SUPPLEMENTAL INFORMATION

Rhodobacterales use a unique L-threonine kinase for the assembly of the nucleotide loop of coenzyme B_{12}

Norbert K. Tavares, Chelsey M. VanDrisse, and Jorge C. Escalante-Semerena^{*} Department of Microbiology, University of Georgia

*Corresponding author: Department of Microbiology, University of Georgia, 212C Biological Sciences Building, 120 Cedar Street, Athens, GA 30602. Phone: +1 (706) 542-2651, Fax: +1 (706) 542-2815 email: jcescala@uga.edu

Running title: BluE, a unique L-Thr kinase found in Rhodobacterales

SUPPLEMENTAL TABLES

Table S1. Locus tag list. List of BluE and PduX homologues and their corresponding locus tags, phylum Class, order, genera, species and strain names used in the phylogenetic analysis.

BluE homologues

Locus Tag	Organism	Phylum	Class	Order
	Actibacterium mucosum			
ACMU_15650	KCTC 23349	Proteobacteria	Alphaproteobacteria	Rhodobacterales
U879_17450	Defluviimonas sp. 20V17	Proteobacteria	Alphaproteobacteria	Rhodobacterales
IQ03DRAFT_0485	Gemmobacter caeni			
6	CGMCC 1.7745	Proteobacteria	Alphaproteobacteria	Rhodobacterales
Ga0057541_01298	Maribius sp. MOLA 401	Proteobacteria	Alphaproteobacteria	Rhodobacterales
B161DRAFT_0227	Meganema perideroedes			
7	DSM 15528	Proteobacteria	Alphaproteobacteria	Rhizobiales
	<i>Oceanicola</i> sp.			
U745DRAFT_3163	MCTG156(1a)	Proteobacteria	Alphaproteobacteria	Rhodobacterales
	Rhodobacter capsulatus			
RCAP_rcc02055	SB1003	Proteobacteria	Alphaproteobacteria	Rhodobacterales
	Rhodobacter sphaeroides			
RSP_0788	2.4.1	Proteobacteria	Alphaproteobacteria	Rhodobacterales
	Roseivivax halodurans			
OCH239_08945	JCM 10272	Proteobacteria	Alphaproteobacteria	Rhodobacterales
RGAI101_1337	Roseobacter sp. GAI101	Proteobacteria	Alphaproteobacteria	Rhodobacterales
SSE37_12289	Sagittula stellata E-37	Proteobacteria	Alphaproteobacteria	Rhodobacterales
ATO10_12729	Shimia sp. 22II-S11-Z10	Proteobacteria	Alphaproteobacteria	Rhodobacterales
	Sulfitobacter pontiacus			
PM01_02495	3SOLIMAR09	Proteobacteria	Alphaproteobacteria	Rhodobacterales
	Thioclava pacifica DSM			
TP2_17155	10166	Proteobacteria	Alphaproteobacteria	Rhodobacterales

PduX homologues

Locus Tag	Organism	Phylum	Class	Order
	Acetohalobium arabaticum			
Acear_0846	Z-7288	Firmicutes	Clostridia	Halanaerobiales
	Brenneria salicis Dye			
Bresa_02388	EX2, ATCC 15712	Proteobacteria	Gammaproteobacteria	Enterobacteriales
	Citrobacter freundii			
CFNIH1_21285	CFNIH1	Proteobacteria	Gammaproteobacteria	Enterobacteriales
CDM120_03509	Clostridium difficile M120	Firmicutes	Clostridia	Clostridiales
	Desulfitobacterium			
DSY4058	hafniense Y51	Firmicutes	Clostridia	Clostridiales
	Desulfotomaculum			
Desca_0591	carboxydivorans	Firmicutes	Clostridia	Clostridiales
ETAF_1814	Edwardsiella tarda FL6-60	Proteobacteria	Gammaproteobacteria	Enterobacteriales
	Enterobacter cloacae			
Entcl_1739	SCF1	Proteobacteria	Gammaproteobacteria	Enterobacteriales
	Enterobacteriaceae			
CrFGI571_1619	bacterium FGI 57	Proteobacteria	Gammaproteobacteria	Enterobacteriales
	Eubacterium limosum			
ELI_0756	KIST612	Firmicutes	Clostridia	Clostridiales
	Halobacteroides halobius			
Halha_1700	MD-1	Firmicutes	Clostridia	Halanaerobiales
HR38_27680	Klebsiella oxytoca M1	Proteobacteria	Gammaproteobacteria	Enterobacteriales

