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A. Derivation and analysis of the non-spatial model. We start
with the well-mixed system of the pathogen (P ), toxin (T ),
and active immune effectors (I) governed by

dP

dt
= bP (1− P )− kIP [1a]

dT

dt
= sP −mT [1b]

dI

dt
= r(I0 − I)− eTI, [1c]

where, as in the main text, b is the intrinsic growth rate
of the pathogen, k is the rate at which an immune effector
eliminates the pathogen, s and m are respectively the rates of
toxin production and decay, I0 is the constant total density
of immune effectors (active and decapacitated), e is the rate
at which the toxin decapacitates the active immune effectors,
and r is the rate at which decapacitated immune effectors
recover. In Eq. (1b), we neglect the toxin molecules that bind
to an immune effector; this is an acceptable approximation
when the number of toxin molecules is much higher than the
number of immune effectors.

Assume that the toxin is produced and decays fast (s,m→
∞) and the immune effectors are decapacitated and recover
fast (r, e → ∞); from Eq. (1b) and Eq. (1c), T and I then
achieve the quasi-equilibrium

T̂ = sP

m
, Î = I0

1 + es
rm
P
.

Substituting Î into Eq. (1a) and using the dimensionless pa-
rameters ξ = kI0

b
and χ = es

rm
, we get the pathogen dynamic

dP

dt
= bP

[
1− P − ξ

1 + χP

]
[2]

given in the main text.
Apart from the pathogen-free equilibrium P0 = 0, Eq. (2)

can have up to two positive equilibria given by

P1,2 =
χ− 1±

√
(χ− 1)2 − 4χ(ξ − 1)

2χ . [3]

We use P1 to denote the smaller (“−”) root and P2 for the
greater (“+”) root.

If ξ < 1, then P1 is negative and only P2 is positive; the
dynamics in Eq. (2) is attracted to P2 irrespectively of the
initial (positive) population size of the pathogen (this is easy
to see directly from Eq. (2), given that the last term in the
brackets is between zero and ξ < 1). The condition ξ < 1 is
equivalent to b > kI0, which means that the pathogen can
grow even if all immune effectors are actively killing it (cf.
Eq. (1a)), i.e., the pathogen does not depend on the toxin.

If ξ > 1 and χ > χ0(ξ) = 2ξ − 1 + 2
√
ξ(ξ − 1), then both

roots P1,2 are positive, and the pathogen dynamics exhibits

an Allee effect. At low pathogen densities, where the toxin
concentration T̂ is negligible and therefore almost all immune
effectors are active, the pathogen population declines towards
the asymptotically stable equilibrium P0 (cf. in Eq. (2) for
small P , the bracketed terms are approximately 1−ξ < 0). For
P1 < P < P2, however, the pathogen population grows and
equilibrates at the asymptotically stable equilibrium P2; the
unstable equilibrium P1 is the Allee threshold. This scenario
occurs when the pathogen cannot grow without the toxin
(ξ > 1) and the effect of the toxin is strong (χ > χ0(ξ));
recall that high χ is equivalent to an efficient toxin (high e)
produced in large quantities (high s) that decays only slowly
(low m) and decapacitates the immune effectors for a long
time (low r). If ξ > 1 and χ < χ0(ξ), then P1,2 are negative
or complex, and the pathogen-free equilibrium P0 is the only
attractor; the pathogen population dies out because its toxin
is not sufficiently strong to overcome the immune effectors.

Differentiating the Allee threshold P1 with respect to χ,
it is easy to see that the derivative has the same sign as
2χ(1 − ξ − P1), which is clearly negative when the system
has an Allee effect, i.e., when ξ > 1 and P1 > 0. Hence
decreasing χ, for example by increasing the toxin removal rate
m, increases P1, the minimum initial density of the pathogen
necessary for its spread. When χ becomes as low as χ0(ξ),
the two positive equilibria P1,2 collide and disappear in a fold
bifurcation.

