Supporting information

Copper-responsive gene expression in the methanotroph *Methylosinus trichosporium* OB3b

Grace E. Kenney^a, Monica Sadek^b, and Amy C. Rosenzweig^{a,b}

^aDepartments of Molecular Biosciences and ^bChemistry, Northwestern University, Evanston, IL

60208

Supplemental Materials and Methods

RNA isolation and cDNA synthesis. All experiments involving RNA were carried out using RNase-free reagents and supplies in a dedicated work area. All RNA experiments included three distinct biological replicates. qRT-PCR experiments, data analysis, and data reporting were designed in an effort to comply with the MIQE guidelines.¹ At each timepoint, culture volumes containing approximately 3E9 cells were added to a stop solution of ice cold 5% phenol/95% EtOH at a v/v ratio of 10:1.25 and centrifuged at 6000 x g for 20 min at 4 °C. The resulting pellets were resuspended in 0.6 mL TE containing 20 mg lysozyme (Sigma) and 100 µL proteinase K (Qiagen) and incubated for 30 m at room temperature with shaking. Then 5 mL 65 °C Qiazol was added, and RNA purification continued using an RNeasy Midi Kit (Qiagen), including an on-column DNase treatment, following the protocol described in the RNEasy Lipid Handbook (Qiagen). The RNA was eluted in RNase-free water and quantified using a Nanodrop (Thermo). Residual gDNA was removed using a Turbo DNAfree kit (Ambion) as described by the manufacturer, and the remaining RNA was cleaned up using an isopropanol/ethanol precipitation and resuspended in 20 µL RNase-free H₂O (Life Technologies.) Final RNA concentrations were determined using a Nanodrop 1000 (Thermo) and confirmed along with RNA integrity with a BioAnalyzer (Agilent) (Table S4). cDNA was synthesized using 1 µg starting RNA and a SuperScript VILO cDNA synthesis kit (Invitrogen) using random hexamer primers, following the manufacturer's instructions.

Reference gene selection for qRT-PCR. Historically, qRT-PCR studies have often relied upon several assumptions: that RNA quality does not significantly affect results, that primers are

equally efficient, and that so-called housekeeping genes used as reference genes in one study are stable across other conditions. None of these assumptions are now accepted.²⁻⁵ The RNA quality of all samples was analyzed and almost all samples used for analysis had an RNA Integrity Number (RIN) >7.5, indicating high quality RNA (Table S4). Primer efficiency values were calculated for each primer set (Table S3), and the presence of multiple products or primer-dimers was ruled out using both melting curves and analysis on a 4% NuSieve GTC agarose gel (Fig. S5).

The handful of previous RT-PCR studies performed on *M. trichosporium* OB3b used 16s rRNA as a reference gene.^{6,7} However, 16s rRNA has very high transcription levels⁸ and the dilution levels required to achieve C_q values above 10 may push uncommon transcripts of other genes below the limit of detection. Additionally, 16s rRNA is exceptionally stable, and may not reflect integrity or quantity of total RNA particularly well.⁹ Finally, use of multiple reference genes is now the preferred option for qRT-PCR studies. For this analysis, 14 potential reference genes were chosen from 10 major biological systems (Table S2.)^{10,11} stability and optimal number of reference genes were chosen using GeNorm^{PLUS}, and the most stable set of genes was used for data analysis (Fig. S6).⁵

Extended TEM sample preparation. A Pelco BioWave Microwave with a cold spot and vacuum chamber was used for processing steps. Glutaraldehyde-fixed bacteria were enrobed in 2% low gelling temperature Agarose II (aMReSCO) and further processed in a secondary fixative of 2% OsO₄ in buffer, followed by two DI water washes, and an acetone dehydration series (30, 50, 70, 90 and 100% 2x). The EMBed 812 resin was infiltrated with acetone. Acetone to resin ratios 2:1 and 1:1 were processed in the microwave for 3 min and left on the bench for

30 min. to 2 hours. The 1:2 mix was processed overnight at 4°C. Two 100% resin steps were infiltrated at RT for 1 – 4 hours each. A change of fresh resin was used to polymerize samples in 00 beem capsules in a 60°C oven for 24 hours. The ultra thin sections (~90nm) were created using a Leica Ultracut S ultramicrotome and collected on copper mesh grids. A post stain was applied by floating the grid on a drop of 3% uranyl acetate for 7-10 min. The grid was rinsed in CO_2 free DI water and then floated on a drop of lead citrate for 7 min. After rinsing in CO_2 free DI water, the stained sections were allowed to dry before acquiring images using a Gatan Orius camera on a JEOL 1230 TEM (80kV accelerating voltage).

Characterization of PP358 Mbn. After cellular harvest, spent medium was optionally incubated with 1mM (final) CuSO₄ and filtered over a $.2\mu$ PTFE filter (Millipore) protected by a GF/B glass microfiber filter (Whatman) in order to remove particulate matter. The clarified spent medium was loaded onto a Diaion HP-20 column, which was washed in 10mM NaOAc or NH₄OAc. Mbn was eluted with 60% MeOH/40% 10mM NaOAc or NH₄OAc as previously described.¹² Eluate was pooled and lyophilized; the resulting Mbn was resuspended in MilliQ water. Mbn samples were analyzed via mass spectrometry on an AmaZonX ion trap mass spectrometer (Bruker) using electrospray ionization. Mass spectra were acquired in both positive and negative ion modes over a mass range from 100-2000 Da.

Cloning, isolation, purification, and preliminary analysis of MbnI and MmoD. A codonoptimized *Ms. trichosporium* OB3b MmoD sequence was cloned into pPR-IBA1, providing a construct with a C-terminal Strep-tag (Genscript, IBA) (Supplemental Textfile 1). A similar construct was also assembled using the native *Ms. trichosporium* OB3b MbnI sequence, cloned into the vector using BsaI (NEB) (sequence in Supplemental Textfile 2). Both constructs were expressed in C41(DE3) cells grown in LB medium with or without copper supplementation to 0.5 mM, induced in early logarithmic phase growth with 0.5 mM IPTG, and grown overnight at 18 °C. Cells were lysed via sonication (1s on/3s off at 4 °C for 10 m total) in lysis buffer (25 mM MOPS pH 7.2, 250mM NaCl, 10% glycerol, Roche cOmplete protease inhibitors), and after clarification at 21000 x g and 4 °C for 1h, the lysate was loaded onto a 15 mL Strep-Tactin column (IBA) equilibrated in 25mM MOPS pH 7.2, 250mM NaCl, and 10% glycerol. The column was washed with loading buffer, the protein was eluted in loading buffer with 2.5 mM desthiobiotin, and the column was regenerated in 1 mM HABA. Proteins were concentrated and desalted in Amicon spin concentrators with a 3 kDa cutoff and quantified using the Bradford assay (Sigma). Desalted protein was loaded on a heparin column and eluted with a gradient of 0-100% 2 M NaCl. Metal content was analyzed in 5% nitric acid using a iCap Q inductively coupled mass spectrometer (Thermo) with a standard curve from 0-100 ppb Cu using a multielement standard and 5 ppb indium, lithium, scandium, and yttrium internal standards (both Inorganic Ventures).

Assembly of the PP358 genome. *De novo* assembly of the *Ms. trichosporium* OB3b PP358 genome was performed within the software package CLC Genomics Workbench v 8.0 (CLCbio, Cambridge, MA). Raw reads were quality trimmed (Q20) and mapped against a reference genome of *Ms. trichosporium* OB3b (i.e. ADVE02000001-ADVE0200003) using low stringency (0.5 length fraction and 0.8 similarity fraction). All three genomic elements were covered deeply, at an average depth of 163-186X. Reads mapping to the reference genome were recovered and used for *de novo* assembly using default settings within CLC Genomics. Short

contigs (<200 bp) and contigs with low coverage (<50X) were removed from the assembly, and the mapping reads recovered again. A subsequent *de novo* assembly was performed on the remaining contigs.

CopD bioinformatics. All ORFs containing the CopD PFAM (PF05425) were obtained from the JGI-IMG database. The predicted number of helices was calculated using TMHMM.¹³ For genes of interest, including CopD from WT and mutant *Ms. trichosporium* OB3b, transmembrane homology was confirmed via TopCons,¹⁴ and the JGI-IMG annotation of additional domains was supplemented by analysis via HHPred¹⁵ (Supplemental textfile 1). Subgroups of sequences were aligned via MAFFT¹⁶ in order to further analyze gene architecture and sequence conservation. An extended profile hidden Markov model covering the full 8-helix region was constructed via HMMER 3.1¹⁷ using a MAFFT (FFT-NS-2)¹⁸ alignment of all *copD* sequences predicted to have 8 helices, with additional N- or C-terminal domains manually trimmed. All sequences were aligned against the new profile HMM via HMMalign¹⁷ in order to identify very highly conserved residues.

Supplemental Results and Discussion

Analysis of PP358 variants. Many variants observed in the PP358 genome are unlikely to be responsible for the phenotype of that strain. Silent mutants, mutations in transposases and other gene mobility elements are poor candidates (File S1). Many other genes have clear roles that are unlikely to be directly related to copper homeostasis or methane metabolism, such as components of polyketide synthetase systems or a nicotinic acid phosphoribosyltransferase

(Table S1). Some potentially relevant proteins remain (Table S1), including several hypothetical proteins. These cannot necessarily be ruled out; MettrDRAFT_0214 and MettrDRAFT_2026 are hypothetical proteins with no useful genomic context. Genomic neighborhood or the presence of certain domains does suggest that other hypothetical proteins are less likely to be involved. MettrDRAFT_2787 appears to be related to PopZ (pole-organizing protein Z), which is involved in cell division, MettrDRAFT_2979 is located near RNA-related proteins (including pseudouridine synthase and RNA methyltransferase), and MettrDRAFT_3481 is likely to be an alpha/beta hydrolase.

Two histidine kinases from two-component signaling systems are also present (Table S1), but in these systems, substrate sensing depends on the periplasmic component of the system. Disruption of periplasmic copper sensing seems unlikely to result in one of the key PP358 phenotypes, namely low cellular copper content: while regulation may be disrupted, transport should not be. A mutation in a gene involved in methanol dehydrogenase (Table S1) assembly may broadly be associated with methane metabolism, but methanol metabolism is not copperdependent; methanol dehydrogenase metabolizes methanol produced by both MMOs. The mutation in a *Surf1* homologue (Table S1) is intriguing since *Surf1* is involved in copper loading of periplasmic enzymes but the gene is located in a cytochrome c operon, suggesting that it is specifically involved in cytochrome c copper loading. A mutation in *mbnB*, a gene predicted to be involved in Mbn biosynthesis, initially drew our attention, but it merely eliminates an internal stop codon present in the reference genome but found in no other MbnB homologues and not observed in wildtype Ms. trichosporium OB3b as cultured in our laboratory. CopD is by far the strongest candidate because it is directly involved in copper homeostasis, directly adjacent to pMMO, and appears to be co-regulated with pMMO by copper addition.