	Listeria monocytogenes			
Ga0057525_01204	Lm60	Firmicutes	Bacilli	Bacillales
	Mahella australiensis 50-1			Thermoanaerobact
Mahau_0759	BON, DSM 15567	Firmicutes	Clostridia	erales
	Moorella thermoacetica			Thermoanaerobact
Moth_1103	ATCC 39073	Firmicutes	Clostridia	erales
	Morganella morganii			
MU9_1018	morganii KT	Proteobacteria	Gammaproteobacteria	Enterobacteriales
	Photorhabdus luminescens			
plu2966	laumondii TTO1	Proteobacteria	Gammaproteobacteria	Enterobacteriales
	Salmonella enterica sv.			
STM2058	Typhimurium LT2	Proteobacteria	Gammaproteobacteria	Enterobacteriales
	Shimwellia blattae DSM			
EBL_c14750	4481	Proteobacteria	Gammaproteobacteria	Enterobacteriales
	Tepidanaerobacter			Thermoanaerobact
TEPIRE1_11390	acetatoxydans Re1	Firmicutes	Clostridia	erales
	Thermacetogenium			Thermoanaerobact
Tph_c05150	phaeum PB, DSM 12270	Firmicutes	Clostridia	erales
TherJR_1311	Thermincola potens JR	Firmicutes	Clostridia	Clostridiales
	Thermovirga lienii			
Tlie_0163	Cas60314, DSM 17291	Synergistetes	Synergistia	Synergistales
	Tolumonas auensis TA 4,			
Tola_1706	DSM 9187	Proteobacteria	Gammaproteobacteria	Aeromonadales
	Veillonella parvula Te3,			
Vpar_0909	DSM 2008	Firmicutes	Negativicutes	Selenomonadales
	Xenorhabdus nematophila			
XNC1_1145	ATCC 19061	Proteobacteria	Gammaproteobacteria	Enterobacteriales
Ga0058816_01570	Yersinia kristensenii 33639	Proteobacteria	Gammaproteobacteria	Enterobacteriales

Table S2. Strains and plasmids used in this study. *S. enterica* strains are derivatives of subsp. *enterica* serovar Typhimurium strain LT2. Strains and plasmids were constructed during the course of this work unless stated otherwise.

Strain/Plasmid	Relevant genotype	Reference Source
Salmonella enterica		
JE7088	$\Delta metE2702 ara-9$	Laboratory collection
Derivatives of JE7088		
JE11685	/ pBAD24 <i>bla</i> ⁺	
JE11686	/ pBAD30 bla ⁺	
JE12914	/ pPDU15 <i>bla</i> ⁺	
JE12656	$\Delta pduX516$	
JE12686	$\Delta pduX516 / pPDU15 bla^+$	
JE13063	$\Delta pduX516 / pBAD30 \ bla^+$	
JE15873	$\Delta pduX516 / pRcBLUE3bla^+$	
JE16285	$\Delta pduX516$ / pRsBLUE3 bla^+	
JE21278	$\Delta pduX516$ / pRsBLUE7 bla ⁺	
JE21979	$\Delta pduX516 / pBAD24 bla^+$	
JE12941	$\Delta cobD1371$	
JE14935	$\Delta cobD1371$ / pBAD24 bla^+	

