x̄6〉+ ν|x̄1x̄2z̄3x4x5x̄6〉)/2.

(104)

By implementing the real time evolution of eiσ
z
3τ on site 3 for time τ , the state becomes

|φ′′2〉τ = (e−iτα|x1x2z̄3x4x5x6〉 − eiτβ|x̄1x̄2z3x4x5x6〉+ eiτµ|x1x2z3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉)/2

− (e−iτα|x1x2z̄3x̄4x̄5x6〉 − eiτβ|x̄1x̄2z3x̄4x̄5x6〉+ eiτµ|x1x2z3x4x5x̄6〉+ e−iτν|x̄1x̄2z̄3x4x5x̄6〉)/2.

(105)

The state then undergoes the ITE operation corresponding to the Hamiltonian

H ′′3 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (106)

and becomes

|φ′′3〉 = e−iτα|x1x2x3x4x5x6〉 − eiτβ|x̄1x̄2x̄3x4x5x6〉+ eiτµ|x1x2x3x̄4x̄5x̄6〉 − e−iτν|x̄1x̄2x̄3x̄4x̄5x̄6〉.

(107)

The flip error operation is further implemented and the state becomes

|φ′′3〉err = (e−iτα|x1x2x3x4x5x6〉 − eiτβ|x̄1x̄2x̄3x4x5x6〉+ eiτµ|x1x2x3x̄4x̄5x̄6〉 − e−iτν|x̄1x̄2x̄3x̄4x̄5x̄6〉)/2

− (e−iτα|x1x2x3x̄4x̄5x6〉 − eiτβ|x̄1x̄2x̄3x̄4x̄5x6〉+ eiτµ|x1x2x3x4x5x̄6〉 − e−iτν|x̄1x̄2x̄3x4x5x̄6〉)/2.

(108)

The state is then projected back to the ground-state space of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (109)



and becomes

|φ′′4〉 = e−iτα|x1x2z̄3x4x5x6〉+ eiτβ|x̄1x̄2z̄3x4x5x6〉+ eiτµ|x1x2z̄3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉,

= (e−iτα + eiτβ − eiτµ− e−iτν)|0120456〉|v3〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|0121456〉|v3〉

+ (e−iτα− eiτβ − eiτµ+ eiτν)|1120456〉|v3〉+ (e−iτα− eiτβ + eiτµ− e−iτν)|1121456〉|v3〉

= (e−iτα + eiτβ − eiτµ− e−iτν)|00g〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|01g〉

+ (e−iτα− eiτβ − eiτµ+ eiτν)|10g〉+ (e−iτα− eiτβ + eiτµ− e−iτν)|11g〉.

(110)

which is the same state as that without error. Hence, the system is fault-tolerant against

flip error perturbations.

H. Effect of flip errors between the nearest sites 3 and 4 during the phase gate

When the flip error (σykσ
y
k+1 + σxkσ

x
k+1)/2 acts on two or more MZMs the information

encoded in the MZMs will be affected. To demonstrate this, we take the error to act on

sites 3 and 4, when two MZMs are positioned on site 3, simultaneously. The state evolution

during the phase gate with the flip error perturbation acting on sites 3 and 4 is calculated

as follows.

After the ITE operation of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (111)

the state becomes

|φ0〉 = α|x1x2z̄3x4x5x6〉+ β|x̄1x̄2z̄3x4x5x6〉+ µ|x1x2z̄3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉. (112)

The state is then sent to the second ITE operation with the Hamiltonian

H ′′1 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (113)

and becomes

|φ′′1〉 = α|x1x2x3x4x5x6〉 − β|x̄1x̄2x̄3x4x5x6〉+ µ|x1x2x3x̄4x̄5x̄6〉 − ν|x̄1x̄2x̄3x̄4x̄5x̄6〉. (114)

The next ITE operation corresponds to the Hamiltonian

H ′′2 = −σx1σx2 + σx2σ
z
3σ

x
4 − σx4σx5 − σx5σx6 , (115)



and the state becomes

|φ′′2〉 = α|x1x2z̄3x4x5x6〉 − β|x̄1x̄2z3x4x5x6〉+ µ|x1x2z3x̄4x̄5x̄6〉+ ν|x̄1x̄2z̄3x̄4x̄5x̄6〉. (116)

The flip error operation is then implemented and the state becomes

|φ′′2〉err = (α|x1x2z3x4x5x6〉 − β|x̄1x̄2z̄3x4x5x6〉 − µ|x1x2z̄3x̄4x̄5x̄6〉 − ν|x̄1x̄2z3x̄4x̄5x̄6〉)/2

+ (−α|x1x2z3x̄4x5x6〉 − β|x̄1x̄2z̄3x̄4x5x6〉 − µ|x1x2z̄3x4x̄5x̄6〉+ ν|x̄1x̄2z3x4x̄5x̄6〉)/2.

