Supplementary Information

Self-powered H_2 production with bifunctional hydrazine as

sole consumable

By Liu et al.

Supplementary Figure 1 | Schematic illustration of the preparation procedure of the Fe-doped CoS_2 nanosheets. SDS is sodium dodecyl sulfate. When no Fe^{2+} ions were introduced, pure $Co(OH)_2$ and then pure CoS_2 nanosheets were obtained.

Supplementary Figure 2 | TEM image of the Fe-doped Co(OH)₂ **nanosheets.** These Fe-doped Co(OH)₂ nanosheets are those mentioned in Supplementary Fig. 1. Scale bar, 50 nm.

Supplementary Figure 3 | XRD patterns of the Fe-doped and the pure $Co(OH)_2$ nanosheet precursors. Both of the two patterns can be unambiguously indexed to the standard $Co(OH)_2$, according to No. 74-1057 Powder Diffraction File (PDF). This indicates that the Fe content is low enough not to disturb the $Co(OH)_2$ crystal lattice of the Fe-doped $Co(OH)_2$.

Supplementary Figure 4 | XRD patterns of the pure CoS₂ nanosheets and the

Fe-CoS₂ ones, which are identical. Note that the red pattern here is the same one as

the black one in Fig. 1a.

Supplementary Figure 5 | Raman spectrum of the Fe-CoS $_{\rm 2}$ nanosheets. The Raman

bands at 314, 415, 435 and 478 $\rm cm^{-1}$ can be assigned to the $T_{g(1)},\,A_g,\,T_{g(2)}$ and $T_{g(3)}$ vibrational modes of CoS2 (ref. 1).

Supplementary Figure 6 | Additional AFM image of the $Fe-CoS_2$ nanosheets. The thickness values here, along with the four in Fig. 1c, d, give the average thickness and standard deviation to be 1.22 and 0.03 nm, respectively. Scale bar, 50 nm.

Supplementary Figure 7 | N₂-sorption isotherms and pore size distribution curves of the CoS₂ nanosheets and the Fe-CoS₂ ones. a N₂-sorption isotherms. b Pore size distribution curves. *P* is the pressure of N₂ in the sample cell of the analyzer instrument (see more details in Methods) when equilibrium is achieved, and *P*₀ is the saturation pressure of N₂ at the analysis temperature. The isotherms give the specific surface area values of CoS₂ and Fe-CoS₂ to be 25.3 and 27.2 m² g⁻¹, respectively. The two values are close to each other. The pore size distribution curves indicate the presence of micropores (<2 nm) and mesopores (2~50 nm) in both of CoS₂ and Fe-CoS₂. These findings confirm that the Fe doping did not change the morphology and structure of the nanosheets, which is consistent with the XRD (Fig. 1a and Supplementary Fig. 4), Raman (Supplementary Fig. 5), and HRTEM (Fig. 1f) results.

Supplementary Figure 8 | Dependences of the HER electrocatalytic current density (*j*) and overpotential (η) of the Fe-CoS₂ catalyst on the atomic percentage of Fe. The *j* and η values were measured in 1.0 M KOH at the working potential of – 0.1 V and the current density of 10 mA cm⁻², respectively. η_{10} denotes η measured at the current density of 10 mA cm⁻². Larger *j* and smaller η values indicate higher HER activities.

Supplementary Figure 9 | HER and HzOR performances of the Fe-CoS₂ nanosheets at different loadings. a, b HER polarization curves at different loadings (a) and the corresponding required η values for 10 mA cm⁻² (b) , in which η for 10 mA cm⁻² is denoted as η_{10} . c, d have the same meanings as a, b but for HzOR. E_{100} has the same meaning as that in the main text, which means the potential for 100 mA cm⁻². Note that the blue curves in Fig. 2a, d are redrawn here as the blue ones in a and c, respectively. The measurement conditions of a and c are the same as those of Fig. 2a, d, respectively. The results here show that when the loading increased, the η_{10} or E_{100} value initially decreased, reached the lowest point at 20 µg cm⁻² and then increased. These changes indicate that the HER and the HzOR performances of Fe-CoS₂ were the highest at 20 µg cm⁻². Thus, we used this loading for the HER and the HzOR experiments in the main text. In addition, the increase of η_{10} or E_{100} after 20 µg cm⁻² was possibly due to the slow electron-transfer kinetics caused by the over-loading of catalysts².

Supplementary Figure 10 | EIS plots at the applied potential of – 0.25 V. a EIS plots of 20 wt.% Pt/C. b EIS plots of the Fe-CoS₂ nanosheets. The EIS spectra give the charge transfer resistance (R_{ct}) values of Fe-CoS₂ to be 24.2 Ω (1.0 M KOH), 35.5 Ω (1.0 M PBS) and 39.2 Ω (0.5 M H₂SO₄) and those of Pt/C to be 47.3 Ω (1.0 M KOH), 56.4 Ω (1.0 M PBS) and 25.8 Ω (0.5 M H₂SO₄).