Escherichia coli		
BL21 (λDE3)	F^{-} / <i>ompT</i> , <i>hsdS_B</i> , (<i>rB</i> ⁻ , <i>mB</i> ⁻), <i>dcm</i> , <i>gal</i> , λ (DE3)	
C41 (λDE3)	F ⁻ / ompT, hsdS _B , (rB ⁻ mB ⁻) dcm, gal λ (DE3); BL21	(Miroux & Walker,
	derivative optimized for protein overexpression,	1996)
	including at least one uncharacterized mutation	(Miroux & Walker,
C43 (λDE3)	F^{-} / ompT gal hsdS _B (rB ⁻ mB ⁻) [dcm] [lon]C41	1996)
	derivative, including at least two uncharacterized	
	mutations	(Miroux & Walker,
BL21 (λDE3) RIL	RIL Codon Plus plasmid (RIL) $argU$, $+ ileY$, $leuW$	1996)
	tRNAs cat^+	
BL21/pLysSRARE2	$lysS^+$ cat ⁺ argU ⁺ , argW ⁺ , $ileX^+$, $glyT^+$, $leuW^+$, $proL^+$,	
	$metT^+$, $thrT^+$, $tyrU^+$, $thrU^+$ tRNAs	Strategene
Rosetta2(DE3)/pLysS	$F^- / ompT hsdS8 (rB^- mB^-) gal dcm lacY1 / lysS^+ cat^+$	
Lemo21 (λ DE3)	fhuA2 [lon] ompT gal λ (DE3) [dcm] Δ hsdS	
	$\Delta lacI::PlacUV5::T7 i21 \Delta nin5 (cat^{+}) pLemo =$	
	pACYC184 plasmid - PrhaBAD-lysY ⁺ , cat ⁺	Novagen
		NEB
DH5a	F^- / endA1 hsdR17(rk ⁻ , mk ⁺) glnV44 thi-1 recA1 gyrA96	(Woodcock et al.,
	(Nx ^{κ}) relA1 U169 deoR (Φ 80-dlacZ M15 Δ (lacZYA-argF) phoAsupE44 relA1	1989)

Rhodobacter sphaeroides 2.4.1

JE8777	$cobB^+$ $bluE^+$	T. Donohue
JE24356	<i>cobB</i> ⁺ <i>bluE</i> ⁺ / pBBR1MCS-2	
JE24357	$\Delta cobB / pBBR1MCS-2$	
JE24358	$\Delta bluE / pBBR1MCS-2$	
JE24359	$\Delta cobB \Delta bluE / pBBR1MCS-2$	
JE24360	Δ <i>bluE</i> / p <i>Rs</i> BLUE10	
JE24361	$\Delta cobB \Delta bluE / pRsBLUE10$	

Plasmids

pPDU15	S. enterica $pduX^+$ in pBAD30 bla^+	
pRcBLUE3	<i>R. capsulatus bluE</i> ⁺ in pBAD24 bla^+	
pRsBLUE3	<i>R. sphaeroides bluE</i> ⁺ in pBAD24 <i>bla</i> ⁺	
pPDU23	S. enterica $pduX^+$ in pTEV5 bla^+	
pRsBLUE4	<i>R. sphaeroides bluE</i> ⁺ in pTEV5 <i>bla</i> ⁺	
pRsBLUE7	<i>R. sphaeroides bluE06</i> (encodes <i>Rs</i> CobD ^{G99A}) in	
	pTEV5 <i>bla</i> ⁺	
pRsBLUE9	<i>bluE</i> deletion plasmid for <i>R. sphaeroides</i>	
pRsBLUE10	<i>R. sphaeroides bluE</i> in pBBR1MCS-2	
pTA925-PduX-His6	S. enterica pduX ⁺ in pTA925 kan ⁺	(Fan & Bobik, 2008), T. Bobik
pTA925-His8-PduX	S. enterica pduX ⁺ in pTA925 kan ⁺	(Fan <i>et al.</i> , 2009), T. Bobik
pBAD24	Cloning / complementation vector <i>bla</i> ⁺	(Guzman et al., 1995)
pBAD30	Cloning / complementation vector <i>bla</i> ⁺	(Guzman et al., 1995)
pTEV5	Cloning / overexpression vector, <i>N</i> -terminal rTEV protease-cleavable His ₆ tag <i>bla</i> ⁺	(Rocco <i>et al.</i> , 2008)
pK18mobsacB	Suicide vector for allelic exchange kan ⁺ sacB ⁺	(Schafer et al., 1994)
pBBR1MCS-2	Cloning / complementation vector kan ⁺	(Kovach et al., 1995)

pTA925

Cloning / overexpression vector kan⁺

(Johnson *et al.*, 2001), T. Bobik

Table S3. Primer list. List of primers used in this study. Sequences in bold were the restriction enzyme cut site indicated in the primer name.