B. Derivation and analysis of the reaction-diffusion model.
To embed the above system into a spatial reaction-diffusion
model, let P (x, t), T (x, t) and I(x, t) denote respectively the
density of pathogens, toxin and immune effectors at spatial
location x ∈ [−L,L] at time t. We consider a large inter-
val (L → ∞) with reflecting boundaries. The full reaction-
diffusion system is given by

∂P

∂t
= bP (1− P )− kIP +DP

∂2P

∂x2 [4a]

∂T

∂t
= sP −mT +DT

∂2T

∂x2 [4b]

∂I

∂t
= r(I0 − I)− eTI +DI

∂2I

∂x2 [4c]

where DP , DT and DI are the diffusion coefficients of the
pathogen, the toxin, and the immune effectors, respectively.
We assume, as above, that the toxin and immune effector
reactions are fast (s,m, r, e→∞).

Slow diffusion. Consider first the case when the toxin and the
immune effectors diffuse slowly as compared to their reaction
speeds (i.e., DT and DI are finite). In this case, the diffusion
terms in Eq. (4b) and Eq. (4c) are negligible, and the toxin
and immune effectors attain their local quasi-equilibria

T̂ (x, t) = sP (x, t)
m

, Î(x, t) = I0

1 + es
rm
P (x, t) .
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Substituting Î(x, t) into Eq. (4a), we arrive at

∂P

∂t
= bf(P ) +DP

∂2P

∂x2 with f(P ) = P

[
1− P − ξ

1 + χP

]
,

where ξ = kI0
b

and χ = es
rm

as above.
We seek a travelling wave solution to this partial differential

equation following Murray (1) (see Vol. 1, 13.1–13.2, 13.5).
We assume that the pathogen inoculum develops such that in
an interval around the center of the inoculum, i.e., near x = 0,
the pathogen density attains the stable positive equilibrium
P2 given in Eq. (3), whereas far from the center on each side,
the pathogen is absent; these two regimes are connected by
a wavefront on each side of the center that may move at a
constant speed outwards (the pathogen spreads by occupying
more and more space) or inwards to the center (the space
occupied by the pathogen shrinks and the pathogen dies out).

Let c denote the speed of the travelling wave on the right
of the center; c > 0 corresponds to a spreading pathogen (the
right wavefront moves further to the right), whereas c < 0
corresponds to a shrinking pathogen population (the right
wavefront moves to the left, i.e., closer to the center). Let
z = x− ct be the spatial coordinate in the frame co-moving
with the wave. Substituting P (t, x) = P (0, x − ct) =: P̃ (z)
(where the function P̃ describes the constant shape of the
wavefront) into the partial differential equation, we obtain

bf(P̃ (z)) + cP̃ ′(z) +DP P̃
′′(z) = 0,

where P̃ ′(z) and P̃ ′′(z) denote the first and second derivatives
of P̃ (z). Multiplying with P̃ ′(z) and integrating for z between
0 and L yields

b

∫ L

0
f(P̃ (z))dP̃

dz
dz + c

∫ L

0
(P̃ ′(z))2dz

+DP

∫ L

0
P̃ ′′(z)P̃ ′(z)dz = 0.

Since P̃ (0) = P2 and P̃ (L) = 0, the first integral in this
equation equals −

∫ P2
0 f(P̃ )dP̃ ; and with integration by parts

and using P̃ ′(0) = P̃ ′(L) = 0, the last integral is easily shown
to be zero. The speed of the travelling wave is therefore

c =
b
∫ P2

0 f(P̃ )dP̃∫ L

0 (P̃ ′(z))2dz
.

Since the denominator of this expression is clearly positive,
the sign of the speed is given by the sign of the integral in the
numerator. Substituting f(P ), we obtain that the sign of c is
the same as the sign of

Φ(χ, ξ) = 1
2P

2
2 −

1
3P

3
2 −

ξ

χ
P2 + ξ

χ2 ln(1 + χP2)

(recall that P2 is determined by ξ and χ, cf. Eq. (3)).
Fig S1 shows the sign plot of Φ(χ, ξ), together with the

behaviour of the non-spatial model. When there is an Allee
effect, the pathogen may go extinct in the diffusion model even
if initially it is close to its stable positive equilibrium P2 in
much of the space it occupies. The reason for this is that the
Allee effect erodes the population at the leading edge of the
wavefront, which is below the Allee threshold and is therefore
a sink; as diffusion replenishes the population at the edge, it