CopD bioinformatics. Identification of the various predicted protein architectures present in the CopD family suggests that the existing profile hidden Markov model (HMM), which covers only four helices of the standard 8-helix CopD sequence, is inadequate to describe the larger family. Using sequences predicted to have 8 transmembrane helices and no additional domains, a new profile HMM was constructed via HMMbuild¹⁷ (Supplemental File S5). All sequences were then aligned to this model using HMMalign.¹⁷ Using the resulting alignment, conserved residues were identified. Two highly conserved histidine residues that are present in predicted periplasmic loops in full-length CopD sequences may represent copper-binding ligands (Fig. S4).

Supplemental Files

File S1. Variants table for *Ms. trichosporium* OB3b PP358 when compared to the wildtype genome.

File S2. Raw CNRQ data for qRT-PCR reactions.

File S3. CopD traits and calculations (20150916_jgi_copD.xlsx). Data from the JGI/IMG database augmented by predicted numbers of transmembrane helices and other calculations.

File S4. CopD sequences. (20140917_jgi_allcopD.fa). All CopD sequences in FASTA format.

File S5. 8-helix CopD HMM. (20150916_8-helix-copD.hmm).

Supplemental Figures

Fig. S1. Methanobactin structure and genetic context. (*A*) The ribosomally produced precursor peptide MbnA in *Ms. trichosporium* OB3b is proposed to be post-translationally modified to form Mbn (shown here as CuMbn). (*B*) The 35 full or partial Mbn operons identified in bacterial genomes can be divided into several groups using sequence-based phylogenetics and operon content. The *Ms. trichosporium* OB3b Mbn operon belongs to Group I.

Fig. S2. Individual log_{10} -transformed CNRQ values for each replicate run of each gene in the (*A*) pMMO, (*B*) sMMO, and (*C*) Mbn operons. Error bars represent standard error.

Fig. S3. Apo and holo Mbns from wildtype *Ms. trichosporium* OB3b and the PP358 strain. UV-visible light spectra for spent medium from the wildtype (*A*) (dark red: 0 m and 0μ M CuSO₄, light red, 15 m and 12.5 μ M CuSO₄) and mutant (*B*) (dark blue, 0m and 0μ M CuSO₄, light blue; 15m and 12.5 μ M CuSO₄). Prior to copper addition, two peaks at approximately 340 and 390nm are observed, corresponding to unchelated oxazolones; after copper addition, both features (especially the 390nm feature) diminish and a 330nm feature becomes more visible. Differing amounts of total Mbn, oxazolone hydrolysis, C-terminal methionine loss and presence of non-Mbn molecules account for the differences in the spectra. Mbn isolated from PP358 on a Diaion HP-20 column exhibits the same apo and holo masses as Mbn from the wildtype species when measured on an Amazon X ESI ion trap mass spectrometer in negative mode: (*C*) singly charged species and (*D*) doubly charged species. In the holo form, the characteristic copper-derived isotope splitting is clearly visible.

Fig. S4. (*A*) MbnI SDS-PAGE. Degradation to form a C-terminal fragment of ~13 kDa is observed over time. (*B*) MmoD SDS-PAGE. (*C*) Size exclusion chromatography of MmoD and MbnI. After initial purification, primarily monomeric MmoD is observed. (*D*) Chromatographic analysis of MmoD, MbnI, and a control protein loaded onto a heparin column and eluted over a gradient of 0-100% B (2 M NaCl). MmoD does not bind to a heparin column with or without copper. MbnI does bind a heparin column and elutes at approximately 0.8 M NaCl.

Fig. S5. Common predicted CopD architectures. Almost half of CopD sequences are predicted to consist solely of an 8-transmembrane-helix protein. A significant minority are truncated (containing only 4 transmembrane helices), contain soluble domains (including CopC fusions, YtkA-like domains, and cytochrome *cbb3*-like domains), or contain membrane protein fusions (primarily CtaG-like C-terminal domains.) Conserved histidine, cysteine, and aspartic acid residues are indicated by blue, yellow, and red circles.

Fig. S6. 4% NuSieve 3:1 agarose TBE gel of qRT-PCR products. *Top*: 20bp O'RangeRuler ladder, coaE, ffh, map, mmoX, alaS, secA, glyA, gmk, 10bp O'RangeRuler ladder, ptsH, mdh, mmoX, recA, pssA, ndk, gcp, rpe, 20bp ladder, 16s rRNA, pmoB, pmoC, mmoX, 10bp ladder. *Middle*. 20bp ladder, mmoD, mbnB D1, ferritin, 10bp ladder, pmoC v2, mmoG, mbnH, mbnC, mmoX, mbnA, mbnM, mbnT, 20bp ladder, pmoA, mbnB D2, mmoY, mmoC, mmoX, mmoZ, mbnN, mmoR, mmoB, 10bp ladder. *Bottom*: 20bp ladder, mbnP, pmoD, nth, MettrDRAFT_0733, 10bp ladder, mmoXG, 16sG, 20bp ladder.

Determination of the optimal number of reference targets

Fig. S7. Identification of optimal reference genes. (*A*) GeNorm M value graph, indicating expression stability of reference gene candidates. (*B*) GeNorm V value graph, indicating the optimal number of reference genes.

Supplemental Tables

Table S1. Variants observed in the PP358 genome of interest due to significant mutations combined with unassigned functions or functions likely to be relevant to methane or copper metabolism.

Gene	Locus Tag	Notes
N/A	MettrDRAFT_0214	Hypothetical protein
copD	MettrDRAFT_0379	Putative periplasmic copper importer
N/A	MettrDRAFT_0988	Histidine kinase (2-component signaling)
mxaL	MettrDRAFT_1969	Part of methanol dehydrogenase assembly
N/A	MettrDRAFT_2026	Hypothetical protein
Surf1	MettrDRAFT_2859	Cytochrome c oxidase copper loading
N/A	MettrDRAFT_2787	Hypothetical protein
N/A	MettrDRAFT_2979	Hypothetical protein
mbnB	MettrDRAFT_3422	Mbn biosynthesis
N/A	MettrDRAFT 3481	Hypothetical protein
N/A	MettrDRAFT_4334	Histidine kinase (2-component signaling)

Table S2. Final qRT-PCR primers and product sizes for genes analyzed in these studies. Bolded genes are reference gene candidates. Additional reference gene candidates that failed screening at various stages include *gmk*, *rimM*, *rnpA*, *rpe*, *rplI*, *rpoD*, and *rpoN* (primer sequences not shown.)

Locus tag	Gene	Product	Forward	Reverse
r0051	16s	116	TAGGCGGATTGTTAAGTCAGG	ATTTCACCTCTACACTCGCAG
r0051	16s (G)	66	GCAGAACCTTACCAGCTTTTGAC	CCCTTGCGGGAAGGAAGTC
MettrDRAFT_2641	ala S	139	TGATCCGACCTTGATGTTCAC	GTCGAGATCATTGTGCTTGC
MettrDRAFT_2299	coaE	136	TCGTGCTGTTCGATATTCCG	AATTTCTCCTCCGTCATGCC
MettrDRAFT_0380	copC	93	GTCGGCGAAAGACCATGT	AGGATCGAGATCGAGGAATAGG
MettrDRAFT_0379	сорD	102	CTGACTTATGGTGGGCAGAG	GTTCGACAGAACGGTGAGATAG
MettrDRAFT_0378	DUF461	109	GCATGAATACGATCTCGGGAAG	ATCGCCCTTGTTATGGATGAAG
MettrDRAFT_0806	ffh	115	GGAAGATGAAGGAGCAGATCG	TTGAGGATATCGGGATTGCG
MettrDRAFT_2542	gcp	111	CGGTTTGCGTTTCGTCATG	AAATCGAGGTCGTTGGTGAG
MettrDRAFT_3587	glyA	146	TGCTCACCAATGACGAAGAG	TTGCTGATAGGCCTTGAACTC
MettrDRAFT_3782	map	110	CCAATATTCTGCATTACGGCG	GAGAATCTTCACCTGCGGAC
N/A	mbnA	75	TGACTGTCAAGATTGCTCAGAAG	GATAGCACGAACCGCAAAG
MettrDRAFT_3422	mbnB D1	87	GAAAGAGATCGGGAGGAATTGG	ATGATCAGAGACATAGACGGGC
MettrDRAFT_3422	mbnB D2	152	TTCCACGTTGCAGGATATGG	TCCCGTTCATAAGTGATCGTCG
MettrDRAFT_3423	mbnC	148	CTACTGGCACACATTGTTCGAC	CCAGACATAGACCCAGAGGAAA
MettrDRAFT_3413	mbnE	113	GAGAGCCTCAATCGCTTCAA	CCATAATAGGTCTTCCGCTCATC
MettrDRAFT_3427	mbnH	92	CGCCTGGAATTGGGACTTAC	TGGAACTTCTCCTCCGACAT
MettrDRAFT_3419	mbnI	105	GCGTTCATCCTCTACGTTTCT	CTGAAGAGCGAGACGGATATG
MettrDRAFT_3424	mbnM	161	GCTTCCTTCGTCCGATCTATTG	GAACAGCATCAGCATCAAGGTC
MettrDRAFT_3425	mbnN	97	CCATCCTTTCCGATGTATGCTC	CCACTTTCGAAGACAAGGAGAG
MettrDRAFT_3426	mbnP	83	CTCTACGTCTATGGCTTCGAG	GCGTATTGCCAATCGTTCTG
MettrDRAFT_3420	mbnR	86	CGTGTTCGATGCGGATGAT	GGTATTTGGTCAGAACCGTCAT
MettrDRAFT_3421	mbnT	160	GATCGGTTACGATTGGACCTTC	GTAAGTCGGTGTCATGAAGAGG
MettrDRAFT_1083	mdh	131	TCGTCATCTGCATCACCAAC	GGCGAGGAAATAACGGAAAC
MettrDRAFT_2364	mmoB	149	GGTGGATCAAGGCCGATG	GGTGATGGTGAATTTGGTGC
MettrDRAFT_2367	mmoC	148	CCTATGATCGCATCTCCTTCG	GGAACGAAATTGAGCGAGATG
MettrDRAFT_2366	mmoD	124	TGTTGCGATGGGAGATTCTG	GACGTAGCATCCTGTCGG
MettrDRAFT_2361	mmoG	92	GCCTCTTGCTCAATCATATCCG	ATCGTGCAGGAACTCATAGC
MettrDRAFT_2359	mmoR	146	GCAAGGAGCATTTCAACCG	GATCTTGAGACAGCCGAGC
MettrDRAFT_2362	mmoX (G)	153	TCAACACCGATCTGAACAACG	TCCAGATTCCACCCCAATCC
MettrDRAFT_2362	mmoX	73	TTCAAAGAGAACCGGACGAAG	TGACCTTGAACTGCTCCTTG
MettrDRAFT_2363	mmo Y	147	GTGAAGGACAAGTCGGAAGAG	GCCGTATTCGCTGTAGAGTAG
MettrDRAFT_2365	mmoZ	124	AGAACCCATCCACGACAATTC	GATATCGTAGCTCTTGCGGAAG
MettrDRAFT_0355	ndk	134	CTGATCGAGAGCATCACCTC	AATTCCTTGCGGATCGTACC
MettrDRAFT_3054	nth	149	AACATCTTCACTCTGCTCGTC	TTGATATAGTCCTTCAGCCGC
MettrDRAFT_0383	pmoA (G)	94	TTCTGGGGCTGGACCTATTTC	CCGACAGCAGCAGGATGATG
MettrDRAFT_0383	pmoA	135	GGAATATATCCGCATGGTCGAG	GAATACCACTTACCGACGAACC
MettrDRAFT_0382	ртоВ	103	GGAATATATCCGCATGGTCGAG	GTAGACCATCATCGACACGAAG
MettrDRAFT_0384	pmoC	131	GACCCGCATTCCGTATTTTG	ACAGCTCTTCCATGAACCAG
MettrDRAFT_1032	pmoC2	88	CGTCGATATGAAGCCCTTATGG	CCAGCCATAGATCTGCTCATAG
MettrDRAFT_0381	pmoD	101	CGCTCACCATCATCCATCTT	CGTGACAAAGCCGATGAAATG
MettrDRAFT_4197	pssA	121	GTCGCCTTCTACATCGTCTATG	CGAACAGGACCAGGATCAC