Supplementary Figure 11 | C_{dl} measurements corresponding to the HER and the HzOR experiments. a, b Cyclic voltammogram (CV) curves at the scan rates of 5, 10, 15, 20 and 25 mV s⁻¹ in the potential range without Faradaic processes for measuring C_{dl} of the CoS₂ nanosheets and the Fe-CoS₂ ones. The other measurement conditions are the same as those of the HER measurements in Fig. 2a. c Capacitive current (Δj) at – 0.02 V against the scan rate, in which the labeled C_{dl} values were

obtained by the linear fittings on the plots. The Δj values are from the curves in **a**, **b**. **d**–**f** have the same meanings as **a**–**c** but are corresponding to the HzOR measurements in Fig. 2d. The working potential corresponding to the Δj values in (f) is 0.05 V. By the C_{dl} values, the ECSA values of CoS₂ and Fe-CoS₂ were derived^{3–5} to be 683 and 900 cm², respectively, for the HER, and 817 and 1,200 cm², respectively, for the HzOR. The two pairs of ECSA values indicate the presence of more active surface areas on Fe-CoS₂ than on CoS₂, in a good agreement with the better HER and HzOR activities of Fe-CoS₂ than CoS₂ (Fig. 2a, d).

Supplementary Figure 12 | EIS plots of the Fe-CoS₂ nanosheets before and after the chronoamperometric measurements (namely the HER- and HzOR-stability experiments in Fig. 2c, f) at an open-circuit potential. a EIS plots before and after the HER chronoamperometric measurement. b EIS plots before and after the HzOR chronoamperometric measurement. The two spectra before and after the HER chronoamperometric stability test are almost identical to each other. So are the two before and after the HzOR chronoamperometric stability test. These results indicate that Fe-CoS₂ has stable electrocatalytic kinetics through the stability tests.

Supplementary Figure 13 | TEM images and XRD patterns of the Fe-CoS₂ nanosheets after the stability tests. a, b TEM image and XRD pattern after the HER-stability test. c, d TEM image and XRD pattern after the HzOR-stability test. Note that the black patterns in b and d are the same black one in Fig. 1a, the standard pattern of CoS₂ is added in blue in b and d, and they are redrawn here for comparison. Comparing these results and Fig. 1a, b shows that the Fe-CoS₂ nanosheets preserve the same structure and morphology before and after the

chronoamperometric experiments, indicating their structural stability. Scale bars in **a** and **c** are 50 nm.

Supplementary Figure 14 | Electrochemical performances of the Fe-CoS₂ nanosheets for HER. a, b HER polarization curves of 20 wt.% Pt/C, the pure CoS₂ nanosheets and the Fe-CoS₂ ones in 0.5 M H₂SO₄ and 1.0 M PBS. c, d Tafel plots corresponding to a, b. e, f Chronoamperometric curves recorded on the Fe-CoS₂ nanosheets for 40 h at a constant working potential of – 0.2 V for HER in 0.5 M H₂SO₄ and 1.0 M PBS. The insets in e and f are the HER polarization curves of the Fe-CoS₂

nanosheets before and after 10,000 potential cycles in 0.5 M H₂SO₄ and 1.0 M PBS, respectively. It should be noted that in 1.0 M PBS, Pt/C exhibited a typical 0 mV overpotential at the onset position, and its corresponding HER current density started to increase from 0 earlier and faster than that of Fe-CoS₂; but, when the applied potential was increased further, the increase rate of the HER current density of Pt/C was lower than that of Fe-CoS₂, due to the larger charge transfer resistance of Pt/C (see Supplementary Fig. 10 for details); thus, after the applied potential was larger than a critical value (that is, the HER current density was larger than a critical value), the HER current density of Fe-CoS₂ started to be larger than that of Pt/C. In contrast, in 0.5 M H₂SO₄, the charge transfer resistance of Fe-CoS₂ is larger than that of Pt/C (see Supplementary Fig. 10 for details), and thus its HER activities were always worse than those of Pt/C, as displayed in **a** here.

Supplementary Figure 15 | Actual H₂ yields catalyzed by the Fe-CoS₂ nanosheets at a constant j_{HER} of 50 mA cm⁻², and their linear fitting results. The error bars represent the standard deviations of the yields. The Faradaic efficiency (FE) of the Fe-CoS₂ nanosheets for the generation of H₂ during an HER process can be obtained from the H₂ yield using the formula FE (%) = $2n_{\text{H2}}$ / ($j_{\text{HER}}t$), where n_{H2} is the H₂ yield and *t* is the HER time⁶⁻⁸.

Supplementary Figure 16 | CV curves measured in different electrolytes. a–c CV curves of the Fe-CoS₂ nanosheets. d–f CV curves of Pt/C. By the curves in a–c here (see more details in Methods), the Q_s values of Fe-CoS₂ were measured to be 7.28 × 10^{-3} C cm⁻² (1.0 M KOH), 5.32 × 10^{-3} C cm⁻² (0.5 M H₂SO₄) and 6.44 × 10^{-3} C cm⁻² (1.0 M PBS). Thus, the *n* values of Fe-CoS₂ were calculated to be 7.54 × 10^{-8} mol cm⁻² (1.0 M KOH), 5.51 × 10^{-8} mol cm⁻² (0.5 M H₂SO₄) and 6.67 × 10^{-8} mol cm⁻² (1.0 M

PBS). Similarly, by the curves in **d**–**f** here, the Q_s values of Pt/C were measured to be 1.69×10^{-2} C cm⁻² (1.0 M KOH), 1.94×10^{-2} C cm⁻² (0.5 M H₂SO₄) and 1.20×10^{-2} C cm⁻² (1.0 M PBS). Thus, the *n* values of Pt/C were calculated to be 1.75×10^{-7} mol cm⁻² (1.0 M KOH), 2.01×10^{-7} mol cm⁻² (0.5 M H₂SO₄) and 1.24×10^{-7} mol cm⁻² (1.0 M PBS).