Fig. S1. The dynamics of the pathogen with slow diffusion (shading) and in the
non-spatial model (areas separated by the white lines). The shading shows the sign
plot of Φ(χ, ξ); light: Φ(χ, ξ) > 0, the pathogen spreads; black: Φ(χ, ξ) < 0,
the pathogen dies out; dark grey: there is no positive equilibrium P2. The areas
separated by the white lines correspond to (i) ξ < 1, (ii) ξ > 1 and χ > χ0(ξ), and
(iii) ξ > 1 and χ < χ0(ξ). In (i), the pathogen can grow also without the toxin. In (ii),
the pathogen has an Allee effect; while it has a positive equilibrium in the non-spatial
model, it may spread (light part of (ii)) or die out (black part of (ii)) in the diffusion
model. In (iii), the pathogen dies out in both models.

creates a net flux to the sink. Importantly, with slow diffusion
the fate of the pathogen does not depend on its initial dose
(beyond the assumption that it attains the travelling wave
form).

Fast diffusion. Here we assume that the diffusion of the toxin
is very fast (DT � mL2), so that the toxin concentration
quickly homogenizes over the entire space. (DI may be ar-
bitrary, since the fast reactions in Eq. (4c) homogenize the
active immune effectors with or withour their diffusion.) The
total amount of toxin produced by a given pathogen popu-
lation is the same as with slow diffusion, but this total is
evenly distributed over the interval [−L,L], so that the local
quasi-equilibrium is given everywhere by

T̂ (t) = sP̄ (t)
m

, Î(t) = I0

1 + χP̄ (t)
,

where

P̄ (t) =
∫ L

−L

P (x, t)dx/2L

is the average pathogen density over the entire space at time t.
Integrating Eq. (4a) over space, we obtain the dynamics of
the average pathogen density as

dP̄

dt
= (b− kÎ(t))P̄ (t)− b

2L

∫ L

−L

[P (t, x)]2dx [5]

(with reflecting boundaries, diffusion does not affect the total
size of the population). By Jensen’s inequality, we have

1
2L

∫ L

−L

[P (t, x)]2dx ≥
[
P̄ (t)

]2
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so that the solution of Eq. (5) is bounded from above by the
solution of

dP̄

dt
=
[
b− kÎ(t)− bP̄ (t)

]
P̄ (t)

= bP̄ (t)
[

1− P̄ (t)− ξ

1 + χP̄ (t)

]
,

which is the same as the non-spatial dynamics in Eq. (2). Hence
if the pathogen needs to decapacitate the immune system for
its growth (ξ > 1), then it cannot spread unless χ > χ0(ξ) and
the pathogen’s initial average density P̄ (0) exceeds the Allee
threshold P1. Note that this condition is not sufficient; if the
initial distribution of the pathogen is not homogeneous (which
is likely), then Jensen’s inequality is a strict inequality, and
the pathogen population can go extinct even if P̄ (0) > P1.

With slow diffusion, the pathogen population density has
to be above the Allee threshold only locally, which can be
achieved with a small initial dose; if a travelling wave solution
is achieved, the spread of the pathogen does not depend on
the size of its population. In contrast, with fast diffusion, the
global spatial average density of the pathogen matters, so that
the initial number of pathogens must exceed 2LP1; this is a
high dose that scales with the size of the host, L.

C. Details of the stochastic spatial model.

Tophat kernels. A kernel K(x,y) = h · f(x,y) is defined in
the terms of its total rate h and a density function f(x,y)
describing how the rates are distributed across space. In our
simulations, we used tophat kernels, which are defined as

K`,h(x,y) =
{
h/(π`2) if dist(x,y) ≤ `
0 otherwise,

where dist(x,y) is the Euclidean distance between the two
points x and y in the simulation space with periodic boundary
conditions, ` is the length scale, and the total rate is h.

The existing particles are delta-peaks at known locations.
When we integrate these with the kernel h · f(x,y), we arrive
at the rates given in the Materials and Methods section of the
main text. For example, a pathogen at location x consumes a
tissue particle at location y at the rate

C(x,y) = b

∫
H

∫
H
f(x,y)δxδydxdy,

which is b/(π`2
C) if dist(x,y) ≤ `C and zero otherwise. For

movement and for the birth of a new particle (pathogen repro-
duction or toxin production), however, retaining the density
function f(x,y) is essential; since space is continuous, the
probability that a jump (or birth) takes a particle from its
known position x to a specific point y is zero, but the prob-
ability of landing in a small neighbourhood U of point y is
positive and is given by f(x,y) · |U |, where |U | is the area of
the neighbourhood.

