Supporting information

Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS

Carolin Hacker, Xiaofeng Cai et al.

Supplementary Figures

Supplementary Figure 1. Selected examples for proposed biosynthetic pathways of selected RXPs produced by Kj12B and Kj12C from *Xenorhabdus stockiae* KJ12.1.

Supplementary Figure 2. Alignment of selected NRPS-^cDD and -^NDDs identified by BLASTP search using Kj12C-^NDD as query sequence. Secondary structural elements are indicated below. Arrows indicate key residue positions in charge of mediating ^CDD-to- ^NDD specific interaction as part of an anti-parallel β -sheet secondary structure arrangement. **a**, Alignment of Xenorhabdus RXP NRPS-DDs (CabCD, *X. cabanillasii*; VietABC, *X. vietnamensis*)¹ **b**, Alignment of closely related but non-RXP NRPS-^CDDs and -^NDDs from *Xenorhabdus* strains showing similar structures as Kj12C-^NDD connecting NRPS subunits carrying C-terminal epimerization (E) to N-terminal condensation (C) domains. PrtAB from *X. doucetiae*; Xma, *X. mauleonii*; Xin, *X. innexii*; and Xst, *X. stockiae*², TxIAB (TaxIllaid)³. The consensus alignment is depicted above the alignment sequences with a $\geq 75\%$ threshold implemented. Alignments were performed using the multiple alignment program MUSCLE (default parameters)^{4,5}.

Supplementary Figure 3. Kj12C-^NDD is a monomeric protein. a, the different size exclusion chromatography runs on a HiPrep 16/60 Sephacryl S-100 column (GE Healthcare) in 50 mM NaPP pH6.5 with 100 mM NaCl. For comparison with the 7.3 kDa Kj12C-^NDD (magenta) two larger monomeric proteins were used (Nisl₂₋₂₂₆ 25.8 kDa in dark gray and Nisl₉₇₋₂₂₆ 14.6 kDa in light gray.⁶ **b**, size exclusion chromatography with multi angle light scattering of Kj12C-^NDD in the same buffer as in (a) on a Superdex 75 10/300 GL column (GE Healthcare) with a calculated MW of 7.189 kDa.

Supplementary Figure 4. N-terminal docking domains have the same three-dimensional structure. a, Structure based sequence alignment of the TubC-^NDD and the N-terminal docking domains of Ki12A-C. Identical residues are highlighted with dark grey boxes and residues with similar chemical properties are shown in *light grey boxes*. The secondary structure based on structural information for TubC-^NDD and Ki12C-^NDD are indicated above and below the sequence. b, Solution structure bundle of the 19 lowest energy conformers and the regularized mean structure for Kj12A-^NDD (blue), Kj12B-^NDD (green) and Kj12C-^NDD (magenta). c, Cartoon representations of the energy minimized mean structures of Ki12A-C ^NDDs with the same color-coding as in b rotated by 90°. **d**, Electrostatic surface potentials of each ^NDD mapped on the solvent accessible surfaces in the same orientation as in b with negatively charged surface areas coloured in red, positively charged areas coloured in blue and *white* areas corresponding to hydrophobic surfaces. **e**, Overlay of the energy minimized mean structure of Kj12-^NDD from this work (magenta) with one monomer of the TubC-^NDD structure (PDB code 2jug).⁷ f, Overlay of the energy minimized mean structure of Kj12C-^NDD from this work (magenta) with the crystal structure of the monomeric EpoBcy with the Nterminal docking domain in light grey (PDB code 5t81 chain A).⁸

Supplementary Figure 5. ¹**H**, ¹⁵**N-HSQC spectra of docking domain titration. a**, 100 µM ¹⁵N labeled Kj12A-^NDD (left), Kj12B-^NDD (middle) and Kj12C-^NDD (right) with increasing amounts of ¹⁴N Kj12A-^CDD (50 µM yellow, 100 µM light orange, 300 µM dark orange, 500 µM red, and 1000 µM dark red, not every step was recorded for all ^NDDs. Direction of peak shifting is indicated with arrows for some peaks. Possible bound state peaks are indicated with asterisk. b, 100 µM ¹⁵N labeled Kj12A-^NDD (left), Kj12B-^NDD (middle) and Kj12C-^NDD (right) with increasing amounts of ¹⁴N Kj12B-^CDD (25 µM yellow, 50 µM light orange, 100 µM dark orange, 250 µM red, and 500 µM dark red, not every step was recorded for all ^NDDs. The directions of peak shifts are indicated with arrows for some peaks. For Kj12A-^NDD and Kj12B-^NDD peaks in intermediate exchange are indicated with blue residue numbers for those peaks where the bound state could not be assigned unambigiously. Putative bound state peaks are indicated with asterisks. For Kj12C-^NDD all bound state peaks could be assigned in comparison with the spectrum of the two covalently linked domains (Kj12C-^NDD-12xGS-Kj12B-^CDD).

Supplementary Figure 6. Histogram of the chemical shift differences of the N-terminal docking domains of Kj12A, Kj12B and Kj12C upon addition of 5 equivalents of Kj12B-^CDD (**a**-**c**) and Kj12A-^CDD (**d**-**f**).

Supplementary Figure 7. Large chemical shift changes of docking domain titrations mapped on ^NDD structures. Large chemical shift changes upon addition of unlabeled Kj12A-^CDD in 10-fold excess mapped onto the structures of ^NDDs (upper panel) and of Kj12B-^CDD in 5-fold excess mapped onto the structures of ^NDDs (lower panel), unassigned residues are indicated in black.

Supplementary Figure 8. Docking domain titrations with ITC. ITC thermograms and the derived binding curves for titrations of 50 M ^NDDs in 50 mM NaPP_i pH 6.5, 100 mM NaCl with ^CDDs. The K_ds for Kj12A-^CDD could not be measured reliably with ITC due to the low binding affinities (upper panel). The K_ds for Kj12B-^CDD were measured in triplicates (lower panel).

11.0 10.0 9.0 8.0 7.0 δ¹H [ppm] 11.0 10.0 9.0 8.0 7.0 δ¹H [ppm] 11.0 10.0 9.0 8.0 7.0 δ¹H [ppm] **Supplementary Figure 9. Comparison of ¹H, ¹⁵N-HSQC spectra of different linker constructs.** ¹H, ¹⁵N-HSQC spectra of titration endpoint (ratio 1:5) of Kj12C-^NDD with Kj12B-^CDD (red) overlaid with Kj12C-^NDD-12xGS-Kj12B-^CDD (green) in (**a**) and Kj12B-^CDD-12xGS-Kj12C-^NDD (blue) in (**b**). Schematic representations of linker constructs are indicated above.

Supplementary Figure 10. Histogram of the chemical shift differences. Comparison of the ¹H,¹⁵N HSQC spectra of the N-terminal docking domain of Kj12C bound to Kj12B-^CDD in trans (1:5 ratio, titration endpoint) and the covalently linked domains (Kj12C-^NDD-12xGS-Kj12B-^CDD).