Supplementary Figure 17 | Comparison of the TOF values of different electrocatalysts for HER. a–d TOF values of the Fe-CoS₂ nanosheets (denoted by the black dots and highlighted by the light-green-coloured area) and other recent HER electrocatalysts (denoted by the color dots; their names are labeled) in 1.0 M KOH (a, b), 0.5 M H₂SO₄ (c) and 1.0 M PBS (d). b is an enlargement of the boxed area in a. Data adapted from: ref. 9 for NiCoP/NF; ref. 10 for Ru@C₂N; ref. 11 for NiCo₂P_x/CF; ref. 12 for Ni-Mo; ref. 13 for CoN_x/C; ref. 14 for N-MoS₂; ref. 15 for Ni₅P₄; ref. 16 for CoP/CC; ref. 17 for MoO_x/MoS₂; ref. 18 for FeS₂; ref. 19 for Co-30Ni-B; ref. 20 for H₂-Cocat.; ref. 21 for MoS₃.

Supplementary Figure 18 | Characterization of the pure FeS₂ **nanosheets. a** XRD pattern, in which the standard pattern of FeS₂ is added in red for comparison. **b** TEM image. **c** AFM image, in which the six values are the thickness values measured by the height profiles along the corresponding white lines. **d** Height profiles along four white lines in **c**, which are randomly selected as examples. The six values in **c** give an average of 1.31 nm and a standard deviation of 0.04 nm. Scale bars in **b** and **c** are 100 nm.

Supplementary Figure 19 | HzOR polarization curve of the pure FeS₂ nanosheets in 1.0 M KOH with 0.1 M hydrazine. The conditions to take this curve are the same as those for Fig. 2d. This curve shows that the FeS₂ nanosheets exhibited a potential of 428 mV for delivering the current density of 100 mA cm⁻² (namely E_{100} = 428 mV). This E_{100} value is significantly larger than those of CoS₂ (205 mV) and Fe-CoS₂ (129 mV), as shown in Fig. 2d. This comparison indicates the inferior HzOR activity of FeS₂.

Supplementary Figure 20 | HzOR polarization curves of the Fe-CoS₂ nanosheets in hydrazine with different concentrations, whose values are labeled in the panel. Note that the blue curve in Fig. 2d is redrawn here as the black one. The conditions to measure the HzOR polarization curves here are the same as those for Fig. 2d. For instance, the KOH concentration in the solutions containing hydrazine was always kept at 1.0 M, the same as that for Fig. 2d.

Supplementary Figure 21 | Optical images of the DHzFCs. a Optical image of the DHzFC with H_2O_2 as the oxidizing agent. b Optical image of the DHzFC with O_2 as the oxidizing agent.

Supplementary Figure 22 | P_{max} of the DHzFCs, whose anode and cathode were the Fe-CoS₂ nanosheets and 40 wt.% Pt/C, respectively, as a function of Fe-CoS₂ loadings. P_{max} has the same meaning as that in the main text, which is the maximum power density. The results here indicate that the best Fe-CoS₂ loading corresponding to the highest P_{max} value is 1.5 mg cm⁻² for the DHzFCs with O₂ or H₂O₂ as the oxidizing agent.

Supplementary Figure 23 | Current density-voltage (*j*-V) and current densitypower density (*j*-P) curves of three DHzFCs. The three DHzFCs use the Fe-CoS₂ nanosheets, the CoS₂ nanosheets and 40 wt.% Pt/C as the anodes and 40 wt.% Pt/C as the cathodes, in which the oxidizing agents are all air.

Supplementary Figure 24 | OHzS performances of the Fe-CoS₂ nanosheets with different loadings. a OHzS polarization curves at different loadings. b Required cell voltage for 500 mA cm⁻², corresponding to a. Note that the blue curve in Fig. 4a is redrawn here as the blue one in a. The results here indicate that the best Fe-CoS₂ loading corresponding to the highest OHzS performance (namely the lowest voltage for 500 mA cm⁻²) is 0.5 mg cm⁻².

Supplementary Figure 25 | Polarization curve of the $Fe-CoS_2$ nanosheets for overall water splitting. During collecting the curve, the $Fe-CoS_2$ nanosheets worked bifunctionally for overall water splitting in 1.0 M KOH.

Supplementary Figure 26 | Optical image of a self-powered H₂ production system.

This self-powered H_2 production system integrates a DHzFC and an OHzS unit.

Supplementary Figure 27 | Performances of the self-powered H₂ production system with the Fe-CoS₂ nanosheets at different hydrazine concentrations at 0.7 V. a H₂ production rates at different hydrazine concentrations. b Generated amounts of H₂ and N₂ in the system with 0.1 M hydrazine, in which the error bars represent the standard deviations of the amounts. The linear relationship in b gives the H₂ production rate to be 0.47 mmol h⁻¹. The result in a shows that when the hydrazine concentration increased from 0.1 to 5.6 M, the H₂ production rate exhibited an initial value of 0.47 mmol h⁻¹, then increased and finally became saturated at 5.3–5.6 M. The saturated value is 9.95 mmol h⁻¹, corresponding to Fig. 4d.

Supplementary Figure 28 | Voltage-time (V-t) curve of the self-powered H₂ production system. This self-powered H₂ production system integrates a DHzFC and an OHzS unit.