Name	Sequence
Deletion primers	
pduX_wan5'_b	ATGCGCGCACACTATTCGTACCTGAAAGGTGATAATGTGGTGTAGGCTGGAGCTGCTTC
pduX_wan3'_b	GCCAGTGACCATCTTGAGTAAATGTTGTTTTGGCCAGTGCATATGAATATCCTCCTTAG
RSP0788_delA_EcoRI	NNNNNGAATTC TCGAGCTTGCGCTCAGG
RSP0788_delB	GCCAAGGCCAGCGCGAGCGGC
RSP0788_delC	CGCGCTGGCCTTGGCCCACGGT
RSP0788_delD_SacI	NNNNNTCTAGAGCGTGCTCGCCATCGA

Cloning primers

pduX_Kpn15'	TAGG GGTACC ATGCGCGCACACTATTCGTA
pduX_Hind3'	TAGGAAGCTTTCACTGCAGTTTGACCCCG
Rc_BluE_EcoRI5'	AGCTGAATTCTTTGGTCGATCGCGGGCGTGAA
Rc_BluE_XbaI3'	ATCG TCTAGAATCGCCACCACCATCATC
RsBluE_Nhe5'	TGAA GCTAGCGGCACTGCAATGACGCTG
RsBluE_KpnI5'	TAGGGTACCATGACGCTGGCGGCGGGCCTCA
RsBluE_HindIII3'	TAGAAGCTTTCAGGCTCCGCCGATGCGGAA
RSP0788_EcoRI5'	AGT GAATTC GGCACTGCAATGACGCTG
RSP0788_XbaI3'	ATCTCTAGAGATAGGGCACCCGGTTGAT
RSP0788_HindIII_5'	NNNNNAAGCTTGGCACTGCAATGACGCTG
RSP0788_EcoRI_3'	NNNNNGAATTCTCAGGCTCCGCCGATGC

Site directed mutagenesis

RsBluE_G99A GCCGGGCGCGCGCGCGCGCGCGCCTCGA

Sequencing primers

pduX_flank5'	GCGTAATGCGACATTTATCCA
pduX_flank3'	TGAGGCGATTCAGGGTATCAT
cobD_flank5'	CGACATTGGCCTCGGTTT
cobD_flank3'	GAAACGCCCTGGCTTAAT
RSP0788_flank 5'	GGTCGAGCATCTGGCCAGCT
RSP0788_flank 3'	GATCCCCGTCGAGAGGTCGA

SUPPLEMENTAL FIGURES

Figure S1. Complementation of *S. enterica pduX* strain. Representative graphs of growth analyses of *S. enterica* cells grown aerobically at 37°C in NCE minimal medium with A. glycerol (22 mM) and Cby (1 nM) or B. ethanolamine (90 mM), Cby (300 nM), DMB (0.15 mM), and supplemented with arabinose (0.5 mM), ampicillin (0.1 mg mL⁻¹), and MgSO₄ (1 mM). Experiments were replicated in three independent experiments, each performed in triplicate. Error bar represent the standard error of the mean. Figure key: $\Delta pduX/pRsBluE$ (\Box), $\Delta pduX/pSePduX$ (\blacktriangle), $\Delta pduX/pRsBluE^{G99A}$ (\blacklozenge), $\Delta pduX/vector$ (\bigcirc), $pduX^+/vector$ (\triangle).