Supplementary Figure 11. Key residues of the ^NDD-^cDD complex. Complex structure of Kj12C ^NDD (magenta) and Kj12B ^CDD (green) with structural important residues are shown in stick representation. **a**, 11568 of Kj12B-^CDD is buried in a hydrophibic pocket formed by residues of helix α 2 and α 3. **b**, L1564 of Kj12B-^CDD is buried in a hydrophibic pocket formed by residues of loop 2 and Y27 stacks under G1566. **c**, Two salt bridges are formed between R24 and E1567 and between E28 and R1565.

Supplementary Figure 12. ¹H, ¹⁵N-hetNOE measurements, secondary structure probability and CD measurements. a, Values of hetNOE measurements of Kj12C-^NDD 12xGS Kj12B-^CDD complex (grey) overlayed with free Kj12C-^NDD (magenta) plotted onto the sequence. Secondary structure elements derived from structure calculation are indicated ontop. b, Secondary structure propability of the Kj12C-^NDD 12xGS Kj12B-^CDD complex as derived from backbone chemical shifts using the program TalosN. c, CD spectroscopic analysis of Kj12B-^CDD, Kj12B-^CDD 1543-1555 – a peptide corresponding to the transient α -helix in the complex structure - and Kj12B-^CDD_{short}. All three peptides show characteristics for a random coil or unstructrued conformation in the CD spectrum with a strog negative peak at 200 nm.⁹

Supplementary Figure 13. Structure overlay of Kj12C-^NDD free and bound. Overlay of the mean structures of Kj12C ^NDD alone in gray with the complex structure of Kj12C-^NDD-12xGS-Kj12B-^CDD (residues 1-63 in magenta and residues 1564-1568 in green, flexible residues are not shown). Residues 1-63 align with a Cα-RMSD of 1.18 Å.

Supplementary Figure 14. Hydrogens bonds in the ^NDD-^CDD complex across the intermolecular β -sheet. Detailed view of the ^NDD-^CDD interaction of β -sheet 2 of Kj12C-^NDD (magenta) with the last 5 amino acids of Kj12B-^CDD (green), hydrogen bonds are shown in stick representation with the N-C distances given in Ångström.

Supplementary Figure 15. Titration with Kj12B-^c**DD**_{short}. **a**, ¹H, ¹⁵N-HSQC spectra for titrations of 100 μ M ¹⁵N labeled Kj12C-^NDD with a 5-fold excess of unlabeled Kj12B-^CDD_{short} (gray). **b**, Histogram of the chemical shift differences of the ¹H,¹⁵N HSQC spectra of the free N-terminal docking domain of Kj12C and bound to Kj12B-^CDD_{short} (1:5 ratio, titration endpoint). **c**, Chemical shift changes upon addition of unlabeled Kj12C-^NDD with Kj12B-^CDD_{short} in 5-fold excess mapped onto the structure of the ^NDD. **d**, ITC thermograms and the derived binding curves for titrations of Kj12C-^NDD with Kj12B-^CDD_{short}.

Supplementary Figure 16. Representative solid phase synthesis of ^cDD_{short} peptide derivatives exemplarily shown for QEYARGEI. I, Fmoc-IIe-OH, DIPEA, DCM, overnight, DCM/CH₃OH/DIPEA (80:15:5), then piperidine/NMP. II, Fmoc-AA-OH, HCTU, DMF, DIPEA, NMP, 50 min, then piperidine/NMP. III, TFA/TIS/water (95:2.5:2.5), 3 h.

Supplementary Figure 17. ITC titration with variants of Kj12B-^c**DD**_{short}. **a**, Titration of Kj12C-^NDD with the native Kj12B-^CDD_{short} peptide **b-g**, Titration of Kj12C-^NDD with variants of the Kj12B-^CDD_{short} peptide (L1564A, R1465E, G1566A, E1567R, E1567A and I1568A). **h**, Titration of Kj12B-^NDD with Kj12B-^CDD_{short} R1565E peptide.

Supplementary Figure 18. ITC titration of docking domains with adjacent domains Titration of **a** Kj12C-^NDD-Cterm and **b** Kj12C-Cterm without the N-terminal docking domain with the Kj12B-^CDD_{short} peptide. **c**, Titration of Kj12B-Tdom-^CDD with the Kj12C-^NDD.

Supplementary Figure 19. ITC titration with variants used by *in vivo* experiments. Titration of Kj12B-^NDD with different point mutations with the Kj12B-^CDD_{short} peptide. The single mutant of Kj12B ^NDD (K28E) is shown in **a**, the double mutant (K26Q, K28E) in **b** and the triple mutant (K24R, K26Q, K28E) in **c**; **d** Kj12C ^NDD titrated with optimized Kj12A ^CDD_{short} E1169R, H1171E; **e** Kj12C ^NDD Q26E, E28A titrated with Kj12B ^CDD_{short}.

Supplementary Figure 20. Optimization of Kj12A-^cDD facilitated the interaction between Kj12A and Kj12C, leading to the production of V-PEA (1). a, Sequence alignment of ^cDDs of Kj12A and Kj12B. The essential interactive motif of Kj12B-^cDD was shown as Kj12B-^cDD_{short}. The key residues on the motif were indicated with red arrows. b, EIC of 1 produced in the coexpression system of modified Kj12A and natural Kj12C, relative to that in the natural Kj12A and Kj12C. MS/MS fragmentation of 1 is also shown.

Supplementary Figure 21. Comparison of RXPs produced in natural and optimized Kj12ABC systems via LC/MS analysis. Base peak chromatograms (BPCs) from both systems were shown. Optimized Kj12ABC (I), red line; natural Kj12ABC (II), black line. The table shows the retention time (Rt), detected masses (m/z) in [M+H]+, structures (simplified codes) and relative production of all RXPs produced in both systems as determined from triplicate experiments.

Supplementary Figure 22. Comparison of RXPs produced in artificial Kj12ABC. (Val specific A-MT from Kj12B was replaced against that from VietB for Leu specificity) with natural Kj12A-CDD (black, II) and optimized Kj12A-CDD (green, I) analyzed by HPLC/MS. **a**, BPCs from both systems were shown. The table shows the retention time (Rt), detected masses (m/z) in [M+H]⁺, structures (simplified codes: Val, V; Leu, L; *N*-methylated Leu, mL) and relative production of all RXPs produced in both systems as determined from triplicate experiments. **b**, The diagram shows the relative amounts (%) and peptide length (in numbers of amino acids) of fully methylated RXPs (solid line) and RXPs containing one Val (dash line) produced in both systems.

Supplementary Figure 23. Comparison of RXPs produced in artificial Kj12BC. (Val specific A-MT from Kj12B was replaced against that from VietB for Leu specificity) with natural Kj12B-^NDD (black, II) and optimized Kj12B-^NDDs: (K24R, K26Q, K28E) (red, I); (K28E) (green, III); (K24R, K28E) (yellow, IV); (K26R, K28E) (sapphire, V); and (K26Q) (light blue, VI) via LC/MS analysis. **a**, BPCs from all systems were shown. The table shows the retention time (Rt), detected masses (*m*/*z*) in [M+H]⁺, structures (simplified codes, Leu, L; *N*-methylated Leu, mL) and relative production of all RXPs produced in both systems. **b**, The diagram shows the relative amounts (%) and peptide length (in numbers of amino acids) of fully methylated RXPs (solid line) produced in all systems.