Supplementary Figure 29 | Calculated free-energy diagrams of HER at 0 V vs RHE. a Free-energy diagram of HER on the Co site of the Fe-CoS₂ surface. **b** Free-energy diagram of HER on the Fe site of the Fe-CoS₂ surface. The insets in **a** and **b** are the atomic configurations of H^{*} adsorbed on the Co and the Fe sites, respectively, of the Fe-CoS₂ surface. The ΔG_{H^*} value on the Co site was calculated to be +0.15 eV, smaller than that on the Fe site (+0.35 eV), suggesting that the atomic configuration of H^{*} adsorbed on the Co site is more stable than on the Fe site.

Supplementary Figure 30 | Co K-edge XANES spectra of the pure CoS₂ nanosheets

and the Fe-CoS₂ ones. The white line means the first peak after absorption edge.

Supplementary Figure 31 | XRD pattern of the Fe-CoS₂ nanosheets. These Fe-CoS₂

nanosheets have the Fe doping content of 9.5 at.%.

Supplementary Figure 32 | Calculated free-energy diagrams of HzOR at 0 V vs RHE. a Free-energy diagram of HzOR on the Co site of the Fe-CoS₂ surface. b Free-energy diagram of HzOR on the Fe site of the Fe-CoS₂ surface. The insets in a and b are the N_2H_4 and N_2 molecular models and the atomic configurations of the intermediates adsorbed on the Co and the Fe sites, respectively, of the Fe-CoS₂ surface. The ΔG value of PDS on the Co site was calculated to be +0.74 eV, larger than that on the Fe site (+0.56 eV), suggesting that the atomic configurations of intermediates on the Fe site are more stable than on the Co site.

Supplementary Figure 33 | Free energy diagram of HzOR on the FeS₂ surface at 0 V vs RHE. The insets are the N_2H_4 and N_2 molecular models and the most stable configurations of the intermediates adsorbed on the FeS₂ surface.

Supplementary Figure 34 | Free energy diagram of HzOR on the CoS_2 surface at 0 V vs RHE. The insets are the N_2H_4 and N_2 molecular models and the most stable configurations of the intermediates adsorbed on the CoS_2 surface.

Supplementary Figure 35 | EIS plots recorded in different electrolytes by using the **Fe-CoS₂ nanosheets at an open-circuit potential.** The EIS spectra give the solution resistances to be 7.4 Ω (1.0 M KOH), 9.0 Ω (0.5 M H₂SO₄), 13.9 Ω (1.0 M PBS) and 7.9 Ω (1.0 M KOH with 0.1 M hydrazine), respectively.

Supplementary Figure 36 | OHzS polarization curve of the Ni foams in 1.0 M KOH with 0.1 M hydrazine. This curve shows that the Ni foams required a cell voltage of 1.20 V to achieve the OHzS current density of 10 mA cm⁻². This cell voltage is much higher than that of Fe-CoS₂ (0.002 V) for 10 mA cm⁻², which is shown in Fig. 4a. Moreover, when the cell voltage was 0.002 V, the current density of the Ni foams was – 0.01 mA cm⁻², far lower than that of Fe-CoS₂ (10 mA cm⁻²). That is, if we use the 10 mA cm⁻² of Fe-CoS₂ as a reference, the – 0.01 mA cm⁻² of the Ni foams is very close to zero. Besides, the negative sign of the – 0.01 mA cm⁻² indicates that the OHzS did not occur at that moment. Therefore, Ni foams gave a negligible contribution to the observed OHzS activity of Fe-CoS₂ on Ni foams.

Supplementary Table 1 | HER catalytic performances in our work and the literature.

Catalyst	Electrolyte	η ₁₀ (mV)	Durability	Reference	
Mac	0.5 M H ₂ SO ₄	142	11 h	Nat Cammun 2015 ((512)	
MOCx	1.0 M KOH	151	11 h	Nat. Commun. 2015, 6, 6512	
	0.5 M H ₂ SO ₄	68	50,000 s		
Mo _x C-Ni@NCV	1.0 M KOH	126	10,000 s	J. Am. Chem. Soc. 2015, 137, 15753	
СоР	0.5 M H ₂ SO ₄	65	5,000 cycles		
	1.0 M PBS	106	1,000 cycles	J. Am. Chem. Soc. 2014, 136, 7587	
	1.0 M KOH	209	1,000 cycles		
CoS₂@NSC/CFP	DS2@NSC/CFP 0.5 M H ₂ SO ₄ 95 1,000 cycles		1,000 cycles	ChemCatChem 2017 , 10, 796	

MoS ₂ /CoS ₂	0.5 M H ₂ SO ₄	87	1,000 cycles	J. Mater. Chem. A 2015, 3, 22886
CoS ₂ /P	0.5 M H ₂ SO ₄	67	3,000 cycles	Chem. Commun. 2015, 51, 14160
CoS ₂	0.5 M H ₂ SO ₄	107	3,000 cycles	Green Energy Environ. 2017, 2, 134
CoS₂/RGO-CNT	0.5 M H ₂ SO ₄	142	500 cycles	Angew. Chem. 2014, 126, 12802
CoS ₂ NW	0.5 M H ₂ SO ₄	145	41 h	J. Am. Chem. Soc. 2014, 136, 10053
N _s -V _s -CoS ₂	0.5 M H ₂ SO ₄	57	10,000 cycles	ACS Energy Lett. 2017, 2, 1022
CoS ₂ pyramids	1.0 M KOH	244	30,000 s	Electrochimica Acta 2014, 148, 170
CoS₂ NA/Ti	1.0 M KOH + 0.3 M Urea	140	15,000 cycles	Electrochimica Acta 2017, 246, 776
Ni(OH)2-CoS2	1.0 M KOH	99	30 h	Nanoscale 2017, 9, 16632
Ni ₅ P ₄ -Ni ₂ P-NS	0.5 M H ₂ SO ₄	120	72 h	Angew. Chem. Int. Ed. 2015, 54, 8188
NiSe/NF	1.0 M KOH	96	12 h	Angew. Chem. Int. Ed. 2015, 54, 9351