MettrDRAFT_2387	ptsH	142	ATCTCGTGATCTGCAACCG	GTCAGTATGCCCATGATCGAG
MettrDRAFT_2640	recA	111	GTTGAAATTCTACGCTTCGGTG	ACCTTGTTCTTGACCACTTTGA
MettrDRAFT_2356	sco1	119	TTCGGCTTCACGCAATGT	GGATCGAGGCTGACGAATAGA
MettrDRAFT_1638	secA	138	CATGATCGAGAAGCAGGTGG	TCGGACTTGTATTCGTTGAGC
MettrDRAFT_0356	tpiA	86	TCTCCGCTGAAATGCTGG	GTCGCTCTCGCCATGTTC
MettrDRAFT_2360	N/A	150	CGGCACGCTCGATTTCG	TTGGATTTGTCATAGGCGGAG

	WT			WT I	RIN		PP358			PP358 RIN		
	concentrations				conce	concentrations						
	$(ng/\mu L)$					(ng/μ	L)					
	1	2	3	1	2	3	1	2	3	1	2	3
0m	516	505	586	8.2	9.2	6.9	608	340	239	8.6	8.9	8.6
15m	550	580	661	8.4	9.9	7.5	654	385	264	8.5	9.1	7.9
5h	536	250	693	8.6	8.2	9.1	448	175	307	8.3	8.5	8.1
24	232	295	666	7.7	9.0	9.5	722	200	380	7.8	8.3	7.4

Table S3. RNA quantities and RNA Integrity Numbers (RINs) for samples used in qRT-PCR experiments.

Target gene	Е	E (SE)	R^2	Slope	Slope error	Intercept	Intercept
16s	2.054	0.024	0.996	-3.199	0.053	24.998	0.253
2125	1 896	0 081	0 937	_3 598	0 241	17 98	1 201
coaE	2 152	0.082	0.976	-3.005	0.15	44 756	0 814
conC	1 025	0.059	0.976	2 515	0 165	12 176	0 000
copc	1 925	0.055	0.970	-3.313	0.127	43.170	0.594
COPD	1 000	0.010	0.974	-3.370	0.045	20 247	0.212
<i>du1461</i>	1.725	0.019	0.997	-3.324	0.045	58.34/	1 150
r m	1./35	0.05	0.976	-4.1//	0.142	57.422	1.158
gcp	2	0.06	0.982	-3.323	0.143	46.564	0./5
glyA	1.906	0.011	0.999	-3.569	0.032	42.229	0.15/
map	1.808	0.042	0.985	-3.889	0.154	48.016	0.802
mbnA	1.901	0.04	0.991	-3.584	0.116	36.016	0.503
mbnBD1	1.846	0.024	0.997	-3.755	0.081	39.095	0.325
mbnBD2	1.939	0.011	0.999	-3.479	0.031	38.107	0.146
mbnC	1.911	0.028	0.996	-3.555	0.08	39.607	0.333
mbnE	1.867	0.021	0.996	-3.687	0.066	45.144	0.343
mbnH	1.975	0.031	0.993	-3.383	0.078	39.899	0.359
mbnI	1.801	0.054	0.968	-3.914	0.198	49.379	1.001
mbnM	1.909	0.063	0.965	-3.56	0.182	43.139	0.867
mbnN	2.056	0.032	0.994	-3.195	0.07	39.104	0.333
mbnP	1.965	0.019	0.998	-3.409	0.049	39.761	0.216
mbnR	2.079	0.071	0.975	-3.147	0.147	42.549	0.761
mbnT	1.992	0.015	0.998	-3.341	0.036	37.785	0.173
mdh	1.941	0.059	0.972	-3.472	0.159	44.47	0.706
mmoB	1.969	0.006	1	-3.398	0.016	33.97	0.074
mmoC	2	0.013	0.999	-3.321	0.032	36.98	0.146
mmoD	1.821	0.015	0.997	-3.842	0.054	42.454	0.238
mmoG	1.957	0.029	0.994	-3.429	0.077	41.038	0.356
mmoR	2.121	0.074	0.969	-3.063	0.141	43.861	0.669
mmoX	1.938	0.022	0.997	-3.481	0.058	35.567	0.273
mmoXG	1.96	0.009	0.999	-3.422	0.024	33.124	0.113
mmoY	1.955	0.007	1	-3.433	0.018	35.079	0.085
mmoZ	1.96	0.005	1	-3.422	0.013	34.697	0.057
ndk	2.03	0.035	0.993	-3.252	0.08	41.642	0.369
nth	1.987	0.161	0.857	-3.354	0.395	46.539	1.968
ртоА	1.961	0.015	0.998	-3.42	0.038	38.127	0.175
pmoAG	2.011	0.014	0.998	-3.296	0.033	35.609	0.156
ртоВ	1.94	0.018	0.997	-3.475	0.048	39.441	0.238
pmoC	2.018	0.005	1	-3.28	0.012	34.452	0.058

Table S4. Primer efficiency data, calculated in qBase^{PLUS}

pmoCr	1.896	0.047	0.988	-3.599	0.141	45.91	0.733
pmoD	1.938	0.04	0.981	-3.479	0.11	42.152	0.51
pssA	2.041	0.166	0.906	-3.227	0.368	44.015	1.775
ptsH	1.786	0.06	0.951	-3.97	0.232	47.272	1.067
recA	2.146	0.124	0.935	-3.016	0.229	43.673	1.083
sco1	1.986	0.089	0.963	-3.355	0.219	39.948	0.931
secA	1.857	0.059	0.967	-3.719	0.192	45.946	0.899
tpiA MettrDRAFT	1.793	0.377	0.524	-3.943	1.419	55.513	8.12
2360	1.673	0.061	0.934	-4.472	0.317	47.238	1.536

 Table S5.
 Cloning and sequencing primers.

Primer name	Forward	Reverse
OB3b_MbnIR_nest	TTTTTGCGCCTTCCAAAGAGC	GAGATCGAGGGAGAGGAGGTC
OB3b_MbnI_pPR-IBA1	ATCGTAGGTCTCTAATGCCGG ACCAAAAATCGAATTTC	ATCGTAGGTCTCAGCGCTTTC CAGCGCCATCCGAC
OB3b_CopD_out_seq	CGCATTTCTCGACGGGAGGCC	CGACTGGCAAGCTCGTCGTCG
OB3b_CopD_in_seq	GCCTGGTATGCGAAGATCGGCG	TCGAAACCGCGCTTGACCGAC

SUPPLEMENTAL TEXT SEQUENCES

Text 1. pPR-IBA1 MbnI and MmoD sequences

LOCUS DEFINITION	pPR-IBA	1-MmoD-genscript.xdna	3109 bp	DNA	circular	15.09.08	
ACCESSION							
SOURCE							
ORGANISM							
COMMENT	Serial (Cloner Genbank Format					
COMMENT	SerialC	loner Type=DNA					
COMMENT	SerialC	loner Comments=Ligation	of : pPR-IH	BA1.xdna [2782 nt]:	(#BsaI[172]	/ #BsaI
	[104])	to Sequence Window #3 [319 nt]:	(#BsaI[7]	/ #BsaI[3		
	42])						
COMMENT	SerialC	loner_Ends=0,0,,0,					
FEATURES		Location/Qualifiers					
primer	_bind	2039					
		/label=T7F					
		/SerialCloner_Color=&	h0C/900				
		/serialCloner_snow=Tr	ue				
		/SerialCloner_Protect	=True				
CDC		A27 AE6	rue				
CDS		/label=Strep_tag					
		/SerialCloper Color=&	hC07E00				
		/SerialCloner Show=Tr	ue				
		/SerialCloner Protect	=True				
		/SerialCloner Arrow=T	rue				
misc f	eature	507526					
-		/label=T7R					
		/SerialCloner_Color=&	hC00400				
		/SerialCloner_Show=Tr	ue				
		/SerialCloner_Protect	=True				
		/SerialCloner_Arrow=T	rue				
rep_or	igin	6681106					
		/label=f1 origin					
		/SerialCloner_Color=&	h85009C				
		/SerialCloner_Show=11	ue - Truc				
		/SerialCloper_Arrow=E	alco				
CDS		1254 2113	aise				
020		/label=ampR					
		/SerialCloner Color=&	hBCC000				
		/SerialCloner Show=Tr	ue				
		/SerialCloner_Protect	=True				
		/SerialCloner_Arrow=T	rue				
rep_or	igin	22912963					
		/label=Col E1 origin					
		/SerialCloner_Color=&	h0006C0				
		/SerialCloner_Show=Tr	ue				
		/SerialCloner_Protect	=True				
mica f	osturo	100 456	aise				
misc_i	eacure	/label=mmoD_strep					
		/SerialCloper Color=6	b007a00				
		/SerialCloner_Show=Tr	ue				
		/SerialCloner Protect	=True				
		/SerialCloner Arrow=T	rue				
		/SerialCloner_Desc=no	te="direct s	strand tra	nslation" \		
		—					

/SerialCloner_Desc=translation="MDQQTAQPEVRQTLIHADERYQAYTMDLEYMLRWEILRDGEFVQEGCSLSQESAREAVAHVLSHFRRQDATSQNDGGKSEAIRALLREIGTPEPLKD ENGAARPAHISAWSHPQFEK*" \ ORIGIN

