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Supplementary Information Text 

 

Extended Experimental Methods 

Resources. Fluorescence activated cell sorting (FACS) instruments used for FANS was performed 

at The Scripps Research Institute (TSRI) flow cytometry core.  Sequencing was performed at the TSRI 

next generation sequencing core. Computational pipeline development and analysis was performed on the 

Triton Shared Computing Cluster (TSCC) at the San Diego Supercomputer Center (SDSC; University of 

California, San Diego).  Sequencing data are available on the NCBI Short Read Archive (BioProject 

PRJNA415480).  Code for CNV identification, including the development and implementation of FUnC, 

is available on GitHub (https://github.com/suzannerohrback/somaticCNVpipeline). 

Single nucleus isolation and staining.  All tissue samples were obtained from C57BL/6J mice 

and flash-frozen in liquid nitrogen after dissection and stored at -80°C until nuclei preparation.  Samples 

were thawed on ice in fresh nuclei extraction buffer (NEB: 0.32 M sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2, 

0.1 mM EDTA, 0.1% TritonX-100, 10 mM Tris-HCl, pH 8) for 20 minutes, then homogenized and filtered 

(50 micron pores) into a collection tube.  Nuclei were pelleted by centrifugation 5 minutes x 1,800 rpm, 

resuspended in PBSE-BSA (1x PBS, 2 mM EGTA, 1% BSA), and incubated with shaking on ice for at 

least 20 minutes.  Propidium iodide (PI, 50 μg/mL, Sigma P4170) and RNase (50 μg/mL, Thermo Fisher) 

were then added to the suspension and incubated for at least 60 minutes.  Adult cortex samples were 

stained for NeuN using a 1:750 primary antibody dilution for 1.5 hours (Millipore MABN140), washed 

for 20 minutes, followed by a 1:500 secondary antibody dilution (Invitrogen A21206) for 1.5 hours, and 

washed for at least 20 minutes with PI included throughout.  Embryonic nuclei were gated on the 2n DNA 

peak from propidium iodide (PI, 50μg/ml, Sigma) staining.  Nuclei from adult mice were labeled with an 
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anti-NeuN antibody (Millipore) and PI and then isolated by gating for both 2n PI intensity and a NeuN-

positive signal.   

Splenocyte isolation.  Splenic samples were collected from adult mice and enriched for 

lymphocyte cells using Lympholyte-M (Cedarlane Labs) as described by the manufacturer.  The spleen 

was dissected from adult C57BL/6J mice and dissociated by grinding between glass slides in HBSS + 1% 

FCS.  The solution was allowed to settle, then cells in the supernatant pelleted by centrifugation for 5 min 

at 1,500 rpm.  Cells were resuspended in HBSS with 0.2x PBS and 1% FCS, filtered, and diluted to 1 x 

107 cells/mL.  Dead cells, erythrocytes, and debris were removed using Lympholyte-M (Cedarlane Labs) 

as described by the manufacturer, and washed with HBSS containing 1% FCS.  Cells were stained with 

PI and DRAQ5 (5μM, Cell Signaling) for live-dead and DNA content measurements, respectively.  

Splenocytes were required to be PI-negative (live-dead), and then gated on the 2n DNA peak from DRAQ5 

(5μM, Cell Signaling) staining. 

GenomePlex sequencing library preparation. For GenomePlex (WGA4, Sigma) amplifications, 

cells were sorted into 3 uL sterile PBS with 1% BSA.  Manufacturer instructions were followed for 

GenomePlex (WGA4, Sigma) amplifications apart from using half the volume.  Sequencing libraries were 

then generated using the NEBNext library preparation kit (New England BioLabs).  Sequencing for all 

libraries was performed on a NextSeq™ with a 500/550 High Output Kit v2 (Illumina, Inc) to obtain a 

minimum of 36 cycle single end reads. 

Bioinformatic software implementation and references.  Low depth sequencing (~1.5 M unique 

reads) was obtained for each sample.  If necessary, sequencing reads were trimmed to 36 bp by removing 

bases from the 3’ end.  Samples amplified by GenomePlex also required the removal of a 5’ adapter 

sequence encompassing 30 bp.  Reads were mapped to the mm10 genome using Bowtie v1.1.2 (options –

n 2, -e 70, -m 1 –-best, --strata) (1), and PCR duplicates were removed using rmdup from samtools v0.1.19 
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(2). Methods described by Baslan et. al. (3) were used to generate a genomic reference of 25,000 bins 

containing equal numbers of uniquely mappable bases for the mm10 reference genome and then to count 

the number of sequencing reads in each bin from individual samples. 