Ni ₃ S ₂ /NF	neutral media	170	200 h	J. Am. Chem. Soc. 2015, 137, 14023
p-1T-MoS ₂	0.5 M H ₂ SO ₄	5 M H ₂ SO ₄ 153		J. Am. Chem. Soc. 2016, 138, 7965
α-iron-nickel sulfide	0.5 M H ₂ SO ₄	105	40 h	J. Am. Chem. Soc. 2015, 137, 11900
	0.5 M H ₂ SO ₄	41	10,000 cycles	
CoMoP@C	alkaline electrolyte	81		Energy Environ. Sci. 2017, 10, 788
	neutral electrolyte	526 @ 50 mA cm ⁻²	24 h	
NiCo₂P _x /CF	0.5 M H ₂ SO ₄	104	5,000 cycles	
	1.0 M KOH	58		Adv. Mater. 2017, 29, 1605502
	1.0 M PBS	63	30 h	
CoP@BCN-1	0.5 M H ₂ SO ₄	87		Adv. Energy Mater. 2017, 7, 1601671
	1.0 M KOH	215	2,000 cycles	
	1.0 M PBS	122		

Co/CoP _x	0.5 M H ₂ SO ₄	178			
	1.0 M KOH	253	12 h	Adv. Energy Mater. 2017, 7, 1602355	
	1.0 M PBS	138			
HNDCM-Co/CoP	0.5 M H ₂ SO ₄	135	20 h		
	1.0 M KOH	138	20 11	ACS NUHU 2017, 11, 4358	
Ru@C₂N	0.5 M H ₂ SO ₄	22	10.000 sucles	Nat Nanotock 2017 12 441	
	1.0 M KOH	17	- 10,000 cycles	Nat. Naholech. 2017, 12, 441	
	1.0 M H ₂ SO ₄	23	16 h	Energy Environ Coi 2015 8 1027	
NI ₅ P4 pellet	1.0 M NaOH	49	1011	Energy Environ. Sci. 2015, 8, 1027	
ONPPGC/OCC	0.5 M H ₂ SO ₄	386	10 h	Energy Environ. Sci. 2016, 9, 1210	
	1.0 M KOH	446			
	0.2 M PBS	352 @ 1 mA cm ⁻²			

Ni-C-N NSs	0.5 M H ₂ SO ₄	60.9	70 h		
	1.0 M KOH	30.8	70 h	J. Am. Chem. Soc. 2016, 138, 14546	
	1.0 M PBS	92.1	70 h		
Pt/C	0.5 M H ₂ SO ₄	11			
	1.0 M KOH	23	-	This work	
	1.0 M PBS	44			
	0.5 M H ₂ SO ₄	31	10.000 cvcles		
Fe-CoS ₂ nanosheets	1.0 M KOH	40	-,,		
	1.0 M PBS	49	40 h		

 η_{10} is η at 10 mA cm⁻² except those specified else.

Catalyst	Electrolyte	TOF (s ⁻¹) at η = 100 mV	TOF (s ⁻¹) at η = 200 mV	Reference	
	0.5 M H ₂ SO ₄	0.44	6.67		
Ni-C-N NSs	1.0 M PBS	0.29	0.95	J. Am. Chem. Soc. 2016, 138, 14546	
	1.0 M KOH	1.95	8.52		
CoNx/C	0.5 M H ₂ SO ₄	0.39	6.5	Nat. Commun. 2015, 6, 7992	
Ni ₂ P	Ni₂P 0.5 M H ₂ SO ₄		0.5	J. Am. Chem. Soc. 2013, 135, 9267	
СоР	CoP 0.5 M H ₂ SO ₄		-	Angew. Chem. Int. Ed. 2014, 53, 5427	
Ni-Mo 2.0 M KOH 0.05		0.05	0.36	ACS Catal. 2013, 3, 166	
FeP/Ti 0.5 M H ₂ SO ₄ 0.277		-	ACS Nano 2014, 8, 11101		
FeS ₂	FeS2 0.1 M PBS 0.04 (140 mV)		-	ACS Catal. 2015, 5, 6653	

N-MoS ₂ -3	0.5 M H ₂ SO ₄	4	-	Adv. Energy Mater. 2017, 7, 1602086
Ni-MoS ₂	0.5 M H ₂ SO ₄	30.9 (650 mV)	60.3 (740 mV)	ACS Catal. 2016, 6, 6008
p-1T-MoS ₂	0.5 M H ₂ SO ₄	0.5 (153 mV)	-	J. Am. Chem. Soc. 2016, 138, 7965
Irradiated Au-MoS ₂	0.5 M H ₂ SO ₄	8.76 (300 mV)	-	J. Am. Chem. Soc. 2015, 137, 7365
CoS	0.5 M H ₂ SO ₄ 0.39		-	J. Mater. Chem. A 2015, 3, 13066
MoS ₂	MoS ₂ 0.5 M H ₂ SO ₄ _		0.725 (300 mV)	Adv. Mater. 2013, 25, 5807
NiCoP/rGO	NiCoP/rGO 0.5 M H ₂ SO ₄ 1.70		-	Adv. Funct. Mater. 2016, <i>26,</i> 6785
NiCoP/NF	NiCoP/NF 1.0 M KOH 8.93		3.88 (300 mV)	Nano Lett. 2016, 16, 7718
Ni₂P/Ni/NF	Ni₂P/Ni/NF 1.0 M KOH		0.015 (350 mV)	ACS Catal. 2016, 6, 714
1D-RuO₂-CN_x 0.5 M H ₂ SO ₄ -		0.0961 (350 mV)	ACS Appl. Mater. Interfaces 2016 , <i>8</i> , 28678	
NiWS _x	neutral solution	-	0.12 (275 mV)	Energy Environ Sci. 2013, 6, 2452