1	GATCTCGATC	CCGCGAAATT	AATACGACTC	ACTATAGGGA	GGCCACAACG	GTTTCCCTCT
61	AGAAATAATT	TTGTTTAACT	TTAAGAAGGA	GATATACAaa	tgGACCAACA	AACCGCCCAA
121	CCGGAAGTGC	GCCAAACGCT	GATTCATGCT	GACGAACGCT	ATCAAGCCTA	CACGATGGAT
181	CTGGAATATA	TGCTGCGTTG	GGAAATTCTG	CGCGATGGCG	AATTTGTCCA	GGAAGGTTGC
241	AGCCTGTCTC	AAGAAAGCGC	GCGTGAAGCG	GTGGCCCATG	TTCTGAGCCA	CTTCCGTCGC
301	CAGGATGCAA	CCAGTCAAAA	CGACGGCGGT	AAATCCGAAG	CAATCCGTGC	TCTGCTGCGC
361	GAAATTGGCA	CCCCGGAACC	GCTGAAGGAC	GAAAACGGCG	CTGCTAAACC	GGCTCACATC
421	AgcgcTTGGA	GCCACCCGCA	GTTCGAAAAA	TAATAAGCTT	GATCCGGCTG	CTAACAAAGC
481	CCGAAAGGAA	GCTGAGTTGG	CTGCTGCCAC	CGCTGAGCAA	TAACTAGCAT	AACCCCTTGG
541	GGCCTCTAAA	CGGGTCTTGA	GGGGTTTTTT	GCTGAAAGGA	GGAACTATAT	CCGGATCTGG
601	CGTAATAGCG	AAGAGGCCCG	CACCGATCGC	CCTTCCCAAC	AGTTGCGCAG	CCTGAATGGC
661	GAATGGGACG	CGCCCTGTAG	CGGCGCATTA	AGCGCGGCGG	GTGTGGTGGT	TACGCGCAGC
721	GTGACCGCTA	CACTTGCCAG	CGCCCTAGCG	CCCGCTCCTT	TCGCTTTCTT	CCCTTCCTTT
781	CTCGCCACGT	TCGCCGGCTT	TCCCCGTCAA	GCTCTAAATC	GGGGGGCTCCC	TTTAGGGTTC
841	CGATTTAGTG	CTTTACGGCA	CCTCGACCCC	AAAAAACTTG	ATTAGGGTGA	TGGTTCACGT
901	AGTGGGCCAT	CGCCCTGATA	GACGGTTTTT	CGCCCTTTGA	CGTTGGAGTC	CACGTTCTTT
961	AATAGTGGAC	TCTTGTTCCA	AACTGGAACA	ACACTCAACC	CTATCTCGGT	CTATTCTTTT
1021	GATTTATAAG	GGATTTTGCC	GATTTCGGCC	TATTGGTTAA	AAAATGAGCT	GATTTAACAA
1081	AAATTTAACG	CGAATTTTAA	CAAAATATTA	ACGCTTACAA	TTTAGGTGGC	ACTTTTCGGG
1141	GAAATGTGCG	CGGAACCCCT	ATTTGTTTAT	TTTTCTAAAT	ACATTCAAAT	ATGTATCCGC
1201	TCATGAGACA	ATAACCCTGA	TAAATGCTTC	AATAATATTG	AAAAAGGAAG	AGTATGAGTA
1261	TTCAACATTT	CCGTGTCGCC	CTTATTCCCT	TTTTTGCGGC	ATTTTGCCTT	CCTGTTTTTG
1321	CTCACCCAGA	AACGCTGGTG	AAAGTAAAAG	ATGCTGAAGA	TCAGTTGGGT	GCACGAGTGG
1381	GTTACATCGA	ACTGGATCTC	AACAGCGGTA	AGATCCTTGA	GAGTTTTCGC	CCCGAAGAAC
1441	GTTTTCCAAT	GATGAGCACT	TTTAAAGTTC	TGCTATGTGG	CGCGGTATTA	TCCCGTATTG
1501	ACGCCGGGCA	AGAGCAACTC	GGTCGCCGCA	TACACTATTC	TCAGAATGAC	TTGGTTGAGT
1561	ACTCACCAGT	CACAGAAAAG	CATCTTACGG	ATGGCATGAC	AGTAAGAGAA	TTATGCAGTG

1621 CTGCCATAAC CATGAGTGAT AACACTGCGG CCAACTTACT TCTGACAACG ATCGGAGGAC 1681 CGAAGGAGCT AACCGCTTTT TTGCACAACA TGGGGGGATCA TGTAACTCGC CTTGATCGTT 1741 GGGAACCGGA GCTGAATGAA GCCATACCAA ACGACGAGCG TGACACCACG ATGCCTGTAG 1801 CAATGGCAAC AACGTTGCGC AAACTATTAA CTGGCGAACT ACTTACTCTA GCTTCCCGGC 1861 AACAATTAAT AGACTGGATG GAGGCGGATA AAGTTGCAGG ACCACTTCTG CGCTCGGCCC 1921 TTCCGGCTGG CTGGTTTATT GCTGATAAAT CTGGAGCCGG TGAGCGTGGT TCTCGCGGTA 1981 TCATTGCAGC ACTGGGGCCA GATGGTAAGC CCTCCCGTAT CGTAGTTATC TACACGACGG 2041 GGAGTCAGGC AACTATGGAT GAACGAAATA GACAGATCGC TGAGATAGGT GCCTCACTGA 2101 TTAAGCATTG GTAACTGTCA GACCAAGTTT ACTCATATAT ACTTTAGATT GATTTAAAAC 2161 TTCATTTTA ATTTAAAAGG ATCTAGGTGA AGATCCTTTT TGATAATCTC ATGACCAAAA 2221 TCCCTTAACG TGAGTTTTCG TTCCACTGAG CGTCAGACCC CGTAGAAAAG ATCAAAGGAT 2281 CTTCTTGAGA TCCTTTTTTT CTGCGCGTAA TCTGCTGCTT GCAAACAAAA AAACCACCGC 2341 TACCAGCGGT GGTTTGTTTG CCGGATCAAG AGCTACCAAC TCTTTTTCCG AAGGTAACTG 2401 GCTTCAGCAG AGCGCAGATA CCAAATACTG TCCTTCTAGT GTAGCCGTAG TTAGGCCACC 2461 ACTTCAAGAA CTCTGTAGCA CCGCCTACAT ACCTCGCTCT GCTAATCCTG TTACCAGTGG 2521 CTGCTGCCAG TGGCGATAAG TCGTGTCTTA CCGGGTTGGA CTCAAGACGA TAGTTACCGG 2581 ATAAGGCGCA GCGGTCGGGC TGAACGGGGG GTTCGTGCAC ACAGCCCAGC TTGGAGCGAA 2641 CGACCTACAC CGAACTGAGA TACCTACAGC GTGAGCTATG AGAAAGCGCC ACGCTTCCCG 2701 AAGGGAGAAA GGCGGACAGG TATCCGGTAA GCGGCAGGGT CGGAACAGGA GAGCGCACGA 2761 GGGAGCTTCC AGGGGGAAAC GCCTGGTATC TTTATAGTCC TGTCGGGTTT CGCCACCTCT 2821 GACTTGACGC TCGATTTTTG TGATGCTCGT CAGGGGGGCG GAGCCTATGG AAAAACGCCA 2881 GCAACGCGGC CTTTTTACGG TTCCTGGCCT TTTGCTGGCC TTTTGCTCAC ATGTTCTTT 2941 CTGCGTTATC CCCTGATTCT GTGGATAACC GTATTACCGC CTTTGGATGA GCTGATACCG 3001 CTCGCCGCAG CCGAACGACC GAGCGCAGCG AATCACTGAG CGAGGAACGG GAGAGGCCC 3061 CAATACGCAA ACCGCCTCTC CCCGCGCGTT GGCCGATTCA TTAATGCAG 11 3286 bp LOCUS pPR-IBA1_mbnI_OB3b.xdna DNA circular 15.09.08 DEFINITION ACCESSION VERSION SOURCE ORGANISM COMMENT Serial Cloner Genbank Format COMMENT SerialCloner_Type=DNA COMMENT SerialCloner Comments=Ligation of : pPR-IBA1.xdna [2782 nt] : (#BsaI[172] / #BsaI [104]) to PCR(Methylosinus-trichosporium-OB3b 496 nt] : (#BsaI[7] / #BsaI[519]) Mbn.xdna) [496 SerialCloner_Ends=0,0,,0, Location/Qualifiers COMMENT FEATURES primer_bind 20..39 /label=T7F /SerialCloner_Color=&h0C7900 /SerialCloner_Show=True /SerialCloner_Protect=True /SerialCloner Arrow=True 684..703 misc feature /label=T7R /SerialCloner_Color=&hC00400 /SerialCloner_Show=True /SerialCloner_Protect=True /SerialCloner_Arrow=True 845..1283 rep origin /label=f1 origin /SerialCloner_Color=&h85009C /SerialCloner_Show=True /SerialCloner_Protect=True /SerialCloner_Arrow=False CDS 1431..2290 /label=ampR /SerialCloner_Color=&hBCC000 /SerialCloner_Show=True /SerialCloner_Protect=True /SerialCloner Arrow=True rep_origin 2468..3140 /label=Col El origin /SerialCloner_Color=&h0006C0 /SerialCloner_Show=True /SerialCloner_Protect=True /SerialCloner_Arrow=False misc_feature 100..633 /label=mbnI-strep /SerialCloner_Color=&h84A4C0 /SerialCloner_Show=True /SerialCloner_Protect=True /SerialCloner_Arrow=True /SerialCloner_Desc=note="direct strand translation" \ /SerialCloner_Desc=translation="MPDQKSNFIRELFLRNKRELLDYLKRRVGPDDAADLLQETFLRALRREDHGAIADPPAFLQQIAINLTRDFARRRTEANCLVFGDLPDEAPSKEAT PGDLFEADEESRLLRQAVDALPPRCREAFILYVSARLSPAEIAKRLGISTNMAQKHIRLALQRCRMALESAWSHPQFEK*" CDS 604..633 /label=Strep tag /SerialCloner Color=&hC07E00 /SerialCloner_Show=True /SerialCloner_Protect=True /SerialCloner_Arrow=True ORIGIN 1 GATCTCGATC CCGCGAAATT AATACGACTC ACTATAGGGA GGCCACAACG GTTTCCCTCT 61 AGAAATAATT TTGTTTAACT TTAAGAAGGA GATATACAaa tgCCGGACCA AAAATCGAAT 121 TTCATTCGCG AGCTCTTTCT GCGCAACAAG CGCGAACTGC TCGACTATCT GAAACGCAGG 181 GTGGGCCCGG ACGATGCTGC GGACCTATTG CAGGAGACGT TCCTCAGAGC GCTGCGGCGC 241 GAGGATCACG GCGCAATCGC CGATCCGCCG GCCTTCCTGC AACAGATTGC GATCAACCTC 301 ACCAGGGACT TCGCGCGCCG CCGACGGACG GAGGCCAATT GCCTCGTCTT CGGTGACCTG 361 CCGGACGAGG CGCCCTCCAA AGAGGCGACG CCGGGAGACC TCTTCGAAGC CGACGAAGAA 421 TCGCGTCTCC TCCGCCAAGC GGTGGACGCG CTGCCGCCAC GCTGCCGCGA GGCGTTCATC 481 CTCTACGTTT CTGCGAGGCT GTCTCCTGCG GAGATCGCCA AGCGCCTGGG CATTTCGACG 541 AATATGGCGC AAAAGCATAT CCGTCTCGCT CTTCAGCGAT GTCGGATGGC GCTGGAAAgc