Spatial reactions. To describe the reactions in the spatial
setting, we extend the usual reaction rate equations to consider
also the locations of particles. We use the notation

A
x

K(x,y)−−−−→ A
y

to mean that particle A moves from its known location x to a
neighbourhood of y according to the kernel K(x,y). Thus, the

reaction rate equation can be interpreted as follows: particle
A at location x jumps at rate h, and when the jump event
occurs, a new location y is sampled from distribution given by
the probability density function f(x,y). In the case of tophat
kernels, the new location is sampled uniformly at random from
a disk of radius ` centered at the starting point x, where ` is
the length scale of K. For a process involving the interaction
of two particles, we write

A
x

+ B
y

R(x,y)·f(x,z)−−−−−−−−−→ C
z

to denote that particle of type A at x and particle of type B
at y react at rate R(x,y) to produce a new particle of type
C that appears at a random location z, where f(x, z) is the
probability density of the location of the new individual. Using
this notation, we can write down the spatial versions of the
basic reactions, which are given in Table S1.

Initialisation of the model. The baseline parameter values used
for the simulations reported in the main text are in Table S2.
Fig S2 illustrates how a simulation replicate is initialised. At
time t = 0, the focal area contains tissue particles (H) and
immune effectors in the seek state (IS). These particles follow
complete spatial randomness with densities ρH = 3/2 and
ρIS = 1/2 per unit area, respectively. The initial inoculum of
the pathogen is introduced onto an inoculation area which is
a circle of radius κ. The locations of the pathogen individuals
are sampled uniformly at random within the inoculation area.
The parameter κ controls the size of the inoculation area, that
is, it determines the level of initial spatial aggregation of the
pathogens.
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45 50 55
45

50
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45 50 55
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D

Fig. S2. Examples of the initial state of the system. Dark gray points represent
immune effectors (IS) and light gray points tissue particles (H). Red points are
pathogen particles. A. The entire simulation space (i.e.the focal area) is a torus of
size 100 × 100. The black rectangle represents a 10 × 10 part shown in the next
three panels. B. The initial dose of 20 pathogens is introduced into an inoculation
area with radius κ = 1 represented by the black circle. C. The same initial dose of
20 pathogen particles introduced into an inoculation area with radius κ = 2. D. The
initial dose is introduced into an inoculation area with radius κ = 4.
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100
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0 50 100

34% remaining
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Fig. S3. Examples of scenarios where no tissue has been consumed (left), 66% of
tissue has been consumed (center), and over 90% of the tissue has been consumed
(right). The small circle denotes the initial inoculation area of radius κ = 1. The
snapshots are from a simulation with toxin diffusion scale `T = 1 and the initial dose
of one pathogen individual.

Rybicki, Kisdi and Anttila 10.1073/pnas.1721061115 3 of 9



Table S1. Complete list of reactions in the stochastic individual-based spatial model.

P
x

+ H
y

C(x,y)·f(x,z)−−−−−−−−−→ P
x

+ P
z

pathogen at x consumes tissue from y and produces an offspring to z,

P
x

+ IK
y

K(x,y)−−−−→ IK
x

immune effectors in the ‘kill’ state eliminate pathogens,

P
x

S(x,y)−−−−→ P
x

+ T
y

pathogens secrete toxins into their surroundings,

IS
x

+ T
y

E(x,y)−−−−→ ID
x

toxins decapacitate immune effectors and are consumed in the process,

T
x

m−→ ∅ toxins become inactive and are removed,

IS
x

+ P
y

A(x,y)−−−−→ IK
x

+ P
y

IEs detect pathogens and go to “kill” state,

IK
x

q−→ IS
x

IEs in “kill” state switch to “seek” state,

ID
x

r−→ IS
x

decapacitated immune effectors recover from the effects of the toxin,

P
x

DP(x,y)−−−−−→ P
y

pathogens move according to the kernel DP,

T
x

DT(x,y)−−−−−→ T
y

toxins move according to the kernel DT,

IS
x

DIS(x,y)−−−−−−→ IS
y

immune effectors in the seek state move according to the kernel DIS,

IK
x

DIK(x,y)−−−−−−→ IK
y

immune effectors in the kill state move according to the kernel DIK.

Above f(x, z) is the probability density function in DP = h · f(x, z).