Compound	Dt/min		Structure	Relative RXP amount			
Compound Ri/mir	Rumin	111/2	Structure	I	II	III	IV
13	7.9	489.4	mL-L-mL-PEA	0.4 ± 0.2	4.3 ± 1.3	0.6 ± 0.2	0.6 ± 0.0
14	8	503.4	mL-mL-PEA	11.1 ± 0.7	53.6 ± 6.7	14.5 ± 0.3	15.3 ± 1.1
16	8.6	616.5	mL-L-mL-PEA	6.5 ± 2.2	11.7 ± 4.0	8.2 ± 8.2	7.6 ± 6.5
17	8.8	630.1	mL-mL-mL-PEA	100.0 ± 10.0	100.0 ± 10.0	100.0 ± 10.0	100.0 ± 10.0
19	9.4	743.5	mL-L-mL-mL-PEA	13.9 ± 4.1	7.7 ± 2.8	15.0 ± 9.6	13.7 ± 0.9
20	9.6	757.5	mL-mL-mL-mL-PEA	75.6 ± 6.0	18.6 ± 10.0	58.8 ± 4.5	58.5 ± 3.6
22	10.2	870.4	mL-L-mL-mL-mL-PEA	7.5 ± 0.7	1.5 ± 1.5	5.2 ± 2.3	9.0 ± 0.8
23	10.3	884.7	mL-mL-mL-mL-mL-PEA	33.1 ± 14.4	2.1 ± 1.6	28.2 ± 7.5	25.5 ± 1.7
25	10.7	997.7	mL-L-mL-mL-mL-mL-PEA	3.6 ± 1.8	0.06 ± 0.1	2.2 ± 9.0	2.0 ± 0.1
26	10.9	1011.6	mL-mL-mL-mL-mL-mL-PEA	10.1 ± 2.2	0.11 ± 0.1	3.0 ± 3.1	1.4 ± 0.6
27	11.3	1124.8	mL-L-mL-mL-mL-mL-mL-PEA	0.1 ± 0.0	-	0.2 ± 0.3	0.1 ± 0.1
28	11.5	1138.8	mL-mL-mL-mL-mL-mL-mL-PEA	1.6 ± 0.6	-	1.2 ± 0.1	0.9 ± 0.2
29	11.9	1265.9	mL-mL-mL-mL-mL-mL-mL-mL-PEA	0.1 ± 0.0	-	0.1 ± 0.1	0.1 ± 0.01
30	12.3	1392.7	mL-mL-mL-mL-mL-mL-mL-mL-mL-PEA	0.014 ± 0.008	-	0.010 ± 0.012	0.009 ± 0.006

Supplementary Figure 24. Comparison of RXPs produced in artificial Kj12BC. a, Val specific A-MT from Kj12B was replaced against that from VietB for Leu specificity) with natural Kj12B-^NDD and Kj12C-^NDD (black, II) or optimized Kj12B-^NDD (K24R, K26Q, K28E) and Kj12C-^NDD in different modifications: (Q26K, E28A) (red, I); (E28A) (green, III); (E28K) (sapphire, IV) as well as optimized Kj12B-^NDD coexpressed with natural Kj12C-^NDD (yellow, V). The table shows the retention time (Rt), detected masses (m/z) in [M+H]⁺, structures (simplified codes, Leu, L; *N*-methylated Leu, mL) and relative production of all RXPs produced in both systems. **b**, The diagram shows the relative amounts (%) and peptide length (in numbers of amino acid composition) of fully methylated RXPs (solid line) produced in all systems.

Supplementary Figure 25. Schematic representation of β-sheets with key residues mediating DD interaction in docking domains of the same structural class as Kj12BC. a, Two examples are shown from Supplementary Figure 2b, the interaction of this group is always based on a salt bridge between a positive residue on the ^NDD and a negative residue on the ^CDD and a hydrophobic interaction. **b**, Four examples are shown from Supplementary Figure 2c; this group of DD contains different types of key residues combinations; Paen ^NDD-^CDD interaction consists of a hydrophobic interaction and salt bridge between R33 of the ^NDD and two negative residues on the ^CDD, the Jant ^NDD-^CDD interaction consists of two salt bridges with negative residues on the ^NDD an positive residues on the ^CDD. MelG-^NDD MelF-^CDD interaction also consists of two salt bridges with positive residues on the ^NDD an negative residues on the ^CDD. In the case of TubC ^NDD- TubB ^CDD interaction, a salt bridge is replaced by a hydrogen bond between a Q and an E. Positive residues are shown as blue circles, negative residues as red circles and hydrophobic residues as white circles. **c**, *C.vio: Chromobacterium violaceum* strain 968, *P.syr: Pseudomonas syringae pv. syringae* B728a, *A.bac: Acidobacteria bacterium* SCN 69-37, *M.bac: Mycolicibacterium bacteremicum.*

Supplementary Tables

Supp	olementary	Table 1. Structural	statistics for	the NMR solution	structures of Kj12A-
^N DD,	Kj12B- ^N DD	, Kj12C- ^N DD and k	Kj12C- ^N DD-Kj	12B- ^C DD.	-

	Kj12A- ^N DD	Kj12B- ^N DD	Kj12C- ^N DD	Kj12C- ^N DD- Kj12B- ^c DD
Conformational restricting restraints				
Total NOE distance restraints	1577	1783	1559	2370
intraresidue i = j	343	373	352	466
sequential i - j = 1	403	443	382	616
medium-range 1 < i - j < 5	498	486	391	653
long-range i - j \geq 5	333	481	434	635
Dihedral angle restraints (Talos+)	102	96	106	140
No. of restraint per residue	27.1	30.3	25.7	25.8
No. of long-range restraints per residue	5.4	7.8	6.8	6.9
Residual restraint violations ^a				
Average no. of distance violations				
per structure				
0.1-0.2 Å	4.5	4.35	2.35	9.95
0.2-0.5 Å	0.15	0.3	0.2	08
>0.5 Å	0	0	0	0.25
Average no. of dihedral angle violations				
per structure				
1-10°	13.5	3.75	7.55	15.2
>10°	0	0	0	2.4
Model quality (ordered residues) ^a				
RMSD backbone atoms (Å)	0.1	0.2	0.1	0.2
RMSD heavy atoms (Å)	0.5	0.6	0.5	0.5
RMSD bond lengths (Å)	0.001	0.001	0.001	0.001
RMSD bond angles (°)	0.2	0.2	0.2	0.2
MolProbity Ramachandran statistics ^a				
Most favored regions	97.3 %	96.7 %	92.5 %	93.2 %
Allowed regions	2.7 %	3.3 %	7.5 %	5.1 %
Disallowed regions	0 %	0.0 %	0.1 %	1.7 %
Global quality scores (raw/Z score) ^a				
Verify3D	0.38/-1.28	0.41/-0.8	0.33/-2.09	0.31/-2.41
Prosall	0.94/1.20	1.09/1.82	1.03/1.57	
PROCHECK (φ-ψ)	0.07/-0.58	0.04/0.47	-0.17/-0.35	-0.09/-0.04
PROCHECK (all)	-0.55/-3.25	-0.53/-3.13	-0.55/-3.25	-0.54/-3.19
MolProbity clash score	30.80/-3.76	27.64/-3.22	29.68/-3.57	13.64/-0.82
Model contents				
Ordered residue ranges (HetNOE > 0.6)	2-58	3-58	3-57	3-58,1564-1568
Total no. of residues	63	62	63	99
BMRB accession number				
PDB ID code	6EWS	6EWT	6EWU	6EWV