GC-correction was applied to each sample by Lowess regression on log10 median-ratio of the bin 

counts (statsmodels v0.6.1, nonparametric.smoothers_lowess, frac=0.05) (4).  Each dataset was then 

normalized against a reference generated by combining the corrected bin counts from all single cell 

samples within the same project that were amplified by the same method and contained at least 500,000 

counted reads (5).  Circular binary segmentation (CBS) was performed using cghcbs in Matlab (10,000 

permutations, stopping rule off, alpha 0.01) (6, 7). 

Sex was determined by assessing the copy number states of the X and Y chromosomes.  Median 

absolute pairwise difference (MAPD) (8, 9), median absolute difference (MAD) (10), variability score 

(VS) (11, 12) and confidence score (CS) (10) were calculated as previously described, with the exception 

of scaling copy number estimate by segment length and taking the median rather than mean when 

calculating CS.  Datasets were required to have ≥ 600,000 unique reads, MAPD ≤ 0.40, and CS ≥ 0.80  to 

be included in further analysis.  Adjacent chromosomal segments with matching copy number state 

estimates were merged together prior to CNV filtering.  The Y chromosome was excluded from biological 

CNV analysis due to both its small size and the uncharacterized pseudo-autosomal regions in Mus 

musculus that could not be masked. 

Genomic element references were generated using information from the UCSC Table Browser 

(13), including the gap track (centromere/telomere), RefSeq (genes), segmental duplications, CpG islands, 

and Repeat Masker, and phastCons60way (vertebrate evolutionary conservation).  Replication timing data 

was obtained from Encode and converted to mm10 coordinates using UCSC liftOver (ENCFF001JVQ).  

Machine learning procedures including SVM, hierarchical clustering, and dimensionality reduction were 
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performed in Python with scikit-learn v0.17.1 (14).  Additional statistical testing was performed in Python 

using SciPy.stats v0.14.0 (15).  The Kruskal-Wallis test was used for multi-group comparisons, the Mann-

Whitney U test for two groups, and the Wilcoxon Signed-Rank for paired data.  The Fisher’s exact test 

was applied to 2x2 contingency tables and χ2 for 2xN contingency tables.  Z-scores were used to assess 

enrichment of genomic elements relative to a bootstrapped null distribution for each biological group. 

 

Extended Bioinformatic Analysis and Results 

Manual calculation of sample ploidy.  Overall cellular ploidy for a species is discussed in integer 

values.  However, this is not a valid assumption for a single cell with imbalanced CNVs (e.g., an aneuploid 

cell).  To compensate, we calculated the optimal ploidy states of each sample by maximizing the fit to a 

discrete distribution, similar to the strategy used on the open-source platform Ginkgo (16).  

Circular binary segmentation (CBS) output consists of segments in log2-ratio units, which can be 

converted to (non-integer) copy number estimates by: 

𝐶𝑜𝑝𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑝𝑙𝑜𝑖𝑑𝑦 ×  2௦௘௚௠௘௡௧ ௩௔௟௨௘ 

For each dataset, copy number profiles were generated for all potential ploidies from 1.25 to 2.75 in 0.01 

unit intervals.  The CS generated from each ploidy was then calculated, and the ploidy generating the 

highest CS score was assigned to the sample.  This approach increased the median CS by 5.7% and allowed 

the inclusion of 11% more samples in analysis (SI Appendix, Fig. S6). 

Unbiased determination of QC requirements.  We anticipated that a proportion of splenocytes 

of unknown type were actually lymphocytes with V(D)J recombination obscured due to low quality data, 

meaning robust QC cutoffs should exclude the unidentified cells more frequently than samples classified 
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as B- or T-cells.  Indeed, the distributions of QC measurements were skewed towards lower-quality values 

for uncategorized lymphocyte samples (SI Appendix, Fig. S1A-C).  

Using the full lymphocyte dataset, natural clustering of samples within high-quality data space 

was observed (SI Appendix, Fig. S2D).  The boundaries of this cluster were defined using an adaptation 

of Dijkstra’s contraction algorithm (17) as follows: 

1. Calculate the Euclidean distance matrix for all pairwise sample comparisons using range-

scaled (0 to 1) QC values for read number, MAPD, and CS. 

2. Combine the two samples with the smallest distance into one cluster. Remove this pairwise 

comparison from the distance matrix. 

3. Repeat Step 2, removing all pairwise comparisons between samples within the same group 

from consideration each time, until 95% of samples have been clustered. 

4. Select the largest cluster as containing high quality samples.  

a. Select the lowest observed value in the cluster for the reads cutoff (rounding down to 

the nearest 500,000). 

b. Select the lowest observed value for the CS cutoff (rounding down to the nearest 

multiple of 0.05). 

c. Select the highest observed value for the MAPD cutoff (rounding up to the nearest 

multiple of 0.05).  

d. Rounding was used to slightly expand the boundaries so they might be less susceptible 

to overfitting caused by dataset size limitations. 