Figure S2. Pigmentation scan of *R. sphaeroides bluE*⁺ and *AbluE* cells supplemented with or without cyanocobalamin (CNCbl). Cells were grown aerobically in Sistrom's Medium (5 mL) with succinate (10 mM) for 3 days at 30°C without the addition of CNCbl (panel A). The absence of BluE function resulted in a 'blush' phenotype (panel B) that could be complemented by ectopically expressing the *bluE*⁺ allele squares, panel A), or by supplementing the medium with CNCbl (15 nM). Cultures (5 mL) were centrifuged at 6,000 x g for 5 min . Cells were re-suspended in 0.5 mL of Sistrom's medium and absorbance readings. Differences in pigments were noted by observation of readings taken at 800 and 875 nm. Results were obtained in technical triplicate and error bars represent standard error of the mean (SEM). Pellets shown in panels B and C were were obtained using a microcentrifuge.

Figure S3. Standard curve for ATP to ADP conversion. Standard curve used to calculate the percent conversion of ADP to ATP using the ADP-GloTM Kinase/ATPase Assay kit (Promega). Luminescence was measured at 560 nm. RLU; relative light units.

Figure S4. SDS-PAGE gel of partially purified detergent-free H₆-tagged proteins. SDS-PAGE gels showing partially purified proteins. Each gel shows a protein size maker in lane 1, followed by whole cell extracts in lane 2, and in lane 3 enriched fractions of partially purified His₆-tagged proteins eluted from a Ni-NTA resin with 200 mM imidazole. A. *Rs*BluE, B. *Se*PduX, and C. extracts from cells expressing the empty overexpression vector pTEV5. Dashed line indicates the location where the gel images were spliced together for simple and clear presentation. For whole cell extracts, protein concentration was calculated using a Bradford Assay and 20 µg of protein was loaded to each lane.

Figure S5. SDS-PAGE gel comparing overexpression and solubility of detergent free *N*- and *C*-terminal His-tagged SePduX and RsBluE proteins. SDS-page gel showing the soluble and insoluble fractions of previously published plasmids (Fan *et al.*, 2009, Fan & Bobik, 2008) encoding SePduX with a non-cleavable *C*-terminal His₆-tag (pTA925-PduX-His6 (Fan & Bobik, 2008), lanes 2, 3) and a non-cleavable *N*-terminal His₈-tag (pTA925-His8-PduX (Fan *et al.*, 2009), lanes 4, 5), and plasmids generated during the course of this work encoding rTEV protease-cleavable *N*-terminal His₆-tagged SePduX (pPDU23, lane 6, 7), and RsBluE (pRsBLUE4, lanes 8, 9), and protein expression levels when these inducible plasmids are not induced with IPTG (lanes 10). Proteins were purified as described in *Materials and Methods*. Lane 1 shows the protein size marker. The theoretical molecular weights for *Rs*BluE and *Se*PduX without the His-tags or rTEV cleavage sites are shown in Kilodaltons (kDa). Arrows indicate the location of the overexpressed proteins of interest. For whole cell extracts, protein concentration was calculated using a Bradford Assay and 20 µg of protein was loaded to each lane.

Figure S6. ³¹**P-NMR spectra of** *Rs***BluE reaction containing L-Ser and or ATP.** Representative ³¹**P**-NMR spectra of duplicate experiments used to detect the α , β , or γ phosphates of ATP or ADP, pyrophosphate (PPi), orthophosphate (Pi), and the phosphate group of L-Ser-P. Reaction mixtures containing MgCl₂ (1 mM), ATP (3 mM), L-Ser (6 mM), and 10 µL of detergent-free protein (11 µM), eluted directly from the Ni purification column, were incubated at 25°C for 1 h A. L-Ser-P (3 mM) and ATP (3 mM) standards. B. Reaction mixture containing ATP and *Rs*BluE. C. Reaction mixture containing ATP, L-Ser, and *Rs*BluE.