(117)

By implementing the real time evolution of eiσ
z
3τ on site 3 with the time τ , the state becomes

|φ′′2〉τ = (eiτα|x1x2z3x4x5x6〉 − e−iτβ|x̄1x̄2z̄3x4x5x6〉 − e−iτµ|x1x2z̄3x̄4x̄5x̄6〉 − eiτν|x̄1x̄2z3x̄4x̄5x̄6〉)/2

+ (−eiτα|x1x2z3x̄4x5x6〉 − e−iτβ|x̄1x̄2z̄3x̄4x5x6〉 − e−iτµ|x1x2z̄3x4x̄5x̄6〉+ eiτν|x̄1x̄2z3x4x̄5x̄6〉)/2.

(118)

The state then undergoes the ITE operation corresponding to the Hamiltonian

H ′′3 = −σx1σx2 − σx2σx3 − σx4σx5 − σx5σx6 , (119)

and becomes

|φ′′3〉 = eiτα|x1x2x3x4x5x6〉+ e−iτβ|x̄1x̄2x̄3x4x5x6〉 − e−iτµ|x1x2x3x̄4x̄5x̄6〉 − eiτν|x̄1x̄2x̄3x̄4x̄5x̄6〉.

(120)

The disturbed terms with the operation σy3σ
y
4 are discarded by the ITE operation of −σx4σx5 .

The state is then projected back to the ground-state space of the initial Hamiltonian

H0 = −σx1σx2 + σz3 − σx4σx5 − σx5σx6 , (121)

and becomes

|φ′′4〉 = eiτα|x1x2z̄3x4x5x6〉 − e−iτβ|x̄1x̄2z̄3x4x5x6〉 − e−iτµ|x1x2z̄3x̄4x̄5x̄6〉+ eiτν|x̄1x̄2z̄3x̄4x̄5x̄6〉,

= (eiτα− e−iτβ − e−iτµ+ eiτν)|0120456〉|v3〉+ (eiτα− e−iτβ + e−iτµ− eiτν)|0121456〉|v3〉

+ (eiτα + e−iτβ − e−iτµ− eiτν)|1120456〉|v3〉+ (eiτα + e−iτβ + e−iτµ+ eiτν)|1121456〉|v3〉

= (eiτα− e−iτβ − e−iτµ+ eiτν)|00g〉+ (eiτα− e−iτβ + e−iτµ− eiτν)|01g〉

+ (eiτα + e−iτβ − e−iτµ− eiτν)|10g〉+ (eiτα + e−iτβ + e−iτµ+ eiτν)|11g〉.

(122)



This state is different from the state obtained in the absence of errors, given by

|φ′′4〉 = e−iτα|x1x2z̄3x4x5x6〉+ eiτβ|x̄1x̄2z̄3x4x5x6〉+ eiτµ|x1x2z̄3x̄4x̄5x̄6〉+ e−iτν|x̄1x̄2z̄3x̄4x̄5x̄6〉,

= (e−iτα + eiτβ − eiτµ− e−iτν)|0120456〉|v3〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|0121456〉|v3〉

+ (e−iτα− eiτβ − eiτµ+ eiτν)|1120456〉|v3〉+ (e−iτα− eiτβ + eiτµ− e−iτν)|1121456〉|v3〉

= (e−iτα + eiτβ − eiτµ− e−iτν)|00g〉+ (e−iτα + eiτβ + eiτµ+ e−iτν)|01g〉

+ (e−iτα− eiτβ − eiτµ+ eiτν)|10g〉+ (e−iτα− eiτβ + eiτµ− e−iτν)|11g〉.

(123)

The transformation can be written as

U ′ =


i sin τ 0 0 cos τ

0 i sin τ cos τ 0

0 cos τ i sin τ 0

cos τ 0 0 i sin τ

 . (124)

I. Cross section images for the state evolution

The cross sections of the output spatial modes of each process in the exchanging of MZMs

A and C are shown in Fig. S7. The solid rings represent the preserved optical modes, and

the dashed rings represent the discarded optical modes. The states indicated next to the

optical modes represent the corresponding basis of the preserved states.