While 82% of classified lymphocytes passed these thresholds, only 49% of unclassified 

splenocytes were retained (SI Appendix, Fig. S1E).  Further, the distributions of QC metrics of identified 

and non-identified lymphocytes had become indistinguishable, suggesting the excessively low-quality 
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datasets had been removed (SI Appendix, Fig. S1F-H).  The remaining samples lacking recombination are 

likely endothelial and stromal cells.  

Development of CNV cutoffs (FUnC).  V(D)J recombination events and euploid regions of 

lymphocyte samples were used to quantify the appearance of valid copy number assignments.  Euploid 

regions were defined as autosomal segments with a copy number rounding to 2 and sex chromosome 

segments rounding to copy numbers of 0 (female Y), 1 (male X and Y), or 2 (female X).  These regions 

were used to represent large CNV events.  Since we were analyzing samples from non-cancerous tissue 

gated around a 2n peak, the majority of the genome in the majority of cells was expected to be euploid, 

meaning the vast majority of regions identified as such most likely had a correct assignment. 

intD values were range-scaled, and size (number of bins) was both log and range-scaled to avoid 

excessive weight given to larger segments.  Machine learning was performed using scikit-learn v0.17.1 

(svm.OneClassSVM) with kernel rbf, gamma = 10, nu = 0.12587 (14).  These values were empirically 

determined to avoid overfitting (wavy boundaries and gaps) or underfitting (overly spherical, numerous 

valid samples excluded) the data.  

Separate models were built for the V(D)J recombination segments and euploid segments, to avoid 

overwhelming the smaller number of samples and CNV size range for the V(D)J recombination CNVs.  

Each model was built following these steps: 

1. Select n / 2 segments using random sampling with replacement (n = total number of training 

data points). 

2. Train a one-class support vector machine (SVM) with the bootstrapped dataset from Step 

1. 

3. Determine which combination of size and intD values are included in the model (size in 1 

bin steps, intD in 0.05 unit steps). 
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4. Repeat steps 1-3 10,000 times. 

5. Calculate the frequency with which all combinations of size and intD values are included 

in a model. 

6. Determine the maximal intD included in ≥ 95% of modeling iterations for each CNV size. 

7. Perform smoothing of the output boundary from Step 6. 

a. For the V(D)J recombination model, remove variable combinations if intDsize < 

intDsize-1. 

b. For the euploid segment model, remove variable combinations if intDsize > intDsize-

1. 

8. Calculate any size and intD variable combinations that were not in the size range between 

models by linear regression between the nearest 2 points.  

CNV simulations to validate FUnC.  False positive CNVs were simulated with male samples 

that contained no CNV calls on the X chromosome.  Pairwise sample similarities were calculated by the 

Euclidean distance of QC metrics, and combinations resulting in the 10 smallest differences for each 

sample were selected for simulations (582 total iterations).  X chromosome bin counts were combined for 

these pairs and then segmented by CBS.  FDR was calculated by: 

𝐹𝐷𝑅 =

∑ 𝐶𝑁𝑉 𝑐𝑜𝑢𝑛𝑡௜  ହ଼ଶ
௜ୀଵ

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
൘

𝐷𝑖𝑝𝑙𝑜𝑖𝑑 𝑋 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝐶𝑁𝑉𝑠 𝑝𝑒𝑟 𝑐𝑒𝑙𝑙
 

where i is one computational simulation, and the denominator was calculated by averaging the X 

chromosome CNV rate of female datasets. 

True positive simulations used male and female samples with no X-chromosome CNV calls.  For 

each female cell the 10 most similar male samples were selected as described for the male pairs, and 10 

separate simulations were performed per pair (2,910 total iterations).  In each simulation, a random CNV 
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size, start location, and copy number value (1 or 3) was selected.  Deletions were simulated by replacing 

bins on the female X chromosome with those from the male, and amplifications by adding together the 

bin counts.  After segmentation, false negative rate (FNR) was calculated by: 

𝐹𝑁𝑅 = 1 −  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑁𝑉𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑁𝑉𝑠 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
 

 

Additional Dataset Captions 

Additional data table S1 (separate file) 

Size and integer distance of splenocyte positive control segments used to train the machine learning 

filtering unreliable CNVs (FUnC) model. 

 

Additional data table S2 (separate file) 

Integer distance cutoffs for varying CNV sizes used to implement filtering unreliable CNVs (FUnC). 

 

Additional data table S3 (separate file) 

CNVs observed in the developing and adult cerebral cortex. 

 

Additional data table S4 (separate file) 

Simulated false positive CNV calls used to validate the filtering unreliable CNVs (FUnC) approach. 

 

Additional data table S5 (separate file) 

Simulated true positive CNV calls used to validate the filtering unreliable CNVs (FUnC) approach. 