Figure S7. ATPase activity as a function of substrate. *R. sphaeroides* BluE (*Rs*BluE) specific activity as a function of ATP, L-Thr, or L-Ser concentration (panels A, C, E, respectively). Panels B, D, and F show specific activities of *S. enterica* PduX (*Se*PduX) as a function of ATP, L-Thr, or L-Ser concentration, respectively. Specific activity is reported in µmol of ATP per min per mg of protein with the mean standard error of triplicate reactions represented by the error bars. Activity was measured by the NADH-consuming assay described in *Material and Methods*. Assays were performed with purified, sarkosyl-solubilized *Rs*BluE and *Se*PduX (3 µM) enzymes. For ATPase specific activity L-Thr concentration was held at 50 mM while the ATP concentration was varied (5 - 100 mM). To measure the effect of L-Thr or L-Ser was varied (0 - 100 mM). Independent experiments were performed in duplicate. Error bars represent the standard deviation of triplicate reactions.

Figure S8. Optimization of *RsBluE* **reaction conditions.** ATPase activity assay measured with ADP-Glo[™] Kinase/ATPase Assay kit, expressed as mM of ATP per mg of protein, with the standard error of the mean of triplicate reactions represented by the error bars. Unless otherwise indicated, each reaction mixture contained HEPES buffer (50 mM, pH 7.0 at 25°C), MgCl₂ (1 mM), ATP (0.1 mM), L-Thr (10 mM), and Sarkosyl-solubilized protein (12 µM) incubated at 25°C for 1 h. A. *Rs*BluE activity as a function of pH. B. *Rs*BluE activity as a function of protein concentration (2 - 24 µM). C. *Rs*BluE activity in the presence of added salts (100 mM). D. *Rs*BluE activity as a function of added divalent metals (1 mM). E. *Rs*BluE activity as a function (0.1 - 100 mM). F. *Rs*BluE activity as a function of L-Ser concentration (0 - 100 mM). G. *Rs*BluE activity as a function of added L- and D- amino acids (10 mM). H. *Rs*BluE activity as a function (1 - 20 mM) with L-Thr (50 mM). I. *Rs*BluE activity in the presence of ATPase/kinase inhibitors ADP (20 mM), sodium pyrophosphate (PPi, 10 mM), sodium *ortho*-phosphate (Pi, 10 mM), adenosine 5'-[γ-thio]triphosphate (ADP-γ-S, 0.2 mM), α,β-methyleneadenosine 5'-triphosphate (AMP-CPP, 10 mM), and P1,P3-di(adenosine-5') triphosphate ammonium salt (Ap3A, 10 mM).

REFERENCES

- Fan, C., and Bobik, T.A. (2008) The PDUX enzyme of Salmonella enterica is an L-threonine kinase used for coenzyme B₁₂ synthesis. J. Biol. Chem. 283: 11322-11329.
- Fan, C., Fromm, H.J., and Bobik, T.A. (2009) Kinetic and functional analysis of L-threonine kinase, the PduX enzyme of *Salmonella enterica*. J. Biol. Chem. **284**: 20240-20248.
- Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J. Bacteriol.* **177**: 4121-4130.
- Johnson, C.L., Pechonick, E., Park, S.D., Havemann, G.D., Leal, N.A., and Bobik, T.A. (2001) Functional genomic, biochemical, and genetic characterization of the *Salmonella pduO* gene, an ATP:cob(I)alamin adenosyltransferase gene. J. Bacteriol. 183: 1577-1584.

- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., 2nd, and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibioticresistance cassettes. *Gene* 166: 175-176.
- Miroux, B., and Walker, J.E. (1996) Over-production of proteins in *Escherichia coli*: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. *J. Mol. Biol.* **260**: 289-298.
- Rocco, C.J., Dennison, K.L., Klenchin, V.A., Rayment, I., and Escalante-Semerena, J.C. (2008) Construction and use of new cloning vectors for the rapid isolation of recombinant proteins from *Escherichia coli*. *Plasmid* 59: 231-237.
- Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. (1994) Small mobilizable multipurpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene* 145: 69-73.
- Woodcock, D.M., Crowther, P.J., Doherty, J., Jefferson, S., De Cruz, E., Noyer-Weidner, M., Smith, S.S., Michael, M.Z., and Graham, M.W. (1989) Quantitative evaluation of *Escherichia coli* host strains for tolerance to cytosine methylation in plasmid and phage recombinants. *Nucl. Acids Res.* 17: 3469-3478.