Recording the simulation outcomes. In all experiments, we sim-
ulated the model until (a) all pathogens were killed or (b) all
tissue particles were consumed. We recorded the configura-
tion of the system, i.e., the locations ΩX(t) of each particle
of type X (P, T, H, IS, IK or ID) every ∆t = 1 time units.
We calculated the fraction of tissue particles remaining in the
focal area at the end of the simulation. Fig S3 shows examples
where different amounts of the host tissue has been consumed.

Table S2. Parameters of the spatial model.

Process Kernel Rate (h) Length scale (`)
Toxin secretion S s = 1 `T
Toxin effectivity E e = 1 1
Tissue consumption C b = 1 1
IE (kill) elimination K k = 1.75 3
IE (seek) activation A a = 1 1
Toxin movement DT 1 `T
Parasite movement DP 1 1
IE (seek) movement DIS 1 10
IE (kill) movement DIK 1 1
Toxin removal – m = 1 –
Immune effector recovery rate – r = 0.025 –
Transition from ‘kill’ state to ‘seek’ – q = 0.2 –

D. Sensitivity analysis of the model.

Setup of the sensitivity analysis. We conducted a sensitivity
analysis of the stochastic spatial model by varying the model
parameters, excluding the movement rates, by ±10%, ±25%
and ±50% deviations (see Table S3). For the sensitivity anal-
ysis, we used the smallest inoculation area with κ = 1, and
repeated the analysis for two values for the toxin movement

scale parameter, `T = 1 (local action) and `T = 32 (distant
action). We simulated 1000 replicates for the initial doses of
10d particles for d ∈ {0, 1, 2, 3, 4, 4.5}. For the toxin removal
rate m, we also examined the case m = 0.01.
Results of the sensitivity analysis. Fig S4, Fig S5, and Fig S6
show the results of the sensitivity analysis. We make the
following observations:

• In all cases, the qualitative pattern remains the same
when the deviations are ±10% and ±25%; locally acting
toxins lead to stronger response at low initial doses than
distantly acting toxins. For large deviations of ±50% the
pattern is sometimes less apparent.

• The model is sensitive to the initial densities of tissue
and immune effectors, but the results are as expected:
the pathogens do better when they have more nutrients
available and they are worse off if the number of immune
effector grows.

• We see that the model is sensitive to the length scales of
some kernels. For example, increasing the length scale
of the pathogen movement kernel benefits the pathogens.
This is natural, as they can then escape the immune ef-
fectors more easily and move into areas with unconsumed
nutrients. The latter also explains why increasing length
scale of tissue consumption has a strong effect as well.

E. Effects of aggregation on the distribution of outcomes.
Figure 2 of the main text shows the distribution of outcomes
for an inoculation area with radius κ = 1. Fig S7, Fig S8, and
Fig S9 show the distribution of outcomes with radii κ = 4, 8, 16,
respectively.
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Table S3. Parameter values for the sensitivity analysis

Parameter name Baseline +10% –10% +25% –25% +50% –50%
Tissue consumption rate b 1.0 1.1 0.9 1.25 0.75 1.5 0.5
Toxin effectivity rate e 1.0 1.1 0.9 1.25 0.75 1.5 0.5
Toxin removal rate m 1.0 1.1 0.9 1.25 0.75 1.5 0.5
Toxin secretion rate s 1.0 1.1 0.9 1.25 0.75 1.5 0.5
Initial tissue density ρP 1.5 1.65 1.35 1.875 1.125 2.25 0.75
Initial seeker density ρIS 0.5 0.55 0.45 0.625 0.375 0.75 0.25
IE (kill) elimination rate k 1.75 1.925 1.575 2.1875 1.3125 2.625 0.875
Immune effector recovery rate r 0.025 0.0275 0.0225 0.03125 0.01875 0.0375 0.0125
Kill to seek rate q 0.2 0.22 0.18 0.25 0.15 0.3 0.1
Tissue consumption scale 1.0 1.1 0.9 1.25 0.75 1.5 0.5
Toxin effectivity scale 1.0 1.1 0.9 1.25 0.75 1.5 0.5
IE (kill) elimination scale 3 3.3 2.7 3.75 2.25 4.5 1.5
Parasite movement scale 1 1.1 0.9 1.25 0.75 1.5 0.5
IE (seek) movement scale 10 11 9 12.5 7.5 15 5
IE (kill) movement scale 1 1.1 0.9 1.25 0.75 1.5 0.5
IE activation scale 1 1.1 0.9 1.25 0.75 1.5 0.5