In order to clearly illustrate the roles of BDs, the cross sections after each BDs during

the basis rotation in Fig. S7 are shown in Fig. S8.

The cross sections of the output spatial modes of each process in the exchanging of MZMs

C and D are shown in Fig. S9. The solid rings represent the preserved optical modes, and the

dashed rings represent the discarded ones. The states indicated next to the optical modes

represent the basis of the preserved states.

The cross sections of the output spatial modes of each process in the implementation

of the π
8
-phase gate are shown in Fig. S10. The solid rings represent the preserved optical

modes and the dashed rings represent the discarded ones. The states indicated next to the

optical modes represent the corresponding basis of the preserved states.
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Basis Rotation

1A and 4C
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F . S7 Spatial modes of the output states for the exchange of MZMs A and C. The solid rings represent the preserved

optical modes, and the dashed rings represent the discarded ones. The states indicated next to the optical modes represent the

corresponding basis of the preserved modes.

initial BD30 BD30

BD60

yzzxxx yzzxxx yzzxxx yzzxxx

yzzxxx yzzxxx yzzxxx yzzxxx

xxzxxx

xxzxxx xxzxxx

xxzxxx

(y+y)zzxxx

x(z+z)zxxx

(y+y)zzxxx

(y+y)zzxxx (y+y)zzxxx

xzzxxx xzzxxx

xzzxxx xzzxxx

xzzxxx xzzxxx

xzzxxx xzzxxx

x(z+z)zxxx

x(z - z)zxxx x(z - z)zxxx

F . S8 Spatial modes of the output states corresponding to the basis rotation. The solid rings represent the preserved

optical modes, and the dashed rings represent the discarded ones. BD30 and BD60 represent the beam displacers with beam

displacement of 3.0 mm and 6.0 mm, respectively. The states indicated next to the optical modes represent the corresponding

basis of the preserved modes.

J. Realisation of the Deutsch-Jozsa algorithm based on Majorana braiding

We now explain how to implement the Deutsch-Jozsa algorithm with MZMs. The initial

state (ground state of H0) is given by

|φ0〉 = (α + β − µ− ν)|00g〉+ (α + β + µ+ ν)|01g〉

+ (α− β − µ+ ν)|10g〉+ (α− β + µ− ν)|11g〉.
(125)
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4C and 6D
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F . S9 Spatial modes of the output states for the exchange of MZMs C and D. The solid rings represent the preserved optical

modes, and the dashed rings represent the discarded ones. The states indicated next to the optical modes represent the basis

of the preserved states.

(initial)H0 H 1́ʹ

H 2́ʹ

phase operator

xxzxxx xxzxxx
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H éʹ
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F . S10 Spatial modes of the output states for the phase operation. The solid rings represent the preserved optical modes

and the dashed rings represent the discarded ones. The states indicated next to the optical modes represent the corresponding

basis of the preserved states.
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F . S11 The process to implement the Deutsch-Jozsa algorithm with the braiding of MZMs. The Hadamard gate is imple-

mented by braiding A and C. For the unitary operation (Uf ), the state remains the same when the operation is the identity

(corresponding to constant function). Two successive braiding of C and D will be implemented when the operation is σz

(corresponding to balance function). Another Hadamard gate is implemented again after Uf . The final state is then measured.

After the braiding of MZMs A and C, the final state becomes

|φ4〉 = (β − µ)|00g〉+ (β + µ)|01g〉

+ (α + ν)|10g〉+ (α− ν)|11g〉.
(126)

The unitary transformation reads

U =
1√
2


1 0 0 −1

0 1 −1 0

0 1 1 0

1 0 0 1

 . (127)

If we focus on the even fermionic parity state-space spanned by |00g〉 and |11g〉, the unitary

transformation becomes

U =
1√
2

 1 −1

1 1

 . (128)

As a result, the braiding of A and C corresponds to a Hadamard gate operation on the basis

of |00g〉 and |11g〉.

On the other hand, the braiding of the MZMs C and D acting on the initial state |φ0〉

gives

|φ′2〉 = i(α + β − µ− ν)|00g〉+ (α + β + µ+ ν)|01g〉

+ i(α− β − µ+ ν)|10g〉+ (α− β + µ− ν)|11g〉.
(129)
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This unitary operation, when restricted on the space of |00g〉 and |11g〉, it reads

U ′ =

 1 0

0 −i

 . (130)

Two successive operations of U ′ give

σz = U ′U ′ =

 1 0

0 −1

 . (131)

As a result, two successive braidings of C and D MZMs correspond to the σz operation on

the basis of |00g〉 and |11g〉.