601	CTTGGAGCC	ACCCGCAGTT	ССАААААТАА	TAAGCTTGAT	CCGGCTGCTA	ACAAAGCCCG
661	AAAGGAAGCT	GAGTTGGCTG	CTGCCACCGC	TGAGCAATAA	CTAGCATAAC	CCCTTGGGGGC
721	CTCTAAACGG	GTCTTGAGGG	GTTTTTTGCT	GAAAGGAGGA	ACTATATCCG	GATCTGGCGT
781	AATAGCGAAG	AGGCCCGCAC	CGATCGCCCT	TCCCAACAGT	TGCGCAGCCT	GAATGGCGAA
841	TGGGACGCGC	CCTGTAGCGG	CGCATTAAGC	GCGGCGGGTG	TGGTGGTTAC	GCGCAGCGTG
901	ACCGCTACAC	TTGCCAGCGC	CCTAGCGCCC	GCTCCTTTCG	CTTTCTTCCC	TTCCTTTCTC
961	GCCACGTTCG	CCGGCTTTCC	CCGTCAAGCT	CTAAATCGGG	GGCTCCCTTT	AGGGTTCCGA
1021	TTTAGTGCTT	TACGGCACCT	CGACCCCAAA	AAACTTGATT	AGGGTGATGG	TTCACGTAGT
1081	GGGCCATCGC	CCTGATAGAC	GGTTTTTCGC	CCTTTGACGT	TGGAGTCCAC	GTTCTTTAAT
1141	AGTGGACTCT	TGTTCCAAAC	TGGAACAACA	CTCAACCCTA	TCTCGGTCTA	TTCTTTTGAT
1201	TTATAAGGGA	TTTTGCCGAT	TTCGGCCTAT	TGGTTAAAAA	ATGAGCTGAT	ттаасааааа
1261	TTTTAACGCGA	ΔͲͲͲΔΔCΔΔ	AATATTAACC	Сттасааттт	ACCTCCCACT	TTTCCCCCAA
1321	ATGTGCGCGG	AACCCCTATT	TGTTTATTTCC	тстааатаса	ттсааататс	TATCCGCTCA
1381	тсасасаата	АСССТСАТАА	ATCCTTCAAT	ΔΔΤΔΤΤΓΩΔΔΔ	AAGGAAGAGT	атсастаттс
1441	AACATTTCCC	TGTCGCCCTT		TTCCCCCATT	TTTCCCTTCCT	GTTTTTTCCTC
1501	ACCCAGAAAC	GCTGGTGAAA	GTAAAAGATG	СТСААСАТСА	GTTGGGTGCA	CGAGTGGGTT
1561	ACATCCAACT	CCATCTCAAC	ACCCCTAACA	TCCTTCACAC	TTTTTCCCCCC	CAACAACCTT
1621	MUCCAMCAM	CACCACOUNT	AGCGGIAAGA	TRETTGAGAG	CCTTATTCGCCCCC	CCMAGAACGII
1601	CCCCCCANGAI	GAGCACITIT	CCCCCCATAC	ACTINITICS	CARCACE	CUTATIGACG
1741	CLGGGGCAAGA	ACAAAAACCAM	CUCCCCCATAC	COMPONENCE	AACACAAMMA	GIIGAGIACI
1001	CAUCAGICAC	CACHCAHAGCAI	ACTICCCCCCC	ACTICACAGI	CACAACCAMC	CCACCACCCA
1001	ACCACCERAT	GAGIGAIAAC	ACTGCGGCCA	ACTIACTICI	ACAACGAIC	GUAGGACCGA
1001	AGGAGCTAAC	COUTTINITIC	CACAACATGG	GGGATCATGT	AACTCGCCTT	GATCGTTGGG
1001	MACCOGAGCI	GRAIGAAGCC	ATACCARACG	ACGAGCGIGA	CACCACGAIG	TOTOTAGCAA
2041	1GGCAACAAC	GTTGCGCAAA	CCCCAMAACIG	GUGAACTACT	ACTUTAGUT	TCCCGGCAAC
2041	AATTAATAGA	CIGGAIGGAG	GUGGAIAAAG	CAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ACTICIGCGC	CCCCCCTIC
2101	CGGCTGGCTG	GTTTATTGCT	GATAAATCTG	GAGCCGGTGA	GCGTGGTTCT	CGCGGTATCA
2161	TTGCAGCACT	GGGGGCCAGAT	GGTAAGCCCT	CCCGTATCGT	AGTTATCTAC	ACGACGGGGA
2221	GTCAGGCAAC	TATGGATGAA	CGAAATAGAC	AGATCGCTGA	GATAGGTGCC	TCACTGATTA
2281	AGCATTGGTA	ACTGTCAGAC	CAAGTTTACT	CATATATACT	TTAGATTGAT	TTAAAACTTC
2341	ATTTTAATT	TAAAAGGATC	TAGGTGAAGA	TCCTTTTTGA	TAATCTCATG	ACCAAAATCC
2401	CTTAACGTGA	GTTTTCGTTC	CACTGAGCGT	CAGACCCCGT	AGAAAAGA'I'C	AAAGGATCTT
2461	CTTGAGATCC	TTTTTTTCTG	CGCGTAATCT	GCTGCTTGCA	AACAAAAAAA	CCACCGCTAC
2521	CAGCGGTGGT	TTGTTTGCCG	GATCAAGAGC	TACCAACTCT	TTTTCCGAAG	GTAACTGGCT
2581	TCAGCAGAGC	GCAGATACCA	AATACTGTCC	TTCTAGTGTA	GCCGTAGTTA	GGCCACCACT
2641	TCAAGAACTC	TGTAGCACCG	CCTACATACC	TCGCTCTGCT	AATCCTGTTA	CCAGTGGCTG
2701	CTGCCAGTGG	CGATAAGTCG	TGTCTTACCG	GGTTGGACTC	AAGACGATAG	TTACCGGATA
2761	AGGCGCAGCG	GTCGGGCTGA	ACGGGGGGTT	CGTGCACACA	GCCCAGCTTG	GAGCGAACGA
2821	CCTACACCGA	ACTGAGATAC	CTACAGCGTG	AGCTATGAGA	AAGCGCCACG	CTTCCCGAAG
2881	GGAGAAAGGC	GGACAGGTAT	CCGGTAAGCG	GCAGGGTCGG	AACAGGAGAG	CGCACGAGGG
2941	AGCTTCCAGG	GGGAAACGCC	TGGTATCTTT	ATAGTCCTGT	CGGGTTTCGC	CACCTCTGAC
3001	TTGAGCGTCG	ATTTTTGTGA	TGCTCGTCAG	GGGGGGCGGAG	CCTATGGAAA	AACGCCAGCA
3061	ACGCGGCCTT	TTTACGGTTC	CTGGCCTTTT	GCTGGCCTTT	TGCTCACATG	TTCTTTCCTG
3121	CGTTATCCCC	TGATTCTGTG	GATAACCGTA	TTACCGCCTT	TGAGTGAGCT	GATACCGCTC
3181	GCCGCAGCCG	AACGACCGAG	CGCAGCGAGT	CAGTGAGCGA	GGAAGCGGAA	GAGCGCCCAA
3241	TACGCAAACC	GCCTCTCCCC	GCGCGTTGGC	CGATTCATTA	ATGCAG	

//

File 2. Full HHPred results for aligned proteobacterial 14-helix CopD sequences, indicating CtaG homology in the C-terminal region

Query	2585137231/1-548 EK23	DRAFT_00619 P	utative c	opper e	xport	prote	in [Methyl	ococaceae sp. 73a	:	
EK23DRAFT_scat	ffold00001.1]									
Match_columns	548									
No_of_seqs	328 out of 1128									
Neff	6.8									
Searched_HMMs	68562									
Date	Mon Aug 17 20:01:21 2	015								
Command	/cluster/toolkit/prod	uction/biopro	gs/hhsuit	e/bin/h	hsearc	h -cp	ou 4 -v 1 -	i		
/cluster/tool}	kit/production/tmp/pro	duction/20633	59/407749	4.hhm -	d					
/cluster/tool}	kit/production/databas	es/hhpred/new	_dbs/pdb7	0_15Aug	15/db/	pdb.h	hm			
/cluster/tool}	kit/production/databas	es/hhpred/new	_dbs/tigr	fam_16S	ep14/d	lb/tig	rfam.hmm			
/cluster/tool}	kit/production/databas	es/hhpred/new	_dbs/supf	am_16Se	p14/db	/supf	am.hmm			
/cluster/tool}	kit/production/databas	es/hhpred/new	_dbs/pfam	_14Jan1	5/db//	pfam.	hhm -o			
/cluster/tool}	kit/production/tmp/pro	duction/20633	59/407749	4.hhr -	p 20 -	P 20	-Z 100 -B	100 -seq 1 -aliw 8	30 -local -ssm 2	-norealign
-sc 1 -dbstrle	en 10000 -cs /cluster/	toolkit/produ	ction/bic	progs/h	hblits	/cont	ext_data.l	ib		
No Hit		Prob E-value	P-value	Score	SS	Cols	Query HMM	Template HMM		
1 nfam09678	Caa3 CtaG Cytochrome	99 9 1 1E_26	1 6E-31	233 3	17 2	161	373_548	1_192 (241)		
2 TTGR03304	TIGR03304 outer memb	99 6 9 6E-20	1 4E_24	5 1	0 0	5	168-172	1-152 (241) 1-5 (10)		
3 TTGR04294	TIGR04294 prepilin_t	99 6 1 1E-18	1 6E_23	83	0.0	4	144_147	13-16 (16)		
4 TTGR01167	TIGRO1167 LPXTG cell	99 4 2 3E-16	3 4E_21	11 0	0 0	25	361-385	9_34 (34)		
5 nfam05425	CopD Copper resistan	99.5 6.6E-13	9.6E-18	115.9	13.1	99	196-297	2-101 (101)		
6 TTGR03057	TTGR03057 X-X-X-Leu-	98.2 1.8E-09	2.7E-14	5.7	0.0	5	213-217	18-22 (28)		
7 TTGR03501	TIGR03501 GlvGlv-CTE	97.5 3.9E-07	5.7E-12	8.9	0.0	14	245-258	9-22 (22)		
8 pfam03653	UPF0093 Uncharacteri	97.5 0.0063	9.2E-08	57.7	15.8	135	154-294	3-142 (147)		
9 pfam09980	DUF2214 Predicted me	96.9 0.19	2.8E-06	47.9	17.6	134	158-299	6 - 146(150)		
10 TTGR02737	TIGR02737 cytochrome	95.4 0.0012	1.8E-08	62.5	0.0	138	396-548	54-209 (281)		
11 TIGR00756	TIGR00756 pentatrico	95.0 0.0028	4E-08	6.9	0.0	10	479-488	16-25 (35)		
12 pfam10027	DUF2269 Predicted in	93.0 12	0.00017	36.0	17.7	143	158-301	2-150 (150)		
13 pfam13664	DUF4149 Domain of un	86.5 16	0.00024	32.1	10.8	88	165-265	1-93 (100)		
14 pfam07185	DUF1404 Protein of u	63.1 1.3E+02	0.0019	29.9	10.3	118	395-548	2-129 (170)		
15 pfam10355	Ytpl Protein of unkn	48.6 1.3E+02	0.0018	32.2	8.3	115	424-545	102-228 (268)		
16 pfam11346	DUF3149 Protein of u	20.7 2.9E+02	0.0043	21.1	4.0	29	227-255	3-31 (42)		
No 1										
>pfam09678 Caa	a3_CtaG Cytochrome c o:	xidase caa3 a	ssembly f	actor (Caa3_C	taG).	Members o	f this family are	the CtaG protei	n required
for assembly o	of active cytochrome c	oxidase of t	he caa3 t	ype, as	found	l in B	acillus su	btilis.		
Probab=99.95	E-value=1.1e-26 Score	e=233.33 Ali	gned_cols	=161 I	dentit	ies=2	0% Simila	rity=0.297 Sum_pr	cobs=0.0	
0 1										
U ss_pred		CCCCCCCNN	ннннннн	HHCCCCC	CCCCCH	HHHHH	нпсснннннн		442 (540)	
V 200010/201/1	I-J J/J GIFARIDSIVRRFH	WAQIWPLG	с тоготцгг	I RODAET	WLPPL	GrwES	TLGMGTALŐH	LINITAL AT A TOTAL	443 (348)	