^a calculated using PSVS 1.5 for using ordered residues (HetNOE > 0.6) (Bhattacharya et al., 2007). Average distance violations were calculated using the sum over r-6.

				Κ _D [μΜ]	N [sites]	ΔH [kcal/mol]	∆S [cal/mol/deg]	c-values
		Kj12	A- ^c DD	weak				
Kj12A- ^N DD		Kj12	B- ^c DD	8±4	0.81±0.01	-4±2	9±7	12±6
		Kj12	A- ^c DD	weak				
Kj12	B- ^N DD	Kj12	B- ^c DD	62±8	1±0	-5.4±0.6	0.8±1.8	1.6±0.2
		Kj12 R156	B- ^C DD _{short} 5E	13±2	1.15±0.08	3.31±0.06	11.2±0.5	9.1±0.6
D	K28E	Kj12	B- ^C DD _{short}	33±8	1±0	-5±5	3±2	3.1±0.7
2B- ^N I	K26Q, K28E	Kj12	B- ^C DD _{short}	20.4±0.4	1±0	-6±3	2±2	4.89±0.09
Kj1:	K24R, K26Q, K28E	Kj12	B- ^C DD _{short}	11.8±0.9	0.97±0.02	-2.8±0.1	12.7±0.1	8.2±0.8
		Kj12	A- ^c DD	weak				
		Kj12A- ^C DD _{short} E1169R, H1171E		3.5±0.1	1.3±0.2	-6.3±0.9	1.7±0.5	38±4
		Kj12B- ^c DD		8±6	0.90±0.12	-5.0±3.0	6±13	15±12
		Kj12B- ^C DD _{short}		15±3	1.05±0.11	-5.3±0.1	3.9±0.2	7.2±0.5
Kj12	C- ^N DD		L1564A	weak				
		hort	R1565E	weak				
		,DD,	G1566A	weak				
		12B- ⁰	E1567R	64±7	1.08±0.05	-4.5±0.2	3.8±0.9	1.7±0.1
		Kj1	E1567A	24±6	0.90±0.15	-18±2	11±1	3.9±0.3
			I1568A	very weak				
Kj12 E28A	C-NDD Q26K,	Kj12	B- ^C DD _{short}	80±8	1±0	-6.3±0.3	3±1	1.3±0.1
Kj12	C- ^N DD-Cterm	Kj12	B- ^C DD _{short}	8±6	1±0	-1±1	19±7	16±12
Kj12	C-Cterm	Kj12	B- ^C DD _{short}	very weak				
Kj12	B-Tdom- ^C DD	Kj12C- ^N DD		19±6	1.2±0.7	-2±1	17±3	6±2

Supplementary Table 2. ITC titration experiments of all RXP ^NDDs with ^CDDs.

Supplementary Table 3. Identified RXP-like DD pairs in other bacteria. In the β-sheets that mediate the DD interaction acidic and basic amino acids are shown in red and blue, respectively.

	GenBank accession No	^c DD	NDD	^c DD final β-sheet*	^N DD β2- sheet*	^c DD	۸DD
Chromobacterium violaceum strain 968	EF210776.1	ABP57747.1 (DepC)	ABP57748.1 (DepD)	EEITL	QLQVQ	PKS-ACP- ^C DD	^N DD-C-NRPS
Pseudomonas sp. 250J	GCA_001259595.1	WP_050705533.1	WP_050705534.1	EEFEV	KLRCK	T-OxRed- ^C DD	^N DD-C-NRPS
Pseudomonas fluorescens	GCA_000012445.1	WP_011333692.1	WP_011333693.1	EEFEV	RLRCK	T-OxRed- ^C DD	^N DD-C-NRPS
Pseudomonas moraviensis R28-S	GCA_000512275.1	WP_065617345.1	WP_065617344.1	EEFEV	RLRCK	T-OxRed- ^C DD	^N DD-C-NRPS
Pseudomonas syringae pv. syringae B728a	GCA_000012245.1	WP_011267241.1	WP_011267242.1	EEIEI	KLRCK	T-OxRed- ^C DD	^N DD-C-NRPS
Pseudomonas coronafaciens pv. garcae	LJQK01000091.1	WP_055004516.1	WP_055004515.1	EEIEI	KLRCK	T-OxRed- ^C DD	^N DD-C-NRPS
Chondromyces crocatus Cm c5	GCA_001189295.1	WP_082362833.1	WP_050433124.1	EEGEI	KLRFR	PKS-ACP- ^C DD	^N DD-C-NRPS-PKS
Angiococcus disciformis	AJ620477.1	CAF05648.1	CAF05649.1	EEGEL	R L R FQ	NRPS-T- ^C DD	^N DD-C-NRPS
Cystobacter ferrugineus	GCA_001887355.1	WP_071905046.1	WP_071905047.1	EEGEI	R L R FQ	NRPS-T- ^C DD	^N DD-C-NRPS
Melittangium lichenicola	AJ557546.1	CAD89777.1	CAD89778.1	EEGEL	RLKYR	PKS-ACP- ^C DD	^N DD-C-NRPS
Cystobacter fuscus strain DSM 52655	GCA_002305875.1	WP_095988360.1	WP_095988359.1	EELTL	SL R LR	PKS-ACP- ^C DD	^N DD-C-NRPS
Stigmatella aurantiaca DW4/3-1	GCA_000165485.1	ADO71804.1	ADO71805.1	EEGEL	R LKYR	PKS-ACP- ^C DD	^N DD-C-NRPS
Acidobacteria bacterium SCN 69-37	GCA_001724025.1	ODS52927.1	ODS52926.1	EEIDL	R L R VS	PKS-ACP- ^C DD	^N DD-C-NRPS
Mycolicibacterium bacteremicum	GCA_002086115.1	ORA04543.1	ORA04542.1	EEIEL	R L R LN	NRPS-T- ^C DD	^N D <u>D-TE</u>
Herpetosiphon aurantiacus DSM 785	GCA_000018565.1	ABX04503.1	ABX04504.1	EEIEL	NLRVN	PKS-ACP- ^C DD	^N DD-C-NRPS
Microcystis aeruginosa K-139	AB481215.1	BAH22764.1	BAH22765.1	EDGEL	KLRFQ	NRPS-T- ^C DD	^N DD-C-NRPS
Microcystis sp. NIVA-CYA 172/5	DQ075244.1	AAZ03552.1	AAZ03553.1	EEGEL	KLRYR	NRPS-T- ^C DD	^N DD-DH stand alone
Nostoc sp. CENA543	GCA_002896875.1	WP_103137408.1	WP_103137407.1	EEDYL	QL <mark>R</mark> YR	(A?-KR)-ACP- ^C DD	^N DD-C-NRPS
Planktothrix agardhii NIES-205	EU109504.1	ABW84365.1	ABW84366.1	EEGEL	K L R YQ	NRPS-T- ^C DD	^N DD-C-NRPS
Duganella sacchari	GCA_900143065.1	SHM78877.1	SHM78841.1	TTI <mark>R</mark> I	ELVLE	NRPS-T- ^C DD	^N DD-C-NRPS
Janthinobacterium sp. HH01	GCA_000335815.1	WP_008447581.1	WP_008447582.1	KRVRI	ELVLD	NRPS-T-CDD	^N DD-C-NRPS
Paenibacillus elgii B69	GCA_900188505.1	WP_088834641.1	WP_088834640.1	EGVLE	KLRFR	I-OxRed- ^c DD	™DD-C-NRPS-PKS
Paenibacillus larvae subsp. pulvifaciens	GCA_002082155.1	WP_083039736.1	WP_083039734.1	EEGIL	NLRFR	T-OxRed- ^C DD	^N DD-C-NRPS
Paenibacillus tyrfis	GCA_000722545.1	WP_051775011.1	WP_051775010.1	EGVLE	KLRFR	T-OxRed- ^C DD	^N DD-C-NRPS-PKS