We can then implement the Deutsch-Jozsa algorithm in the space spanned by |00g〉 and

|11g〉 and the detailed process is shown below:

1. We prepare the initial state |00g〉 (1
2
(|x1x2z̄3x4x5x6〉+|x̄1x̄2z̄3x4x5x6〉−|x1x2z̄3x̄4x̄5x̄6〉−

|x̄1x̄2z̄3x̄4x̄5x̄6〉)).

2. After the exchange of A and C, the state becomes 1√
2
(|00g〉+|11g〉) ( 1√

2
(|x1x2z̄3x4x5x6〉−

|x̄1x̄2z̄3x̄4x̄5x̄6〉)).

3. If the function is constant, the state remains 1√
2
(|00g〉 + |11g〉) ( 1√

2
(|x1x2z̄3x4x5x6〉 −

|x̄1x̄2z̄3x̄4x̄5x̄6〉)).

4. We exchange A and C again, the state becomes |11g〉 (1
2
(|x1x2z̄3x4x5x6〉−|x̄1x̄2z̄3x4x5x6〉+

|x1x2z̄3x̄4x̄5x̄6〉 − |x̄1x̄2z̄3x̄4x̄5x̄6〉)).

5. If the function is balanced, the state undergoes two success exchange C and D. After

the first exchange of C and D, the state becomes 1√
2
(|00g〉 − i|11g〉) (1

2
(|x1x2z̄3x4x5x6〉 +

i|x̄1x̄2z̄3x4x5x6〉 − i|x1x2z̄3x̄4x̄5x̄6〉 − |x̄1x̄2z̄3x̄4x̄5x̄6〉)).

6. After the second exchange C and D, the state becomes 1√
2
(|00g〉−|11g〉) ( 1√

2
(|x1x2z̄3x̄4x̄5x̄6〉−

|x̄1x̄2z̄3x4x5x6〉)).

7. We then exchange A and C again and the state becomes |00g〉 (1
2
(|x1x2z̄3x4x5x6〉 +

|x̄1x̄2z̄3x4x5x6〉 − |x1x2z̄3x̄4x̄5x̄6〉 − |x̄1x̄2z̄3x̄4x̄5x̄6〉)).

As a result, we can distinguish constant and balanced function by only one measurement.

If the outcome of the measurement is |00g〉, the function is balanced. If the outcome is |11g〉,

the function is constant. The procedure that implements the Deutsch-Jozsa algorithm based

on the braiding of MZMs is shown in Fig. S11.
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A. The experimental setup for the exchange of C and D MZMs

a

b
BD30 BD60 PBSHWP

H1 H2 H0ʹ ʹH0

d

c

QWP

σ  z4

σ  x4σ  z5σ  y6

σ  x4σ  x5- σ  x5σ  x6-

-

F . S12 Experimental setup for the exchange of MZMs C and D. a. The imaginary-time evolutions (ITEs) of the involved

Hamiltonians to exchange MZMs C and D. b. The setup to realize the ITE of H′1 (needed only the term of σz4). The state is

initially prepared to be the ground state of H0 involving four spatial modes, which are represented by the solid circles. After

transferred by a beam displacer (BD30 with beams separated by 3.0 mm) with half-wave plates (HWPs) operating on different

spatial modes (not shown and the total operation is denoted as an thick arrow), and dissipated by a polarization beam splitter

(PBS), the output state remains four spatial modes. c. The setup for the subsequent ITE of H′2 (needed only the term of

−σx4σz5σ
y
6 ). The combination of HWPs and a quarter-wave plate (QWP) is used to rotate the basis to the right-hand and

left-hand circular basis. The beam displacers with beams separated by 6.0 mm (BD60s) are used to operate more spatial

modes. d. The setup for the ITE of final H0 (needed only the terms of −σx4σx5 and −σx5σx6 ).

The experimental setup for the exchange of C and D is shown in Fig. S12. The state

information is prepared by beam displacers with beams separated by 3.0 mm (BD30) and

with beams separated by 6.0 mm (BD60). The coupling between the spatial modes and

the polarisation is achieved using half-wave plates (HWPs), which rotate the polarisation

in the corresponding paths. Such a process is denoted by a thick arrow in the setup. The

combination of HWPs and a quarter-wave plate (QWP) can be used to rotate the basis to the

right-hand and left-hand circular basis, which exchanges the basis between σy and σx (σz).