T Consensus T pfam09678 T ss pred	1 ~~Y~g~~lrr~~~wp~rr~~f~G~~l~a~slfs~HmvghllL~vaPpLlvlg~P 1 AVLYLLGVRRLRRRGDRWPVWRTVAFLLGLALLYLATSSPLDAYGHALFSAHWQDHLLSWVAPPLLVLGAPV CchhHHHHHHhhcCCCCCHHHHHHHHHHHHHHHHHL	73 73	(241) (241)
Q ss pred	НИНИНААААААААААААААААААААААААААААА		
Q 2585137231/1-5	444ELKARTRPDAKKLQHIFPMLCAFGGILLLTHAHAQFELKSEFLIQSTHTTMGLLAVIMASGRWLEL	509	(548)
Q Consensus	444rWl	509	(548)
	+. ++.+++++ +++.+++++ + . +++++ ++. .+++++ +++		
T Consensus	74 ~l~~~l~~~l~~~h~~~~h~~~~h~~n~n~h~p~~~al~~nh~n~n~nh~n~nh~n~nh~nh~nh~nh~nh~nh~nh~n	151	(241)
T pfam09678	74 TLLLRALPPRGRRRLGAALHSRPLRFLTHPLVALALFAGSFYLWYLPPLFDAALSSHWGHWLMHVHFLLSGLLFWWPV	151	(241)
T ss_pred	ННННһһССссссһһһһННһһһННННнссНННННННННННН		
Q ss pred	-ссСссссссссссссссссс		
Q 2585137231/1-5	510 -RLVTPDGQSAVEGRIAGFVAILAMFIIGNFLMFYREPLY 548 (548)		
Q Consensus	510 _~~~~y 548 (548)		
	++ + .+ +++ +.++ +		
T Consensus	152 l~~~p~~r~~r~~r~~r~~r~~r~~r~~r~~r~~r~~r~~r		
T pfam09678	152 LGPDPVPRRLSYLGRLLYLFAAMPLHAFLGALLMFAPTPLY 192 (241)		
T ss_pred	hCCCCCccccChHHHHHHHHHHHHHHHHHHHHHHH		

No 2

No 2 >TIGR03304 TIGR03304 outer membrane insertion C-terminal signal; InterPro: IPR017690 Beta-barrel outer membrane proteins (OMP) rely on Omp85-like proteins for insertion into the outer membrane. The targeting signal for Omp85 is usually found in the C terminus of OMPs, and the target sequences differ somewhat by species. Observations in Escherichia coli mutant PhoE protein and neisserial OMPs suggest that there are alternative, less-efficient recognition sites in the protein that mediate binding to Omp85 [].
Probab=99.62 E-value=9.6e-20 Score=5.14 Aligned_cols=5 Identities=20% Similarity=0.354 Sum_probs=0.0

Q	ss_pred		ннннн		
Q	2585137231/1-5	168	AVWFG	172	(548)
Q	Consensus	168	av₩vG	172	(548)
			·+++		
т	Consensus	1	~~~g	5	(10)
т	TIGR03304	1	TFGLG	5	(10)

No 3

No 5 >TIGR04294 TIGR04294 prepilin-type processing-associated H-X9-DG domain; InterPro: IPR027558 This entry describes a region of approximately 16 residues found typically about 30 residues away from the C terminus of large numbers of proteins in the Planctomycetes, Lentisphaerae, and Verrucomicrobia, on proteins with a prepilin-type N-terminal cleavage/methylation domain (see TIGR02532 from TIGRFAMS). The motif H-X(9)-D-G is nearly invariant. Single genomes may encode over 200 such proteins. . Probab=99.56 E-value=1.1e-18 Score=8.33 Aligned_cols=4 Identities=25% Similarity=0.244 Sum_probs=0.0

Q	ss_pred		cCcc		
Q	2585137231/1-5	144	VHAV	147	(548)
Q	Consensus	144	GHAa	147	(548)
			.+		
т	Consensus	13	GHV~	16	(16)
т	TIGR04294	13	GHVA	16	(16)

No 4

NO 4 >TIGR01167 TIGR01167 LPXTG cell wall anchor domain; InterPro: IPR019931 This LPXTG motif-containing region is found at the C terminus of many surface proteins of Streptococcus and Streptomyces species. Cleavage between the Thr and Gly by sortase or a related enzyme leads to covalent anchoring at the new C-terminal Thr to the cell wall. Proteins that do not lie at the C terminus or are not found in Gram-positive bacteria are probably false-positive. A common feature of proteins containing this domain appears to be a high proportion of charged and zwitterionic residues immediatedly upstream of the LPXTG motif.. Probab=99.37 E-value=2.3e-16 Score=11.04 Aligned_cols=25 Identities=20% Similarity=0.170 Sum_probs=0.0

Q	ss_prea		сссн-ннннннннннннннннн		
Q	2585137231/1-5	361	NHNV-AGLFLTGMGIFAMLSYVRRFH	385	(548)
Q	Consensus	361	~~~~_~~~y~~g~~r~~~	385	(548)
			+.+++.+++++++ .++		
т	Consensus	9	~~~~~G~~l~~~~~rk~~	34	(34)
т	TIGR01167	9	SNSLLLLLGLLLLGLAGLLLRKRKKK	34	(34)

79 RLRRSVAIELVLGLLVLGLAAVL 101 (101)

нннннннннннннннн

No 5

>pfam05425 CopD Copper resistance protein D. Copper sequestering activity displayed by some bacteria is determined by copper-binding protein products of the copper resistance operon (cop). CopD, together with CopC, perform copper uptake into the cytoplasm. Probab=99.49 E-value=6.6e-13 Score=115.92 Aligned_cols=99 Identities=30% Similarity=0.453 Sum_probs=0.0

Q Q	ss_pred 2585137231/1-5	196	HHHHHHHHHHHHHHHHHHHHHHHHHHCCchhhhcCC VAIGRFANMGIASVVLLLLTGLPLAWVYIGSWDGLFG7	chhhhhhhhhhhhhhhhhhhhhhhhhhccCcchhhhh GYGSLVVTKVWLLLVALGFAYLNNR-AGRRWRENPGDNTLIT	274	(548)
Q	Consensus	196	~~l~RFS~~A~~av~~l~~sGv~~a~~~l~~~l~~~l~~]	~YG~lLlvKl~lv~~ll~la~~r~_~p~l~~~~p~l~~~~~ + +.+.+ ++++.+++++. + ++++++++	274	(548)
т	Consensus	2	~~~~rf~~~~~~l~~t	~yg~~l~~Kl~lv~~~~~~l~~~~l~~~~l~~~~	78	(101)
т	pfam05425	2	AVLRRFSRLALVAVALLLVTGVVNALVLVG-LGGLLT1	AYGRLLLAKLALVVLMLALAAANRFRLVPRLRRAWGRALG	78	(101)
Т	ss_pred		ННИНИНИНИНИНИНИНИНИНИНИНИНИНИС-сссссС	hннннннннннннннннннннннннннннhhocchhнн		
Q	ss_pred		ннининининининини			
Q	2585137231/1-5	275	KVPYYIEAETFILIGILFIAATL 297 (548)			
Q	Consensus	275	~l~r~i~~E~~l~~~vl~vaa~L 297 (548)			
т	Consensus	79	lil1 101 (101)			

T ss_pred No 6

T pfam05425

>TIGR03057 TIGR03057 X-X-X-Leu-X-X-Gly heptad repeats; InterPro: IPR023908 This entry represents a repeat of seven residues each, in which the fourth residue tends to be Leu and the seventh tends to be Gly in each set. This heptad periodicity,

corresponding to two turns of an alpha helix, suggests alpha-helical structure. Arrangement of these sequences on a helical wheel would show a strict alternation of Leu and Gly residues on one side of the helix, that is, an extremely bulky side chain alternating with the virtual absence of one. This suggests an extended zippering of one alpha helix to another, analogous to the shorter leucine zippers found in many dimerizing transcription factors. Proteins in which these heptad repeats occur often have higher order repeats of a unit comprised of several heptads. . Probab=98.25 E-value=1.8e-09 Score=5.69 Aligned_cols=5 Identities=40% Similarity=0.647 Sum_probs=0.0

Q	ss_pred		ннннн			
Q	2585137231/1-5	213	LLTGL	217	(548)	
Q	Consensus	213	~~sGv	217	(548)	
			+.+ +			
т	Consensus	18	L~~G~	22	(28)	
т	TIGR03057	18	LASGA	22	(28)	