Ni-MoS ₂	1 M KOH	-	0.32 (150 mV)	Energy Environ Sci. 2016, <i>9,</i> 2789	
Ni₅P₄ pellet –	1.0 M H ₂ SO ₄	3.5	9.8	Energy Environ Sci 2015 8 1027	
	1.0 M KOH	0.79 2.9		Ellergy Ellviroll. Sci. 2015 , 8, 1027	
	0.5 M H ₂ SO ₄	0.021			
NiCo₂P _x /CF	1.0 M KOH	0.056	-	Adv. Mater. 2017 , <i>29,</i> 1605502	
	1.0 M PBS	0.055			
	0.5 M H ₂ SO ₄	0.26 (400 mV)	1.34 (500 mV)		
CoS ₂ nanosheets	1.0 M KOH	0.23 (400 mV)	1.12 (500 mV)		
	1.0 M PBS 0.16 (400 mV)		0.69 (500 mV)	This work	
Fe-CoS ₂ nanosheets	0.5 M H ₂ SO ₄	4.76	15.14		
	1.0 M KOH	6.74	20.35		
	1.0 M PBS	2.21	7.34		

Sup	plementary	Table 3	HzOR catal	vtic	performances	in our	work and	the literat	ture.
Jup	prementary		112ON Catal	yuu	periormances	iii Oui	work and	the interat	uic.

Catalyst	Electrolyte	<i>E</i> ₁₀₀ (V vs RHE)	Durability	Reference
FePc	0.2 M KOH + (-) N2H4	~ 0.35	5,000 cycles	Talanta 2005, 67, 162
NiHCF	0.1 M NaNO ₃ + (-) N ₂ H ₄	1 M NaNO ₃ + (-) N ₂ H ₄ 0.5 100 cycles		J. Electroanal. Chem. 2008, 617, 111
PEDOP	3.0 M NaCl + (-) N ₂ H ₄	3.0 M NaCl + (-) N ₂ H ₄ $-^{a}$ 240,000 s $\begin{cases} Sens. Actual 246 \end{cases}$		Sens. Actuators B: Chem. 2011, 153, 246
Pd/CNTs	Pd/CNTs $\begin{array}{c} 0.01 \text{ M } N_2H_4SO_4 + 0.1 \text{ M} \\ K_2SO_4 + (-) N_2H_4 \end{array}$		1,800 s	<i>Electrochem. Commun.</i> 2009, <i>11,</i> 504
PANI-Ag	PANI-Ag 0.5 M HCl + 5×10 ⁻⁴ M N ₂ H ₄ ~ 1		-	Colloid. Surf. A 2011, 377, 28
Cu nanoparticles	Cu nanoparticles 0.1 M KOH + 0.01 M N ₂ H ₄ ~ 0.5 100 c		100 cycles	J. Mater. Chem. A 2014, 2, 4580
SiAl/SiPy/FeTsP	0.5 M KCl + 2×10^{-3} M N ₂ H ₄ ~ 0.4 100		100 cycles	Electroanalysis 2005, 17, 9

CoHCF(Au)	0.1 M KNO ₃ + 2.5×10 ⁻⁴ M N ₂ H ₄	~ 0.7	-	Electrochim. Acta 2014, 139, 88
CoHCF	$0.5 \text{ M NaCl} + 5 \times 10^{-4} \text{ M N}_2 \text{H}_4$	-	15 cycles	J. Solid State. Electrochem. 1998, 2, 30
PPy/LS	$PBS + 5 \times 10^{-4} M N_2 H_4$	-	1,200 s	J. Electroanal. Chem. 2016, 9, 3143
n-Ag/POT	0.1 M NaOH + 0.02 M N ₂ H ₄ -		400,000 s	J. Solid State. Electrochem. 2015, 19, 2235
3D PNNF	3.0 M KOH + 0.5 M N ₂ H ₄	N ₂ H ₄ ~ 0.125 12,000 s Nano. Res. 2		Nano. Res. 2015, <i>8</i> , 3365
Pd-NWNWs	Ws 0.1 M HClO ₄ + (-) N ₂ H ₄ ~ 0.35 6,		6,000 s	Electrochim. Acta 2015, 176, 125
FeN₄	0.2 M NaOH + (-) N ₂ H ₄	~ 0.4 -		Electrochem. Commun. 2013, 30, 34
AuCu NPs	IPs 0.1 M PBS + 3×10^{-4} M N ₂ H ₄ ~ 0.2		-	Electroanlysis 2012, 24, 2380
Ru(HCF)	Britton–Robinson aqueous buffer solution (pH=1.8) + 10 ⁻³ M N ₂ H ₄	~ 0.96	-	J. Appl. Electrochem. 2010, 40, 375