The dissipative evolution is achieved by passing the photons through a polarisation beam

splitter (PBS), which transmits the horizontal component and reflects the vertical one. In

our cases, only photons in the optical modes that have horizontal polarisations are preserved.

ig .
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These modes correspond to the ground states of the Hamiltonian. The components with

vertical polarisations are completely dissipated. We directly prepare the ground states of

H0 with the output state involving four spatial modes. The state is then sent to the ITE

operation of H ′1, H ′2 and H0 for implementing the braiding of MZMs C and D.

B. The experimental setup for the implementation of π/8-phase gate and the error

operations

a
H1 H2 H0ʹʹ ʹʹH0 H 1́ʹH é́

b

BD30 PBSHWP QWP

c d

BD60

σ  x2σ  z3σ  x4σ  x2 σ  x3 σ  z3/ /- σ  z3 phase error operation

/ flip error operation
Exp[-i π/8      ]

F . S13 Experimental setup for the implementation of a. The imaginary-time evolutions

(ITEs) of the involved Hamiltonians to exchange MZMs C and D. b. The setup to realize the ITE of H′′1 (needed only the term

of −σx2σx3 ). The state is initially prepared to be the ground state of H0 involving four spatial modes, which are represented by

the solid circles. After transferred by a beam displacer (BD30 with beams separated by 3.0 mm) with half-wave plates (HWPs)

operating on different spatial modes (not shown and the total operation is denoted as an thick arrow), and dissipated by a

polarization beam splitter (PBS), the output state remains four spatial modes. The ITE setups of H′′2 (needed only the term

of σx2σ
z
3σ
x
4 ), the second H′′1 (needed only the term of −σx2σx3 ) and the second H0 (needed only the term of σz3) are similar to

that of H′′1 with different operation of HWPs. c. The combination of HWPs and a quarter-wave plate (QWP) is used to realize

the real time evolution of H′′e with the operation as e−iπ/8σ
z
3 . d. The setup to implement the phase error with the operation

of (1 + σz)/2 and the flip error with the operation of (σyσy + σxσx)/2. Four of the eight output modes are preserved, which

corresponding to ITE operation of next Hamiltonian (not shown in the figure)

The experimental setup for the implementation of π/8 phase gate is shown in Fig. S13.

The thick arrows between the optical components represent the coupling between the po-

larisation and spatial modes by implementing half-wave plates (HWPs) on different spatial

modes. The ITE setups of H ′′1 , H ′′2 , the second H ′′1 and the second H0 are similar, which is

shown in Fig. S13b. The combination of HWPs and a quarter-wave plate (QWP) is used

to realize the real time evolution of H ′′e , which is shown in Fig. S13c. The setups to im-

8
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plement the phase error with the operation of (1 + σz)/2 and flip error with the operation

of (σyσy + σxσx)/2 are similar, which is shown in Fig. S13d. The phase error on site 4 is

implemented during the gate manipulation, while the flip error on sites (4, 5) and sites (3,

4) is implemented when both MZMs are positioned on site 3 (after the ITE operation of

H ′′2 ). Only four of the eight output modes are preserved after the error operation, which is

due to the ITE operation of the next Hamiltonian (not shown in the figure). The detailed

analysis can be found in sections ID-G.

C. The experimental setup for quantum process tomography

hh

vh

hv

vv

dh, rh

dv, rv

dd, dr, rd, rr

hd, hr

vd, vr
BD30 BD60 PBSHWP QWP

a b

c

BS

SPAD

F . S14 Experimental setup for the quantum process tomography. The final gate operations are reconstructed through

the quantum process tomography. Beam splitters (BSs) are used to send the photons to different measurement instruments.

Different beam splitters (BD30 with beams separated by 3.0 mm and BD60 with beams separated by 6.0 mm) are used to

reconstruct the interference between different spatial modes. Half-wave plates (HWPs), quarter-wave plates (QWPs) and

polarisation beam splitters (PBS) are used to rotate different bases. h, v, r and d represent the horizontal polarisation, vertical

polarisation, right-hand circular polarisation and diagonal polarisation, respectively. Finally, photons are detected using single-

photon avalanche detectors (SPADs). a. is used to detect the photons in the basis of {hh, hv, vh, vv}. b. is used to detect the

photons in the basis of {dr, rv, dh, rh} and {dd, dr, rd, rr}. c. is used to detect the photons in the basis of {hd, hr, vd, vr}.