No 7

No 7 >TIGR03501 TIGR03501 GlyGly-CTERM domain; InterPro: IPR020008 This homology domain, GlyGly-CTERM, shares a species distribution with rhombosortase (TIGR03902 from TIGRFAMS), a subfamily of rhomboid-like intramembrane serine proteases []. It is probably a recognition sequence for protein sorting and then cleavage by rhombosortase. Shewanella species have the largest number of target proteins per genome, up to thirteen. The domain occurs at the extreme carboxyl-terminus of a diverse set of proteins, most of which are enzymes with conventional signal sequences and with hydrolytic activities: nucleases, proteases, agarases, etc. The agarase AgaA from Vibro sp. strain JT0107 is secreted into the medium, while the same protein heterologously expressed in E. coli is retained in the cell fraction []. This suggests cleavage and release in species with this domain. Both this suggestion, and the chemical structure of the domain (motif, hydrophobic predicted transmembrane helix, cluster of basic residues) closely parallels that of the LPXTG/sortase system and the PEP-CTERM/exosortase(EpsH) system. For this reason, the putative processing enzyme is designated rhombosortase. . Probab=97.52 E-value=3.9e-07 Score=8.92 Aligned_cols=14 Identities=21% Similarity=0.233 Sum_probs=0.0

ss_pred		нннннннннннн		
2585137231/1-5	245	LLLVALGFAYLNNR	258	(548)
Consensus	245	lv~~ll~la~~~r~	258	(548)
		.++++.+. +		
Consensus	9	~LllL~~l~~~Rr~	22	(22)
TIGR03501	9	SLLLLLLGLRRRK	22	(22)
	ss_pred 2585137231/1-5 Consensus Consensus TIGR03501	ss_pred 2585137231/1-5 245 Consensus 245 Consensus 9 TIGR03501 9	ss_pred HHHHHHHHHHHHHHHHH 2585137231/1-5 245 LLUVALGFAYLNNR Consensus 245 lu~-ll-la~-r~ .+++.+.+ .+ .+ Consensus 9 -LllL~-Rr~ TIGR03501 9 SLLLLLLGERRRR	ss_pred HHHHHHHHHHHHH 2585137231/1-5 245 LLVALGFAYLNNR 258 Consensus 245 lv1l-lar 258 Consensus 9 -LllLar 258 Consensus 9 -LllLar 22 TIGR03501 9 SLLLLLLGLRRK 22

No 8

>pfam03653 UPF0093 Uncharacterized protein family (UPF0093).
Probab=97.55 E-value=0.0063 Score=57.70 Aligned_cols=135 Identities=14% Similarity=0.166 Sum_probs=0.0

g ss_preu			hннннннннннннннннннннннннннhhccCcchhhннннннн-нннннннннн	ннннн	HHHcCchh		
Q 25851372	31/1-5 15	54	ALLMATTVVHQFAAAVWFGCVAQLLALWRAARKDADALALWPVAIGR-FANMGIASVVLLLLT	GLPLA	WVYIGSWD	228	(548)
Q Consensu	s 15	54	~~a~~~~lHllaaavWvGgL~~l~~l~~~~~~~~~l~R-FS~~A~~av~~l~~s	Gv~~a	~~~1~~~~	228	(548)
			++ +++++ + ++++++.+++ ++ +++++	+.+.	+		
T Consensu	s	3	~~y~wlKalHIi~vv~W~aGlfylprl~v~~~~~~l~~~~l~~~~rl~~~i~~Pami~a~~~	G~~11	~~~g	79	(147)
T pfam0365	3	3	DYYLWIKALHIIFVISWMAGLFYLPRLFVYHAEAAPGSDESDEIFKIMERRLLRYIMNPAMILTWVF	GLLLLA	AITPG	79	(147)
T ss_pred			һһннннннннннннннннннннннннннессссһһнннннннн	ннннн	HHhhh		
0 cc prod			$1 \cdot 1 \cdot 2 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot $				
g ss_preu			плессепнининининининининининиппессесппининининининининининини				
Q 25851372	31/1-5 22	29	nnccccnnhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	294	(548)		
Q 25851372 Q Consensu	31/1-5 22 s 22	29 29	nnccccnnnnnnhnnnnnncccccnnnnhnnhnhnnhn	294 294	(548) (548)		
Q 25851372 Q Consensu	31/1-5 22 s 22	29 29	nnccccnnnnnnhnnnhnnnhnnhnnnncccccnnnhnhnhnhnhnhnhnhnhnhnhnhnh GLFGTGYGSLVVTKVWLLLVALGFAYLNNRAGRRWRENPGDNTLITKVPYUEAETFILIGILFIA ~1~~T~YG~lL1vKl-1v~11~1a~~r~~p~1~~r~r~r~r~r~r~r~r~r~r~r~r~r~r~r~	294 294	(548) (548)		
Q 25851372 Q Consensu T Consensu	31/1-5 22 s 22 s 8	29 29 80	nnccccnnnnnnnnnncccccnnnnnnnncclccnnnnnn	294 294 142	(548) (548) (147)		
Q 25851372 Q Consensu T Consensu T pfam0365	31/1-5 22 s 22 s 8	29 29 80 80	nnccccnnnnnnhnnnhnnnnncccccnnnnhnhnhnhn	294 294 142 142	(548) (548) (147) (147)		

No 9

0 ss pred

>pfam09980 DUF2214 Predicted membrane protein (DUF2214). This domain, found in various hypothetical bacterial proteins, has no known function. Probab=96.86 E-value=0.19 Score=47.86 Aligned cols=134 Identities=19% Similarity=0.083 Sum probs=0.0

Q 2585137231/1-5 Q Consensus	158 ATTVVHQFAAAVWFGCVAQLLALWRAARKDADALALWPVAIGRFANMGIASVVLLLLTGLPLAWVYIGSWDGLFGTGYGS 237 (548) 158 ~~~~lHllaaavWvGgL~l~l~-l~~l~~rq-~rq-~rq-rescv~ra~~rl~rscv~ra~~rl~rscv~ra~rq-rescv~rq-rscv 237 (548)
T Consensus T pfam09980 T ss pred	+ .++=++.+=++ +++.+. + ++++ +++.+.++++++++
0 ss pred	нициницинициници-popublic.ccbиницинициницинициницинициници
Q 2585137231/1-5 Q Consensus	238 LVVTKVWLLLVALGFAYLINR-AGRRWRENPGDINTLITKVPYYIEAETFILIGILFIAATLSS 299 (548) 238 LLVKL-lvll-la
T Consensus T pfam09980	78 -F-K-1Fvligl1Si-PT-firWr-1prv-E-ll-lipl-A-lMAR 146 (150) 78 LFHLKV7LFVLIGLLSLYPTITFIRWIPLRKGPAPVVSIGLAKRVKRIVNLELLFALIPLLATLMAR 146 (150)
i ss_preu	
No 10	
>TIGR02737 TIGR02 cytochrome c oxida Bacilli	737 cytochrome c oxidase assembly factor CtaG; InterPro: IPR014108 CtaG is required for assembly of active ase of the caa3 type, as found in Bacillus subtilis []. This entry represents CtaG from B.subtilis and other
Probab=95.41 E-va	alue=0.0012 Score=62.46 Aligned_cols=138 Identities=18% Similarity=0.262 Sum_probs=0.0
Q ss_pred	
Q Consensus	396 G
T Consensus T TIGR02737	54 ~~~~ly~~~g~p~~22 (281) 54 GLLLYIVKGSPLDLLGHLILTAHMVQMAVLYLVVPPLLLLGIPAWLYEKILERPFVKAVLKLLTKPLIALLL 126 (281)
Q ss_pred	НИНИНИНССНИНИНИНИКСНИНИНИНИНИНИНИНИНИНИН
0 2585137231/1-5	466 FGGILLLTHAHAQFELKSEFLIQSTHTTMGLLAVIMASGRWLEL-RLVTPDGQSAVEGRIAGFVAILAMFIIG 537 (548)

Q Consensus	466wH-paHg 537	(548)
	++++. . + ++ ++ ++++ .+++.	
T Consensus	127 f~g~f~~y~~p~~f~~~~~~a~~~a~~~w~~~~~a~~~w~~~~l~~pac 198	(281)
T TIGR02737	127 FNGLFSLYHVPLVFDTVKQSPLLHTLITLLLLVAAFLMWWPLLAKLKELQKLSDLKKLGYIFANGILLTPAC 198	(281)

Ŷ	as preu		mmmcccccc		
Q	2585137231/1-5	538	NFLMFYREPLY	548	(548)
Q	Consensus	538	~~l~f~~~~y	548	(548)
			.++. .++ +		
т	Consensus	199	~l~~f~~~pl~	209	(281)
т	TIGR02737	199	ALIIFASAPLY	209	(281)

No 11

>TIGR00756 TIGR00756 pentatricopeptide repeat domain; InterPro: IPR002885 This entry represents the PPR repeat.
Pentatricopeptide repeat (PPR) proteins are characterised by tandem repeats of a degenerate 35 amino acid motif []. Most of
PPR proteins have roles in mitochondria or plastid []. PPR repeats were discovered while screening Arabidopsis proteins for those
predicted to be targeted to mitochondria or chloroplast [,]. Some of these proteins have been shown to play a role in posttranscriptional processes within organelles and they are thought to be sequence-specific RNA-binding proteins [,]. Plant
genomes have between one hundred to five hundred PPR genes per genome whereas non-plant genomes encode two to six PPR
proteins.
>Although no PPR structures are yet known, the motif is predicted to fold into a helix-turn-helix structure
similar to those found in the tetratricopeptide repeat (TPR) family (see PD0C50005 from PROSITEDOC) [].
/p> Presentaining proteins include PET309 P32522 from SWISSPROT, which may be involved in RNA stabilisation [], and crp1,
which is involved in RNA processing []. The repeat is associated with a predicted plant protein 049549 from SWISSPROT that has a
domain organisation similar to the human BRCA1 protein.
Probab=94.96 E-value=0.0028 Score=6.85 Aligned_cols=10 Identities=20% Similarity=0.132 Sum_probs=0.0

Q	ss_pred		HHHHHhhcch		
Q	2585137231/1-5	479	FELKSEFLIQ	488	(548)
Q	Consensus	479	~~~a~~~~~	488	(548)
			++- .+++++		
т	Consensus	16	~~~a~~~~~	25	(35)
т	TIGR00756	16	VEEALELFDE	25	(35)

No 12

>>pfam10027 DUF2269 Predicted integral membrane protein (DUF2269). Members of this family of bacterial hypothetical integral membrane proteins have no known function. Probab=92.96 E-value=12 Score=36.03 Aligned_cols=143 Identities=17% Similarity=0.082 Sum_probs=0.0