Ni ₂ P/NF	1.0 M KOH + 0.5 M N ₂ H ₄	– 0.025 (50 mA cm ⁻²)	10 h	Angew. Chem. Int. Ed. 2017, 56, 842
Ni _{0.6} Co _{0.4} -ANSA	3.0 M KOH + 0.5 M N ₂ H ₄	~– 1 (V vs SCE)	10,000 s	Adv. Sci. 2017, 4, 1600179
Cu film	3.0 M KOH + 1.0 M N ₂ H ₄	~– 0.65 (V vs SCE)	5,000 s	Adv. Mater. 2015, 27, 2361
Pt (111)	0.1 M HClO ₄ + 0.001 M NaCl + 0.01 M N ₂ H ₄	~ 0.45	-	ChemElectroChem 2017, 4, 1130
Pt/C		0.170	-	
CoS ₂ nanosheets	1.0 M KOH + 0.1 M N ₂ H ₄	0.205	_	This work
Fe-CoS ₂ nanosheets		0.129	40 h	

 E_{100} is E at 100 mA cm⁻² except those specified else.

^a All of "-" mean that no values were reported for the corresponding parameters in the corresponding references.

Supplementary Table 4 | DHzFC performances in our work and the literature.

Catalyst	Anodic fuel	P _{max} (mW cm ^{−2})	OCV (V)	Reference
Vap-PM-CNF	4.0 M KOH + 4.0 M N ₂ H ₄	127.5 (60 °C)	~ 0.92 (N ₂ H ₄ /O ₂)	Angew. Chem. Int. Ed. 2017, 56, 13513
Со	1.0 M KOH + 0.67 M N ₂ H ₄	-	~0.97 (N ₂ H ₄ /O ₂)	Angew. Chem. Int. Ed. 2007, 46, 8024
Ni _{0.6} Co _{0.4} -ANSA	4.0 M KOH + 20 wt.% N ₂ H ₄	107.1 (85 °C)	1.78 (N ₂ H ₄ /H ₂ O ₂)	Adv. Sci. 2017, 4, 1600179
Co@Au/C	2.0 M NaOH + 2.0 M N ₂ H ₄	122.8 (60 °C)	1.79 (N ₂ H ₄ /H ₂ O ₂)	Int. J. Hydrogen Energy 2017, 42, 15623
Pd-Ni/C	1.0 M KOH + 2.0 M N ₂ H ₄	~160 (60 °C)	- (N ₂ H ₄ /O ₂)	J. Power. Sources 2011, 196, 956
CoN _x /C	1.0 M NaOH + 4.0 M N ₂ H ₄	110 (70 °C)	~0.94 (N ₂ H ₄ /O ₂)	J. Mater. Chem. 2010, 20, 8139

Zr-Ni alloy	4.0 M NaOH + 2.0 M N_2H_4	84 (25 °C)	~0.9 (N ₂ H ₄ /O ₂)	J. Power. Sources 2008, 182, 520
NPGLs	4.0 M NaOH + 10 wt.% N_2H_4	195 (80 °C)	1.20 (N ₂ H ₄ /H ₂ O ₂)	Sci. Rep. 2012, 2 ,941
Cu film	4.0 M KOH + 20 % N ₂ H ₄	160.8 (80 °C)	~ 1.0 (N ₂ H ₄ /O ₂)	Adv. Mater. 2015, 27, 2361
Со-РРу/С	1.0 M KOH + 5 wt.% N ₂ H ₄	75 (50 °C)	0.73 (N ₂ H ₄ /air)	<i>J. Electrochemical. Soc.</i> 2014 , <i>161,</i> F889
Fe-CoS₂ nanosheets	4.0 M KOH + 20 wt.% N ₂ H ₄	246 (80 °C)	1.80 (N ₂ H ₄ /H ₂ O ₂)	This work
		125 (80 °C)	1.03 (N ₂ H ₄ /O ₂)	

Supplementary Table 5 | OHzS performances in our work and the literature

Bifunctional catalysts	Electrolyte	Cell Voltage	Reference	
CoS ₂ /TiM	1.0 M KOH + 0.1 M N ₂ H ₄	0.81 V at $j = 100 \text{ mA cm}^{-2}$	New J. Chem. 2017, 41, 4754	
Ni ₂ P/NF	1.0 М КОН + 0.5 М N ₂ H ₄	~ 0.45 V at $j = 100 \text{ mA cm}^{-2}$	Angew. Chem. Int. Ed. 2017, 56, 842	
CoP/TiM	1.0 M KOH + 0.1 M N ₂ H ₄	0.2 V at $j = 10 \text{ mA cm}^{-2}$	ChemElectroChem 2017, <i>4,</i> 481	
FeP NA/NF	1.0 М КОН + 0.5 М N ₂ H ₄	0.5 V at $j = 125 \text{ mA cm}^{-2}$	ChemistrySelect 2017, <i>2,</i> 3401	
Cu₃P/CF	1.0 M KOH + 0.5 M N ₂ H ₄	0.72 V at $j = 100 \text{ mA cm}^{-2}$	Inorg. Chem. Front. 2017, 4, 420	
Fe-CoS₂ nanosheets	1.0 M KOH + 0.1 M N ₂ H ₄	0.61 V at $j = 100 \text{ mA cm}^{-2}$		
		0.95 V at <i>j</i> = 500 mA cm ⁻²	This work	
	1.0 M KOH + 0.5 M N ₂ H ₄	0.26 V at $j = 100 \text{ mA cm}^{-2}$		
		0.42 V at $j = 500 \text{ mA cm}^{-2}$		