In our experiment, we perform the quantum process tomography to reconstruct the

operations of different gates [34]. The experimental measurement basis is chosen to be

{hh, hv, vh, vv}. h, v, r and d represent the horizontal polarisation, vertical polarisation,

right-hand circular polarisation and diagonal polarisation, respectively. For each input state,

we need to reconstruct the final output state by two-qubit-state tomography with 16 mea-

surement configurations, as shown in Fig. S14a, b and c. To reconstruct the quantum

process, we need 16 different input states.
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F . S15 Experimental density matrices resulting from the (− π
4

)-phase gate operation. The measurement basis of I, X, Y and

Z represent the identity, σx, σy and σz operators, respectively. a. Real (Re) and b. Imaginary (Im) parts of the (−π
4

)-phase

gate operator.

D. More experimental results

The real and imaginary parts of the experimentally obtained density matrices of the

(−π
4
)-phase gate expressed in the logical basis {|00g〉, |11g〉} are shown in Figs. S15a and b.

The experimental fidelity is 93.44 ± 0.01%. The final density matrices obtained after the

action of the gate operators in the basis {|00g〉, |01g〉, |10g〉, |11g〉} are shown in Fig. S16.

The density matrix in the basis {|00g〉, |01g〉, |10g〉, |11g〉} obtained after the application of

the π
8
-phase gate in the presence of different errors, is shown in Fig. S17.

- p h a s e  g a t eH a d a m a r d  g a t e (−   ) - p h a s e  g a t eπ
4

π
8

F . S16 Experimental density matrices resulting from the gate operations in the full basis. a. Real (Re) and b. Imaginary

(Im) parts of the Hadamard gate operation. c. Real (Re) and d. Imaginary (Im) parts of the (−π
4

)-phase gate operation. e.

Real (Re) and f. Imaginary (Im) parts of the π
8

-phase gate operation.

We can demonstrate the Deutsch-Jozsa algorithm with the corresponding gates following

the process described in section IJ. First we prepare the input state |00g〉. If the opera-

tion in the box is the identity (constant function), the braiding operation of UAC (braiding

MZMs A and C) is implemented twice directly on the input state. The final state can

ig .
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F . S17 Experimental density matrices resulting from the π
8

-phase gate in the full basis. a. Real (Re) and b. Imaginary

(Im) parts of the π
8

-phase gate operation with phase error on site 4. c. Real (Re) and d. Imaginary (Im) parts of the π
8

-phase

gate operation with flip error on sites 4 and 5. e. Real (Re) and f. Imaginary (Im) parts of the π
8

-phase gate operation with

flip error on sites 3 and 4.
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Z00d

11g
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H I H

HR  H
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AB C D

AB C D

Y

11g

Zg00c
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F . S18 The state evolution in the Deutsch-Jozsa algorithm. The state evolutions in the Deutsch-Jozsa algorithm with

the initial state of |00g〉 are shown in c (Identity operation) and d (σz operation). Black dots are the theoretical predictions

and coloured dots are the corresponding experimental results. The braiding patterns of the four MZMs A, B, C and D that

correspond to the implementation of the Deutsch-Jozsa algorithm with Uf being the identity or the σz operation are shown in

a. and b., respectively.

be written as UACUAC|00g〉 = |11g〉, which corresponds to implementing the H · I · H gate

operations. If the operation in the box is σz (balanced function), the final state becomes

UACUCDUCDUAC|00g〉 = |00g〉, where UCD corresponds to the braiding of C and D. These

gate operations can be written as H · R2 · H. In this work, the output states, denoted as

ρec and ρeb for constant and balanced operations, respectively, are directly calculated from
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the experimentally reconstructed operators UAC and UCD. The state evolution during the

operation of the Deutsch-Jozsa algorithm are shown in Figs. S18c and d, where the black

dots and the coloured dots represent the corresponding theoretical and experimental results,

respectively. The corresponding braiding patterns with isolated MZMs A, B, C, and D are

shown in Figs. S18a and b. The final state fidelities are all very high, above 96%. The

demonstrated Deutsch-Josza algorithm show what is possible to do with the gates obtained

by the braiding of the MZMs and what the expected error would be.
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