Q ss_pred 0 2585137231/1-5	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Q Consensus	158lHllaaavWvGgL11
	····+ +++++_+ + +······ ··+·++++++· ···++··++··++··+
T Consensus	2 ~1k~1HV~aail1~G~~~~~a~~~~a~~~~~v~~~d~~f~~p~~i~~~v~Gl~l~~~~~~Wl~~~~~~Wl~~~~~~~~~~Wl~~~~~~~~
T piam10027	2 LLKFLHILSAVLLFGTGIGTAFYMLRARRTGDPAVIARAARRVVLADWLFTAPAVILQPITGLWLAHLAGWPLGQPWLLG 81 (150)
i ss_preu	
Q ss_pred	сһинининининининининин-һһһиһһссСс-сһһинининининининининининининининининини
Q 2585137231/1-5	234 GYGSLVVTKVWLLLVALGFAYLNNR-AGRRWRENPG-DNTLITKVPYYIEAETFILIGILFIAATLSSQP 301 (548)
Q Consensus	234 YG-LLIVKL-IV-rll-larfp-l
T Consensus	82 s~[iai-d
T pfam10027	82 SLVLYLVAGACWLPVVW-LOIRLRRLARAAAETGAPLPPEYHRLFRIWFALGVPAFIALVAIFWLMVAKP 150 (150)
T ss_pred	ннининининининининининининининининининин
No 13	
>pfam13664 DUF414	9 Domain of unknown function (DUF4149).
Probab=86.51 E-v	alue=16 Score=32.08 Aligned_cols=88 Identities=28% Similarity=0.254 Sum_probs=0.0
Q ss_pred	нниннинниннинниhheeCeehhhнининниннинниннинниннинниннинниннинни
Q 2585137231/1-5	165 FAAAVWFGCVAQLLALWRAARKDADALALWPVAIGRFANMGIASVVLLLLTGLPLAWVYIGSWDGLFGTGYGSLVV 240 (548)
Q Consensus	165 laaavWvGgL~l~l~~l~l~RFS~~A~av~l~sGv~a~l~T~YG~lLl 240 (548) ++. + +.++.+++++++ ++ ++++++
T Consensus	1 lfv-ap-lFLag-llFp-yi-li-l67 (100)
T pfam13664	1 LLLALWLGGQLFVGFVVAPVLFKALPREQAGALQGKLFPVYFLIGLALALLLLLTELLH
T SS_pred	
Q ss_pred	нининининининин
Q 2585137231/1-5	241 TKVWLLLVALGFAYINNR-AGRRWRE 265 (548)
Q Consensus	241 VNI~1/V~1/-1d~~ri~-rp~1~~ 205 (548)
T Consensus	68
T pfam13664	68 LQLLLAVVLLLTLLNLFYLTPRITA 93 (100)
T ss_pred	ннинининининининин
No 14	
>pfam07185 DUF140	4 Protein of unknown function (DUF1404). This family consists of several archaeal proteins of around 180
residues in lengt	h. Members of this family seem to be found exclusively in Sulfolobus tokodaii and Sulfolobus solfataricus. The
function of this	family is unknown.
Probab=63.08 E-v	alue=1.3e+02 Score=29.93 Aligned_cols=118 Identities=16% Similarity=0.185 Sum_probs=0.0
Q ss_pred 0 2585137231/1 5	
~	333 TOPOTTOTTOTTOTTOTTOTTOTTOPOTTOPOTTOP

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
Q 258513723	31/1-5 395 IGLSIFLFFRSDAETWPLGPIGFWESTFGNGEVFQHRIATLLAFVLGYMELKARTRPDAKKLQHIFPMLCAFGGILLLTH	474	(548)
Q Consensus	395 ~G~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	474	(548)
	. +++- =++= +.+++ +++		
T Consensus	2 ~~i~L~i~svNPte~l~~~~M~sHYaL~~~G~llGy~~~~~~ig~~~~v~WH	63	(170)
T pfam07185	2 LGLALIIISVNPFTESLEFKNPIVYMLSHYALYIGGILIGYKLFKGKYISLIIGGILAIFWH	63	(170)
T ss_pred	ссннннннньсрриннннссСринннннннннннннннннннннкссриннриссрирее		

Q ss pred		сһнынныныссынныннынныныныны	cccccccccch	ниннинниннинникс		
Q 2585137231/1-5	475	AHAQFELKSEFLIQSTHTTMGLLAVIMASGRWLELRLVTPI	GQSAVEGRIAGF	VAILAMFIIGNFLMFYR	544	(548)
Q Consensus	475	~p~~~~a~~~~H~~~~W~~l~~~~w~l~~~		g~~l~f~~	544	(548)
			+	+.=+.+++		
T Consensus	64	lP~fF~l~a~~~R~i~elsl~lgGiL~	Gss~~~m~~~~Ki	~Lf~lwM~gDT~LsI~liig-	125	(170)
T pfam07185	64	LPYFFDLGAGSLSYRILLEISLLLGGILI	GSSIRKMSLVFKI	SLFALWMIGDTLLSIFLILG-	125	(170)
T ss_pred		cchhHhhhhhHHHHHHHHHHHHHHHH	сссннннннннн	НННННННННННННННННН		

Q	ss_prea		CCCC		
Q	2585137231/1-5	545	EPLY	548	(548)
Q	Consensus	545	~~~y	548	(548)
т	Consensus	126	~р~Ү	129	(170)
т	pfam07185	126	SPLY	129	(170)
т	ss_pred		Cccc		

No 15 >pfam10355 Ytpl Protein of unknown function (Ytpl). This is a family of proteins found in fungi. The region appears to contain regions similar to mitochondrial electron transport proteins. The C-terminal domain is hydrophobic and negatively charged. There are consensus sites for both N-linked glycosylation and cAMP-dependent protein kinase phosphorylation. Probab=48.63 E-value=1.3e+02 Score=32.16 Aligned_cols=115 Identities=17% Similarity=0.165 Sum_probs=0.0

Q ss_pred Q 2585137231/1-5 Q Consensus	сннинининининининининининининининининин	
T Consensus	102 s-~DlQH~si~v~~~~gGL~G~~le~~~~~~s~N~~PalvI~TG~~MS~H~Q~~~st~vH~~wG 176 (268)	
T pfam10355	102 SAKDLQHTSIGIMFWGGGLCGMLLERKRVRWRLNSASYGFSRNPIPALTIILTGILMSSHHQHSMISTKIHKQWG 176 (268)	
T ss pred	ChhhHHHHHHHHHHHHHHHHHHHHHHHHHHHH	
Q ss_pred	ННННННННННННнссСссссссссссссссс-һННННННННННННННКСС	
Q 2585137231/1-5	496 LLAVIMASGRWLELRLVTPDGQSAVEGRIAG-FVAILAMFIIGNFLMFYRE 545 (548)	
Q Consensus	496 ~~~~~~~W~~l~~~~~~~~~~~~~~~~~~~~~g~~l~f~~~ 545 (548)	
	·····+·· ··++ -· + ·+···+ ·+·+·+·- ++· -+·	
T Consensus	177 ~lL~~ag~~Riit~~~l~~~~~s~~ps~p~~e~l~~F~Li~gG~vFM~Ste 228 (268)	
T pfam10355	177 YLLMGAGLFRIIEILFLLLDPPSSSLPSRPPTEYLTPFCLIAGGLVFMGSTE 228 (268)	
T ss_pred	HHHHHHHHHHhheeeEEccCCcccCCCCchhHHHHHHHHHHHHhheeecCH	
No 16 >pfam11346 DUF314 Probab=20 72 F w	Protein of unknown function (DUF3149). This bacterial family of proteins has no known function	•
110505 20:72 5-00	ac 2.50.02 boote 21.10 higher_corb 25 lachereres-210 bimilarity-0.471 bim_probs-0.0	
Q ss_pred	hhhhcCCchнинниннинниннин	

~ ~	bb_prou				
Q	2585137231/1-5	227	WDGLFGTGYGSLVVTKVWLLLVALGFAYL	255	(548)
Q	Consensus	227	~~~l~~T~YG~lLlvKl~lv~~ll~la~~	255	(548)
			.+ ++ + ++-+++++		
т	Consensus	3	W~~LF~t~iGL~Sl~vI~~~lgm~~f~~~	31	(42)
т	pfam11346	3	WLDLFGNDIGLMSLLVIFFTIGMMAFFGR	31	(42)
т	ss pred		ННННhcCcннннннннннннннннн		

Done!

Supplemental References

- 1 S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. F. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl and G. L. Shipley, *Clin Chem*, 2009, **55**, 611.
- 2 S. Fleige and M. W. Pfaffl, *Mol Aspects Med*, 2006, **27**, 126–139.
- J. Hellemans, G. Mortier, A. de Paepe, F. Speleman and J. Vandesompele, *Genome Biol*, 2007, **8**, R19.
- 4 I. Rieu and S. J. Powers, *Plant Cell*, 2009, **21**, 1031–1033.
- 5 J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. de Paepe and F. Speleman, *Genome Biol*, 2002, **3**, research0034.1.
- 6 C. W. Knapp, D. A. Fowle, E. Kulczycki, J. A. Roberts and D. W. Graham, *Proc Nat Acad Sci USA*, 2007, **104**, 12040–12045.
- 7 J. D. Semrau, S. Jagadevan, A. A. DiSpirito, A. Khalifa, J. Scanlan, B. H. Bergman, B. C. Freemeier, B. S. Baral, N. L. Bandow, A. Vorobev, D. H. Haft, S. Vuilleumier and J. C. Murrell, *Environ Microbiol*, 2013, **15**, 3077–3086.
- 8 G. Giannoukos, D. M. Ciulla, K. Huang, B. J. Haas, J. Izard, J. Z. Levin, J. Livny, A. M. Earl, D. Gevers, D. V. Ward, C. Nusbaum, B. W. Birren and A. Gnirke, *Genome Biol*, 2012, 13, R23.
- 9 T. Theis, R. A. Skurray and M. H. Brown, *J Microbiol Methods*, 2007, **70**, 355–362.
- 10 R. Gil, F. J. Silva, J. Pereto and A. Moya, *Microbiol Mol Biol R*, 2004, 68, 518–537.
- 11 P. A. Nieto, P. C. Covarrubias, E. Jedlicki, D. S. Holmes and R. Quatrini, *BMC Mol Biol*, 2009, **10**, 63.
- N. L. Bandow, W. H. Gallagher, L. A. Behling, D. W. Choi, J. D. Semrau, S. C. Hartsel, V. S. Gilles and A. A. DiSpirito, in *Methods in Methane Metabolism, Part B, 1, (2011) 1-14. doi:10.1016/B978-0-12-386905-0.00001-2*, Methods in enzymology, 2011, vol. 495, pp. 259–269.
- 13 A. Krogh, B. Larsson, G. von Heijne and E. L. Sonnhammer, *J Mol Bio*, 2001, **305**, 567–580.
- 14 K. D. Tsirigos, C. Peters, N. Shu, L. Käll and A. Elofsson, *Nucleic Acids Res*, 2015, **43**, W401–7.
- 15 J. Soding, A. Biegert and A. N. Lupas, *Nucleic Acids Res*, 2005, **33**, W244–W248.
- 16 K. Katoh and D. M. Standley, *Mol Biol Evol*, 2013, **30**, 772–780.
- 17 R. D. Finn, J. Clements, W. Arndt, B. L. Miller, T. J. Wheeler, F. Schreiber, A. Bateman and S. R. Eddy, *Nucleic Acids Res*, 2015, **43**, W30–8.
- 18 K. Katoh and D. M. Standley, *Methods Mol Biol*, 2014, **1079**, 131–146.