Supplementary References

- Zhang, J., Xiao, W., Xi, P., Xi, S., Du, Y., Gao, D. & Ding, J. Activating and optimizing activity of CoS₂ for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies. ACS Energy Lett. 2, 1022–1028 (2017).
- Zhao, S., Jin, R., Song, Y., Zhang, H., House, S. D., Yang, J. C. & Jin, R. Atomically precise gold nanoclusters accelerate hydrogen evolution over MoS₂ nanosheets: the dual interfacial effect. *Small* 13, 1701519 (2017).
- Zhang, L., Han, L. L., Liu, H. X., Liu, X. J. & Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. *Angew. Chem. Int. Ed.* 56, 13694–13698 (2017).
- Li, H., Chen, S., Jia, X., Xu, B., Lin, H., Yang, H., Song, L. & Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. *Nat. Commun.* 8, 15377 (2017).
- Tang, C., Zhang, R., Lu, W., Wang, Z., Liu, D., Hao, S., Du, G., Asiri, A. M. & Sun, X. Energy-saving electrolytic hydrogen generation: Ni₂P nanoarray as a high-performance non-noble-metal electrocatalyst. *Angew. Chem. Int. Ed.* 56, 842–846 (2017).
- Zhang, J. & Dai, L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. *Angew. Chem. Int. Ed.* 55, 13296–13300 (2016).

- Yang, J., Wang, X., Li, B., Ma, L., Shi, L., Xiong, Y. & Xu, H. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. *Adv. Funct. Mater.* 27, 1606497 (2017).
- Yin, J., Li, Y., Lv, F., Lu, M., Sun, K., Wang, W., Wang, L., Cheng, F., Li, Y., Xi, P. & Guo, S. Oxygen vacancies dominated NiS₂/CoS₂ interface porous nanowires for portable Zn–air batteries driven water splitting devices. *Adv. Mater.* 29, 1704681 (2017).
- Liang, H., Gandi, A. N., Anjum, D. H., Wang, X., Schwingenschlögl, U. & Alshareef,
 H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting.
 Nano Lett. 16, 7718–7725 (2016).
- Mahmood, J., Li, F., Jung, S.-M., Okyay, M. S., Ahmad, I., Kim, S.-J., Park, N., Jeong,
 H. Y. & Baek, J.-B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. *Nat. Nanotech.* 12, 441 (2017).
- Zhang, R., Wang, X., Yu, S., Wen, T., Zhu, X., Yang, F., Sun, X., Wang, X. & Hu, W. Ternary NiCo₂P_x nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. *Adv. Mater.* **29**, 1605502 (2017).
- McKone, J. R., Sadtler, B. F., Werlang, C. A., Lewis, N. S. & Gray, H. B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. *ACS Catal.* 3, 166–169 (2013).
- Liang, H.-W., Brüller, S., Dong, R., Zhang, J., Feng, X. & Müllen, K. Molecular metal–N_x centres in porous carbon for electrocatalytic hydrogen evolution. *Nat. Commun.* 6, 7992 (2015).
- 14. Xiao, W., Liu, P., Zhang, J., Song, W., Feng, Y. P., Gao, D. & Ding, J. Dual-functional **57** / **59**

N dopants in edges and basal plane of MoS₂ nanosheets toward efficient and durable hydrogen evolution. *Adv. Energy Mater.* **7**, 1602086 (2017).

- 15. Laursen, A. B., Patraju, K. R., Whitaker, M. J., Retuerto, M., Sarkar, T., Yao, N., Ramanujachary, K. V., Greenblatt, M. & Dismukes, G. C. Nanocrystalline Ni₅P₄: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. *Energy Environ. Sci.* **8**, 1027–1034 (2015).
- Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. *Angew. Chem. Int. Ed.* 53, 5427–5430 (2014).
- Cummins, D. R., Martinez, U., Kappera, R., Voiry, D., Martinez-Garcia, A., Jasinski, J.; Kelly, D., Chhowalla, M., Mohite, A. D., Sunkara, M. K. & Gupta, G. Catalytic activity in lithium-treated core–shell MoO_x/MoS₂ nanowires. *J. Phys. Chem. C* 119, 22908–22914 (2015).
- Jasion, D., Barforoush, J. M., Qiao, Q., Zhu, Y., Ren, S. & Leonard, K. C.
 Low-dimensional hyperthin FeS₂ nanostructures for efficient and stable hydrogen evolution electrocatalysis. ACS Catal. 5, 6653–6657 (2015).
- Gupta, S., Patel, N., Fernandes, R., Kadrekar, R., Dashora, A., Yadav, A. K., Bhattacharyya, D., Jha, S. N., Miotello, A. & Kothari, D. C. Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. *Appl. Catal. B: Environ.* **192**, 126–133 (2016).
- 20. Lee, R.-L., Tran, P. D., Pramana, S. S., Chiam, S. Y., Ren, Y., Meng, S., Wong, L. H. & Barber, J. Assembling graphitic-carbon-nitride with cobalt-oxide-phosphate to

construct an efficient hybrid photocatalyst for water splitting application. Catal.

Sci. Tech. 3, 1694–1698 (2013).

21. Li, Y., Yu, Y., Huang, Y., Nielsen, R. A., Goddard, W. A., Li, Y. & Cao, L. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. *ACS Catal.* **5**, 448–455 (2015).