*the β -sheet position refers to the Supplementary Figure 2 nomenclature in contrast to the covalently linked NMR structure position designation.

peptide	sum formula	calc [M+2H] ²⁺	found [M+2H] ²⁺	Δ ppm
QEYLRGEA	$C_{41}H_{64}N_{12}O_{15}$	483.2380	483.2382	-0.5
QEYLRGEI	$C_{44}H_{70}N_{12}O_{15}$	504.2615	504.2619	-0.9
QEYLRGRI	$C_{45}H_{75}N_{15}O_{13}$	517.7907	517.7905	0.4
QEYLEGEI	$C_{43}H_{65}N_9O_{17}$	490.7322	490.7319	0.5
QEYLRAEI	$C_{45}H_{72}N_{12}O_{15}$	511.2693	511.2698	-0.9
QEYARGEI	$C_{41}H_{64}N_{12}O_{15}$	483.2380	483.2382	-0.5
QEYLRGAI	$C_{42}H_{68}N_{12}O_{13}$	475.2587	475.2587	0.1
YIHLLKEKRKHFQA	$C_{85}H_{135}N_{25}O_{19}$	906.0256	906.0247	0.9
YQKLLRRGEI	$C_{51}H_{86}N_{14}O_{14}$	560.3297	560.3291	1.0
QKLLRGEI	$C_{42}H_{77}N_{13}O_{12}$	478.7980	478.7981	-0.2

Supplementary Table 4. HR-MS data of synthesized short peptides.

Supplementary Table 5. Bacterial strains used in this study.

Strain	Relevant Genotype	Reference/Strain No.
E.coli		
DH10BMtaA	F– mcrA, Δ (mrr-hsdRMS-mcrBC), Φ 80 <i>lacZ</i> Δ M15, Δ <i>lac</i> X74, recA1, endA1, araD139, Δ (ara leu)7697, galU, galK, rpsL, nupG, λ –, entD::mtaA	1, 4
BL21 GOLD (DE)	<i>E. coli</i> B F ⁻ <i>ompT hsdS</i> (r _B ⁻ m _B ⁻) <i>dcm</i> ⁺ Tet ^r <i>gal</i> λ(DE3) <i>endA</i> Hte	Agilent
Xenorhabdus stockiae	Wild type	KJ12.1

Supplementary Table 6. Primers used in this study.

Primer	Sequence (5'-3')	Targeting DNA fragment	Plasmid
hSUMO_fw	TTAAGAAGGAGATATACATATGGCTAGCGG TCATCCATC	pET11a-mod-His6 SUMO-Nisl97-226	
hSUMO_rev	CCACCAATCTGTTCACGATG		pET11a-
pET11a-for	TAAGGATCCGGCTGCTAAC	pET11a (pCK_0415)	modified
pET11a-rev	ATGTATATCTCCTTCTTAAAG		
ck0011	CCATCGTGAACAGATTGGTGGTATGATAG ATGCAGCGCAGAT	<i>Kj12C-∾DD</i> from <i>X.</i> <i>stockiae</i> KJ12.1 (192 bp)	
ck0010	CTTTGTTAGCAGCCGGATCCTTATTTAGTT		01/ 0500
nCT11a for		pE111a (mod) vector	pCK_0500
pETT12-smt3-rev		backbone (5,955 bp)	
p⊑111a-sinto-rev	TTATTTCTA		
ck0058	CATCGTGAACAGATTGGTGGTATGAAGAA	Kj12C- ^N DD from X.	
	TGCCGCTCAA	<i>stockiae</i> KJ12.1 (192 bp)	
ck0059	TTTGTTAGCAGCCGGATCCTTATTGTGTTT		pCK_0533
	CTTCTTTTGCATCG	pET11a (mod) vector	
pEI 11a-for		backbone (5,935 bp)	
pE111a-smt3-rev			
ck0060		Ki12B-NDD from Y	
CK0000	GCAGCTAAGATTGTG	stockiae K.I12 1 (192 hn)	
ck0061	TTTGTTAGCAGCCGGATCCTTACGATTCTT		
	CTTCTGATTCAAGCT		pCK 0533
pET11a-for	TAAGGATCCGGCTGCTAAC	pET11a (mod) vector	• =
pET11a-smt3-rev	ATGTATATCTCCTTCTTAAAGTTAAACAAAA	backbone (5,935 bp)	
	ТТАТТТСТА		
ck0100	GGATCGGGTTCGGGCAGTATGATAGATGC	pCK_0500 and	01/ 05/0
10404	AGCGCAGA	subsequent ligation of	pCK_0540
CKUTUT	GGAACCIGAACCACIACCACCACCAAICI	the PCR product	
ck0102		nCK 0540 vector part	
GROTOZ	AAGAAAAAAGAAAAACATTTTC	fused to	
ck0103	ATCCGGAACCTGAACCACTACCTATTTCA		
	CCTCTTAAATATTCCTGAGATG		pCK_0541
ck0104	GAAATAGGTAGTGGTTCAGGTTCCG	Kj12C-™DD	
CKU1U5	GAGAAGACCACCAATCTGTTCACGAT	nCK 0E00 and	
CK0109		subsequent ligation of	nCK 0544
ck0110	GGAACCIGAACCACTACCTTTAGTTTGTT	the PCR product	por_0044
	CTTCTGAATCAAGC		
ck0111	TTCCGGATCGGGTTCGGGCAGTCTTCTCA	pCK0544, vector part	
	AAGAAAAAAGAAAACATTTTC	fused to	
ck0113	GAAATATAAGGATCCGGCTGCTAAC		pCK_0545
ck0112	TTTGTTAGCAGCCGGATCCTTATATTTCAC	Kj12C- ^C DD	
-1-0445	CTCTTAAATATTCCTGAGA		
CKU115		nCK 0E24 as template	
CK0359	TATGAAACCAATCGTGATAGTATTCCATC	introducing a K28E	
ck0360	TTTTAGTTTATTATCGCTAACAAATAGAGTA	codon change into	pCK 0630
	ATTCC	Kj12B- ^N DD from X.	p 0
		stockiae KJ12.1 (192 bp)	
ck0359	TATGAAACCAATCGTGATAGTATTCCATC	pCK_0534 as template,	
		introducing K28E and	
ck0361	TTGTAGTTTATTATCGCTAACAAATAGAGTA	K26Q codon changes	pCK_0631
	ALICC	into $Kj12B$ -"DD from X.	
ak0250		stockiae KJ12.1 (192 bp)	
CKU359	TATGAAACCAATCGTGATAGTATTCCATC	puk_ub34 as template,	
ck0363	TTGTAGTCTATTATCCCTAACAAATACACTA	and K24R codon	nCK 0632
510000	ATTCC	changes into Ki12B- ^N DD	pon_0002
		5 5	