F. Analysis of the data. The data analysis and figures were
done using R version 3.3.2 (2) with ggplot2 (3), and matplotlib
2.0 (4). The average dose-response line in Fig 2, Fig S7, Fig S8,
and Fig S9 was fitted to the modified Hill equation

f(x) = a+ b · (x/c)p

1 + (x/c)p
,

where a is the minimum response, b the maximum response,
c the half-saturation constant, and p is the steepness of the
response. Note that the usual Hill equation has a = 0 and
b = 1. However, in our simulations, the doses consist of
discrete particles, and hence, the minimum dose of 1 particle
already has a positive probability of consuming tissue particles
(yielding a positive response).
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Fig. S4. Model sensitivity analysis for the toxin removal ratem for both local (`T = 1,
left) and distant (`T = 32, right) action. The horizontal axis is the dose, and the
vertical axis is the average fraction of tissue consumed (averaged over all replicates).
The thick lines denote the baseline parameterisation, the thin solid line 10% deviation,
the dashed line 25% deviation, and the dotted line 50% deviation. The + symbol
is above the baseline (and – below) if increasing the parameter value increases
the response variable (average fraction of tissue consumed). The colour fill simply
indicates the area that remains between the thin lines (i.e. the larger the filled area,
the more sensitive the model is to a particular parameter). The top dashed line is the
experiment with m = 0.01.

SI Video Captions.

S1 Video. Animation: low dose, local mechanism. An-
imation illustrating how the dynamics of the model evolve
over time with a low initial dose of a locally acting pathogen.
The parameters and colours are as in first row of Fig 1 in the
main text.

S2 Video. Animation: low dose, distant mechanism.
Animation illustrating how the dynamics of the model evolve
over time with a low initial dose of a distantly acting pathogen.
The parameters and colours are as in second row of Fig 1.

S3 Video. Animation: high dose, local mechanism. An-
imation illustrating how the dynamics of the model evolve
over time with a high initial dose of a locally acting pathogen.
The parameters and colours are as in third row of Fig 1.

S4 Video. Animation: high dose, distant mechanism.
Animation illustrating how the dynamics of the model evolve
over time with a high initial dose of a distantly acting pathogen.
The parameters and colours are as in fourth row of Fig 1.
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Fig. S5. Results of the sensitivity analysis for local action (`T = 1). The horizontal axis is the dose, and the vertical axis is the average fraction of tissue consumed (averaged
over all replicates). The thick lines denote the baseline parameterisation, the thin solid line 10% deviation, the dashed line 25% deviation, and the dotted line 50% deviation.
The + symbol is above the baseline (and – below) if increasing the parameter value increases the response variable (average fraction of tissue consumed). The colour fill simply
indicates the area that remains between the thin lines (i.e. the larger the filled area, the more sensitive the model is to a particular parameter).
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Fig. S6. Results of the sensitivity analysis for distant action (`T = 32). The horizontal axis is the dose, and the vertical axis is the average fraction of tissue consumed
(averaged over all replicates). The thick lines denote the baseline parameterisation, the thin solid line 10% deviation, the dashed line 25% deviation, and the dotted line 50%
deviation. The + symbol is above the baseline (and – below) if increasing the parameter value increases the response variable (average fraction of tissue consumed). The
colour fill simply indicates the area that remains between the thin lines (i.e. the larger the filled area, the more sensitive the model is to a particular parameter).
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Fig. S7. The dose-response curves for different modes of action when the inoculation area has radius κ = 4. The line gives the average dose-response curve fitted to the Hill
equation similarly as in Fig 2 of the main text, but is based on the same data as Fig 3B of the main text.

Fig. S8. The dose-response curves for different modes of action when the inoculation area has radius κ = 8. The line gives the average dose-response curve fitted to the Hill
equation similarly as in Fig 2 of the main text, but is based on the same data as Fig 3C of the main text.
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Fig. S9. The dose-response curves for different modes of action when the inoculation area has radius κ = 16. The line gives the average dose-response curve fitted to the
Hill equation similarly as in Fig 2 of the main text, but is based on the same data as Fig 3D of the main text.
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