 

Supplemental References 
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(insert here!) 

 

Supplemental Figure Legends 

Fig. S1. Determination and validation of quality control (QC) cutoffs.  (A) Natural clustering of high 

quality lymphocytes was used to define QC requirements (gray planes).  (B-D) Cumulative histograms 

show the distributions of QC metrics for lymphocytes that were identified (as B or T cells) versus those 

that did not have an assigned cell type.  Upper panels show distributions of all sequenced samples (“All”; 

N = 62, 43 for identified and unknown, respectively) and lower panels show distributions of high quality 

samples (“Good”; N=51, 21 for identified and unknown, respectively).  (E) Cell type classification rates 

after removing low quality samples.  Note the clear reduction in the number of cortical cells misclassified 

as B or T lymphocytes after excluding such samples, in contrast to Fig. 4C (Lym, N=71; Ctx, N=345).  * 

p < 10-30. 

 

Fig. S2.  The impact of filtering unreliable CNVs (FUnC) on true and false positive CNV calls.  (A-B) 

Segment size distributions (A) are minimally changed after removing low quality segments by FUnC, 

while integer distance values (B) are much more similar for the true positives and putative CNVs.  Euploid, 

N=2,833; immune, N=42; putative, N=665; * p < 0.01 compared to euploid regions; ‡ p < 0.01 compared 

to immune CNVs.  (C) After removing unreliable CNV calls, the majority of splenocytes maintain an 

identifiable cell type.  Note also the further reduction in the number of cortical cells misclassified as B or 

T cells after removing such samples (in contrast to Fig. 4C and Fig. S1E).  Lym, N=71; Ctx, N=345; * p 

< 10-25.  (D) Positive control CNVs – V(D)J recombination and monosomic sex chromosomes (N=74) – 

from  splenocytes prepared by an independent researcher after the creation of FUnC are maintained after 

applying CNV cutoffs.  (E-F) Processing of control samples generated in an independent study 
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(SRP041670) support the appropriateness of FUnC since the majority of true positive CNV calls (E; 

N=201) are retained, while a minority of CNV calls enriched for false positives (F; N=164) are within 

FUnC thresholds. 

 

Fig. S3. Hierarchical clustering confirms the stochastic distribution of somatic cortical CNVs. (A) 

Clustered copy number profiles of all high quality samples prepared by transposase-based amplification 

(TbA) (distance metric = correlation, clustering method = single). Only two clear clusters (labeled 1 and 

2) are observed in the dendrogram. (B) Close up of cluster 1 shows it contains primarily B cells. (C) Close 

up of cluster 2 shows it contains exclusively T cells. 

 

Fig. S4.  Confirmation that neurodevelopmental CNVs are randomly distributed.  (A) Kernel PCA 

(Gaussian radial basis function (rbf) kernel) of CNV genomic element composition shows no sub-

grouping of alterations.  (B) This lack of clustering is the same as observed after applying kernel PCA to 

randomly selected genomic intervals.  (C-D) The genomic location of the CNVs in each cell was randomly 

shuffled 1,000 times to obtain a null distribution of genomic element composition for each group. The Z-

score of the observed genomic element abundance against this distribution was then calculated for 

amplification (C) and deletion (D) events.  Values > 0 indicate over-enrichment and values < 0 indicate 

under-enrichment. Statistical Z-tests were used to determine significant differences from the overall 

genome’s composition (*).  Centromeres and telomeres are the only consistently enriched component, 

although at early ages, amplification events may also be enriched for genomic elements associated with 

early replicating S-phase loci. 
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Fig. S5.  Developmental CNV trends are reproducible across biological preparations.  Overall CNV 

frequency (A) and separated amplification and deletion rates (B) for cells from replicate sample 

collections.  Error bars show SEM; * p < 0.05 vs the first splenocyte (Lym) preparation; ‡ p < 0.05 vs 

the second splenocyte preparation; N=13, 17, 30 for E13.5 litters; N=28, 28 for E14.5 litters; N=69, 19 

for Lym samples. 

 

Fig. S6.  Single-cell ploidy calculation improves the retention of cells with highly altered genomes that 

would have been eliminated by quality control requirements using standard protocols.  (A) A euploid 

female cell conforms to the 2n diploid assumption (point of maximal confidence score, CS).  (B) A euploid 

male cell has a true ploidy value of ~1.9 because of monosomy of the sex chromosomes.  (C) A cell with 

many large deletions is fit to a ploidy state much lower than 2.  (D) Sample CS values when assuming 

diploidy (X-axis) are significantly lower than CS values after calculating the optimal ploidy (Y-axis).  The 

gray line shows the boundary of a 1:1 relationship, and the red box contains samples that would have been 

erroneously excluded without empirical determination of ploidy.  N=653.  
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