		from <i>X. stockiae</i> KJ12.1 (192 bp)	
ck0364	ΔΑΤΔΟΘΟΔΑΟΟΔΟΤΟΘΤΟΔΟΔΟ	nCK 0500 as template	
00004		introducing Q26K and	
ck0365	TTAACCGATTGTTAACAACAAATAGAGTAA	F28A codon changes	pCK 0640
	TCCC	into $Ki12C^{N}DD$ from X.	
		stockiae KJ12.1	
iw0075	CATCGTGAACAGATTGGTGGTAATGAAGA	Ki12B-Tdom- ^N DD from	
J	TGATTTACGTCGGCAAACCTATG	X. stockiae KJ12.1 (373	
iw0076	TTTGTTAGCAGCCGGATCCTTATATTTCAC	(qd	
,	CTCTTAAATATTCCTGAGATGAATTTTGC	- 177	pJW58
pET11a-for	TAAGGATCCGGCTGCTAAC		
pET11a-smt3-rev	ATGTATATCTCCTTCTTAAAGTTAAACAAAA		
	ТТАТТТСТА		
SN_KJ12C_Ndd_F	TTAACTTTAATAAGGAGATATACCATGATAG	<i>Kj12C-^NDD-Cterm</i> from	
w1	ATGCAGCGCAG	X. stockiae KJ12.1 (192	
SN_KJ12C_Ndd_R	ATGTCCCTGGAAGTATAGGTTCTCTCCATA	bp)	
v1	AAACTGGCTGATAC		pCOLA-Kj12C-
SN_pCOLA_Ndd_F	GAGAACCTATACTTCCAGGGACATCACCA	pCOLA_Duet	NDD-Cterm
W	TCATCACCACTAATGCTTAAGTCGAACAG		
SN_pCOLA_Ndd_	GGTATATCTCCTTATTAAAGTTAAAC		
RV			
SN KI12C W/O F	AATGGAAAAGTGCCTATTTC	pCOLA-Ki12C- ^N DD-	nCOLA-Ki12C-
w (5' Phos)	////00///01000////110	Cterm	Cterm
SN KJ12C w/o Rv	CATGGTATATCTCCTTATTAAAGTTAAAC	otom	otonni
XC3-Fw	ATGAAGAATGCCGCTCAAATTGTGGATG	ki12A from X stockiae	
XC204-Rv	ACAATCTTAGCTGCATTTTTCATATATGACC	KJ12.1 (3.538 bp)	
/	TTCCAATAG		
XC204-Fw	AGGTCATATATGAAAAATGCAGCTAAGATT	The region encoding	-
	GTG	KJ12BC (A-MT:VietB)	
XC3-Rv	TTATCCATAAAACTGGCTGATACTCTC	from X. stockiae KJ12.1	pCX178
		(6,275 bp)	_
XC4-Fw	AAGAGAGTATCAGCCAGTTTTATGGATAAC	pCOLA-ara-tacl vector	
	AATTAATCATCGGCTCGTA	backbone (3,368 bp)	
XC4-Rv	AGCCTCATCCACAATTTGAGCGGCATTCT		
	TCATGGAATTCCTCCTGTTAGCCC		
XC3-Fw	AIGAAGAAIGCCGCICAAAIIGIGGAIG	kj12A with double point	
XC280-Rv	AGCIGCATITICATATICACCICICAATA	mutation on ^C DD	
	G		
		(3.520 bp)	
VC200 Ew		ki12PC from X stockies	-
X0200-FW		$K_{12} = 1 (6.305 \text{ hp})$	nCX242
XC3-Rv		No 12. 1 (0,303 bp)	ρολετε
XC4-Ew		pCOLA-ara-tacl vector	_
704 I W	AATTAATCATCGGCTCGTA	backbone (3,368 bp)	
XC4-Rv	AGCCTCATCCACAATTTGAGCGGCATTCT		
	TCATGGAATTCCTCCTGTTAGCCC		
XC3-Fw	ATGAAGAATGCCGCTCAAATTGTGGATG	DNA fragment encoding	
XC282-Rv	AGCTTCGTTCACAATCTTAGC	Ki12A- ^c DD with double	
		point mutations	
		kj12A(E1169R and	
		H1171E) from X.	
		stockiae KJ12.1 (3,519	pCX244
		bp)	_
XC282-Fw	AGGTGAAATATGACAATTAATCATCGGCTC	pCOLA-ara-tacl vector	
VOLD	G	backbone (3,368 bp)	
XC4-RV	AGCIICGIICACAAICIIAGCTGCATTTT		
		Lidon with stands 1	
		KJ12A with double point	
		(E1160D and U1171E)	
	9	from X stockies K 121	
		(3.530 hp)	
		(0,000 04)	

XC280-Fw	TGAGAGGTGAAATATGAAAAATGCAGCTA AG	<i>kj12BC (A-MT:vietB)</i> from pCX74 (6,305 bp)	pCX253
XC3-Rv	TTATCCATAAAACTGGCTGATACTCTC		
XC4-Fw	AAGAGAGTATCAGCCAGTTTTATGGATAAC AATTAATCATCGGCTCGTA	pCOLA-ara-tacl vector backbone (3,368 bp)	
XC4-RV	TCATGGAATTCCTCCTGTTAGCCC		
XC295-Fw	AGACTAAAATATGAAACCAATCGTGATAGT ATTCCATC	DNA fragment encoding Kj12B (A-MT:VietB) with	
XC30-Rv	TCATATTTCACCTCTTAAATATTCCTG	double point mutations (K24R and K28E) on ^N DD from pCX88 (4,637 bp)	pCX256
XC31-Fw	ATCTCAGGAATATTTAAGAGGTGAAATATG ACAATTAATCATCGGCTCGTATAATG	pCX16 vector backbone (3.212 bp)	
XC295-Rv	ACTATCACGATTGGTTTCATATTTTAGTCTA TTATCGCTAACAAATAGAG	(-)	
XC296-Fw	ATGAAACCAATCGTGATAGTATTC	DNA fragment encoding	
XC30-Rv	TCATATTTCACCTCTTAAATATTCCTG	Kj12B (A-MT:VietB) with single point mutation (K28E) on ^N DD from pCX88 (4,637 bp)	pCX257
XC31-Fw	ATCTCAGGAATATTTAAGAGGTGAAATATG ACAATTAATCATCGGCTCGTATAATG	pCX16 vector backbone (3,212 bp)	
XC296-RV	TAGTTTATTATCGCTAAC		
XC297-Fw	AGACTACAATATGAAACCAATCGTGATAGT ATTCCATC	DNA fragment encoding Kj12B (A-MT:VietB) with	
XC30-Rv	TCATATTTCACCTCTTAAATATTCCTG	triple point mutations (K24R, K26Q and K28E) on ^N DD from pCX88 (4,637 bp)	pCX258
XC31-Fw	ATCTCAGGAATATTTAAGAGGTGAAATATG ACAATTAATCATCGGCTCGTATAATG	pCX16 vector backbone (3,212 bp)	
XC297-Rv	ACTATCACGATTGGTTTCATATTGTAGTCTA TTATCGCTAACAAATAGAG		
XC300-Fw	ACTACAATATGAAACCAATCGTGATAGTATT CCATC	DNA fragment encoding Kj12B (A-MT:VietB) with	
XC30-Rv	TCATATTTCACCTCTTAAATATTCCTG	double point mutations (K26Q and K28E) on ^N DD from pCX88 (4,637 bp)	pCX261
XC31-Fw	ATCTCAGGAATATTTAAGAGGTGAAATATG ACAATTAATCATCGGCTCGTATAATG	pCX16 vector backbone (3,212 bp)	
XC300-Rv	ACTATCACGATTGGTTTCATATTGTAGTTTA TTATCGCTAACAAATAGAG		
XC301-Fw	ACTACAATATAAAACCAATCGTGATAGTATT CCATC	DNA fragment encoding Kj12B (A-MT:VietB) with	
XC30-Rv	TCATATTTCACCTCTTAAATATTCCTG	single point mutation (K26Q) on ^ℕ DD from pCX88 (4,637 bp)	pCX262
XC31-Fw	ATCTCAGGAATATTTAAGAGGTGAAATATG ACAATTAATCATCGGCTCGTATAATG	pCX16 vector backbone (3.212 bp)	
XC301-Rv	ACTATCACGATTGGTTTTATATTGTAGTTTA TTATCGCTAACAAATAGAG	(-,r)	
XC304-Fw	ACAATACAAAACCAGTCGTGACAGCATTC C	DNA fragment encoding Kj12C with single point	
XC3-Rv	TTATCCATAAAACTGGCTGATACTCTC	mutation (E28K) on ^N DD from pCX19 (1,510 bp)	pCX267

XC4-Fw	AAGAGAGTATCAGCCAGTTTTATGGATAAC AATTAATCATCGGCTCGTA	pCDF-ara-tacl vector backbone (3,466 bp)	
XC304-Rv	ATGCTGTCACGACTGGTTTTGTATTGTAAC CGATTGTTAAC		
XC305-Fw	ACAATACGCAACCAGTCGTGACAGCATTC C	DNA fragment encoding Kj12C with single point	
XC3-Rv	TTATCCATAAAACTGGCTGATACTCTC	mutation (E28A) on ^N DD from pCX19 (1,510 bp)	pCX268
XC4-Fw	AAGAGAGTATCAGCCAGTTTTATGGATAAC AATTAATCATCGGCTCGTA	pCDF-ara-tacl vector backbone (3,466 bp)	
XC305-Rv	ATGCTGTCACGACTGGTTGCGTATTGTAA CCGATTGTTAAC		
XC306-Fw	ATCGGTTAAAATACAAAACCAGTCGTGAC AGCATTCC	DNA fragment encoding Kj12C with double point	
XC3-Rv	TTATCCATAAAACTGGCTGATACTCTC	mutations (Q26E and E28A) on ^N DD from pCX19 (1,510 bp)	pCX269
XC4-Fw	AAGAGAGTATCAGCCAGTTTTATGGATAAC AATTAATCATCGGCTCGTA	pCDF-ara-tacl vector backbone (3,466 bp)	
XC306-Rv	TGTCACGACTGGTTTTGTATTTTAACCGAT TGTTAACAACAAATAG		

Supplementary Table 7. Plasmids used in this study.

Plasmid	Description	References
pET11a	5,938 bp, modified from pET11a, the operon under the control of T7	This study
modified	promoter was modified by introduction of N-terminal His × 6-smt3 tag,	
	His x 6-smt3 sequence from a plasmid used in another study (Hacker,	
	Christ 2015) (Am ^R)	
pCK_0500	6,127 bp, vector, the Kj12C- ^N DD was fused N-terminally to <i>smt3</i> into	This study
	pET11a-modified, under control of T7 promoter (Am ^R)	
pCK_0533	6,127 bp, vector, Kj12A- ^N DD was fused N-terminally to <i>smt</i> 3 into	This study
	pET11a-modified, under control of T7 promoter (Am ^R)	
pCK_0534	6,124 bp, vector fusing the Kj12B-NDD N-terminally to smt3 into pET11a-	This study
	modified, under control of T7 promoter (Am ^R)	
pCK_0540	6,163 bp, vector, adding 12 GS-codons in frame N-terminally to smt3 and	This study
	C-terminally to the Kj12C-NDD into pCK_0500, under control of T7	
	promoter (Am ^R)	
pCK_0541	6,235 bp, vector, the Kj12B- ^C DD was fused in frame C-terminally to <i>smt3</i>	This study
	and N-terminally to Kj12C- ^N DD originating from vector vector pCK_0540,	
	under control of T7 promoter (Am ^R)	
pCK_0544	6,163 bp, vector, adding 12 GS-codons in frame C-terminally to Kj12C-	This study
	^N DD from pCK_0500, under control of T7 promoter (Am ^R)	
pCK_0545	6,235 bp, vector, the Kj12B- ^c DD was fused in frame N-terminally to the	This study
	12-GS-linker form pCK_0544, under control of T7 promoter (Am ^R)	
pCK_0630	6,124 bp, vector based on pCK_0534, one codon change was introduced	This study
	into the Kj12B- ^N DD domain (K28E in respect to the Kj12B- ^N DD)	
pCK_0631	6,124 bp, vector based on pCK_0534, two codon changes were	This study
	introduced into the Kj12B- ^N DD domain (K26Q and K28E, in respect to	
	the Kj12B- ^N DD).	
pCK_0632	6,124 bp, vector based on pCK_0534, three codon changes were	This study
	introduced into the Kj12B-NDD domain (K24R, K26Q and K28E, in	
	respect to the Kj12B-™DD).	
pCK_0640	6,127 bp, vector based on pCK_500, two codon changes were	This study
	Introduced resulting into the Kj12C-"DD domain (Q26K and E28A, in	
n IW/59	6 269 bp. vector. Ki12P. Idem ^C DD was funed N terminally to amt2 into	This study
p3vv3o	o,200 bp, vector, NJ12B-100m- DD was lused N-terminally to smits into	This study
nKi12C-Cterm- ^N DD	5252 ph pCOLA vector. Ki12C-Cterm-NDD was fused C-terminal with a	This study
projizo oterini DD	His-rtag and a TEV cleavage site under control of a T7 promotor (Km ^R)	This study
pKi12C-Cterm- ^N DD	5015 pb pCOI A vector. Ki12C-Cterm was fused C-terminal with a Hise-	This study
p. j. 20 0.0000 22	tag and a TEV cleavage site, under control of a T7 promotor (Km ^R)	
pCX16	3.189 bp. modified from pCOLA-ara-tacl with Km ^R replaced by	1
	chloramphenicol resistance gene (Cm ^R)	
pCX88	4,707 bp, <i>kj12B</i> from <i>X. stokiae</i> KJ12.1 with A-MT gene replaced by the	1
	A-MT encoding gene from <i>vietB</i> in <i>X.vietnamensis</i> DSM 22392,	
	assembled into pCX16 (Cm ^R)	
pCX74	6,287 bp, <i>kj12BC</i> from X. stokiae KJ12.1 with A-MT gene replaced by the	1
	A-MT encoding gene from <i>vietB</i> in <i>X. vietnamensis</i> DSM 22392,	
	assembled into pCX16 (Cm ^R)	
pCX26	7,896 bp, <i>kj12B</i> from <i>X. stockiae</i> KJ12.1, assembled into pCX16, (Cm ^R)	1

Plasmid	Description	References
pCX19	5,005 bp, <i>kj12C</i> from <i>X. stockiae</i> KJ12.1 assembled into pCDF-ara-tacl, (Sm ^R)	1
pCX3	16,107 bp, kj12 gene cluster from <i>X. stockiae</i> KJ12.1 genomic DNA assembled into pCOLA-ara-tacl, Km ^R	1
pCX178	13,032 bp, DNA fragment encoding Kj12ABC with A-MT domain replaced by that of VietB from <i>X. vientnamensis</i> for Leu specificity (A-MT:VietB), assembled into pCOLA-ara-tacl (Km ^R)	This study
pCX242	13,032 bp, DNA fragment encoding Kj12ABC from <i>X. stockiae</i> KJ12.1 with double point mutations on Kj12A- ^C DD (E1169R and H1171E), assembled into pCOLA-ara-tacl (Km ^R)	This study
pCX244	6,825 bp, DNA fragment encoding Kj12A from <i>X. stockiae</i> KJ12.1 with point mutation on Kj12A- ^c DD (E1169R and H1171E), assembled into pCOLA-ara-tacl (Km ^R)	This study
pCX253	13,032 bp, DNA fragment encoding Kj12ABC with A-MT domain exchanged against that of VietB from <i>X. vientnamensis</i> for Leu specificity (A-MT:VietB) and point mutation on Kj12A- ^C DD (E1169R and H1171E), assembled into pCOLA-ara-tacl (Km ^R)	This study
pCX256	7,857 bp, DNA fragment encoding Kj12B (A-MT:VietB) with double point mutations on Kj12B- ^N DD (K28E and K24R), assembled into pCX16 (Cm ^R)	This study
pCX257	7,857 bp, DNA fragment encoding Kj12B (A-MT:VietB) with single point mutation on Kj12B- ^N DD (K28E), assembled into pCX16 (Cm ^R)	This study
pCX258	7,857 bp, DNA fragment encoding Kj12B (A-MT:VietB) with triple point mutations on Kj12B- ^N DD (K28E, K24R and K26Q), assembled into pCX16 (Cm ^R)	This study
pCX261	7,857 bp, DNA fragment encoding Kj12B (A-MT:VietB) with double point mutations on Kj12B- ^N DD (K26Q and K28E), assembled into pCX16 (Cm ^R)	This study
pCX262	7,857 bp, DNA fragment encoding Kj12B (A-MT:VietB) with single point mutation on Kj12B- ^N DD (K26Q), assembled into pCX16 (Cm ^R)	This study
pCX267	4,949 bp, DNA fragment encoding Kj12C from <i>X. stockiae</i> KJ12.1 with single point mutation on Kj12C- ^N DD (E28K), assembled into pCDF-ara-tacl (Sm ^R)	This study
pCX268	4,949 bp, DNA fragment encoding Kj12C from <i>X. stockiae</i> KJ12.1 with single point mutation on Kj12C- ^N DD (E28A), assembled into pCDF-ara-tacl (Sm ^R)	This study
pCX269	4,949 bp, DNA fragment encoding Kj12C from <i>X. stockiae</i> KJ12.1 with double point mutations on Kj12C- ^N DD (Q26K and E28A), assembled into pCDF-ara-tacl (Sm ^R)	This study
Am ^R : ampicilin resistance; Km ^R : kanamycin resistance; Cm ^R : chloramphenicol resistance; Sm ^R : spectinomycin		
resistance		

Supplementary References

- 1. Cai, X. *et al.* Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. *Nat Chem* **9**, 379–386 (2017).
- 2. Tobias, N. J. *et al.* Natural product diversity associated with the nematode symbionts *Photorhabdus* and *Xenorhabdus*. *Nature Microbiology* **2**, 1676–1685 (2017).
- 3. Kronenwerth, M. *et al.* Characterisation of taxIllaids A-G; natural products from *Xenorhabdus indica. Chem. Eur. J.* **20**, 17478–17487 (2014).
- 4. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* **5**, 113 (2004).
- 5. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004).
- 6. Hacker, C. *et al.* The Solution Structure of the Lantibiotic Immunity Protein Nisl and Its Interactions with Nisin. *Journal of Biological Chemistry* **290**, 28869–28886 (2015).
- 7. Richter, C. D., Nietlispach, D., Broadhurst, R. W. & Weissman, K. J. Multienzyme docking in hybrid megasynthetases. *Nat Chem Biol* **4**, 75–81 (2008).
- 8. Dowling, D. P. *et al.* Structural elements of an NRPS cyclization domain and its intermodule docking domain. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 12432–12437 (2016).
- 9. Kelly, S. M. & Price, N. C. The use of circular dichroism in the investigation of protein structure and function. *Curr. Protein Pept. Sci.* **1**, 349–384 (2000).