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APPENDIX A: Pre-Analysis Plan 

This appendix shows the pre-analysis plan registered before the release of the full UKB genetic 
data, which can also be found at osf.io/9dyfz  

In the version below, we have corrected some ambiguous notation and harmonized the terminology 
to match that of the body of the paper. We have added comments boxes to highlight each instance 
where the pre-registered plan and the plan below deviate. We also use text boxes to highlight which 
contingency was taken in the case that possible alternative decisions could be made. 

I. Background 

Studies about the causal effect of education on health have focused on average effects (e.g., Lleras-
Muney 2005; Clark and Royer 2013), although there is some evidence that educational 
interventions may have larger impacts on the later-life health of some individuals than of others 
(Barcellos et al. 2017). Here we propose a follow-up to Barcellos et al. (2017), in which we 
examine whether genetic factors play a role in this heterogeneity, and more precisely, if genetic 
predictors of health and education are able to identify those for whom education has the largest 
effect on health later in life. 

II. The 1972 ROSLA 

This research will use a regression discontinuity design to study the heterogeneous effects of 
education on health. In 1972 England, Scotland, and Wales raised their minimum school-leaving 
age from 15 to 16 for students born on or after September 1, 1957 (students born before this date 
could drop out at age 15), generating a discontinuity in the relationship between education and 
date of birth at the September 1, 1957 “cutoff.” There are a number of studies that have exploited 
changes in compulsory schooling laws to study the causal effect of education on average health 
(e.g., Lleras-Muney 2005; Albouy and Lequien 2009; Silles 2009; Powdthavee 2010; Kemptner 
et al. 2011; Jürges et al. 2013) and several that have considered the 1972 ROSLA reform in 
particular (Clark & Royer 2013, Davies et al. 2017, Barcellos et al. 2017). This research builds on 
that literature by measuring how the causal effect of education on health varies by a person’s 
genetic risk for poor health and genetic risk for educational achievement.  

III. Data 

We will use data from the UK Biobank, a large, population-based prospective study initiated by 
the UK National Health Service (NHS) (Sudlow et al. 2015). Between 2006 and 2010, invitations 
were mailed to 9.2 million people between the ages of 40 and 69 who were registered with the 
NHS and lived up to about 25 miles from one of 22 study assessment centers distributed throughout 
the UK (Allen et al. 2012).1 The sample is composed of 503,325 individuals who agreed to 
participate (i.e., a response rate of 5.47%). Although the sample is not nationally representative, 

                                                           
1 The NHS has contact details for an estimated 98% of the UK population.  
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our estimates have internal validity because there is no differential selection on the two sides of 
the September 1, 1957 cutoff (see Barcellos et al. 2017 and Davies et al. 2017).  

Study participants went through an assessment that comprised a self-completed touch-screen 
questionnaire; a brief computer-assisted interview; physical and functional measures; and 
collection of blood, urine, and saliva. The collection of physical measures which we use in our 
analysis included anthropometrics, spirometry, and blood pressure and was standardized across 
centers. These measures were gathered by trained nurses or healthcare practitioners. About 
100,000 participants also wore accelerometers that recorded physical activity for 7 days. Every 
participant was genotyped. 

Our health measures will be based on the four objective health indexes studied by Barcellos et al. 
(2017): a body size index, a lung function index, a blood pressure index, and a summary index 
composed of the other three indexes. If other objective measures that are not currently available 
become available over the course of this project (e.g., blood glucose levels), we may study those 
in addition to these indexes. 

In the pre-analysis plan we used the terms “anthropometrics index” and “body size index” 
interchangeably. We also used the terms “spirometry index” and “lung function index” 
interchangeably. To make it consistent with the body of the paper, we opted for replacing 
“anthropometrics index” with “body size index” and for replacing “spirometry index” with 
“lung function index.” For the same reason, we opted for replacing “general health index” with 
“summary index”, which is the terminology used in the body of the paper.  

 

A description of how the indexes used in Barcellos et al. (2017) were constructed is found below. 

Body Size 

An anthropometric index will be constructed from three measures: body mass index (BMI), body 
fat percentage, and waist-hip ratio.2 A bioimpedance analyzer was used to calculate body fat 
percentage. This device passes a low electrical current through the body. Water conducts 
electricity. While fat contains very little water, muscle contains 70% water. The bioimpedance 
analyzer calculates body fat from the speed of the current: The slower the signal travels, the greater 
the fat content.  

 

                                                           
2 The UK Biobank provides two measures of BMI: one calculated as weight in kilograms divided by height squared 
(in meters) and one using height and electrical impedance to quantify mass. We will take the average of these two 
measures. The waist-hip ratio is equal to the waist circumference divided by the hip circumference. 
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Lung Function 

A spirometry test was conducted to measure participants’ lung function. The spirometer is a small 
machine attached to a mouthpiece by a cable that measures the volume and speed of air after a 
forced exhale. Participants were asked to fill their lungs as much as possible and to blow air out as 
hard and as fast as possible in the mouthpiece.3 Three parameters were measured: 1) forced 
expiratory volume in the first second is the amount of air exhaled during the first second; 2) forced 
vital capacity is the total amount of air exhaled during the forced breath; and 3) peak expiratory 
flow is the fastest rate of exhalation. These parameters are used to assess pulmonary conditions, 
such as chronic obstructive pulmonary disease and asthma. We follow DeMateis et al. (2016)’s 
criteria to identify acceptable expiratory maneuvers in the UK Biobank data. Valid spirometry 
measures are available for 79% of our sample. 

Blood Pressure  

Two measurements were taken of the diastolic and systolic blood pressures of each study 
participant. We will use the average of these two measurements.  

Summary Indexes 

In order to reduce the number of outcomes and partly address concerns about multiple hypothesis 
testing, we will construct for each of three health dimensions a summary index that is a weighted 
average of the different outcomes measuring that dimension:   

Body size: body mass index, waist-to-hip ratio, and body fat percentage; 

Lung function: forced expiratory volume in the first second, forced vital capacity, and peak 
expiratory flow; 

Blood pressure: diastolic and systolic blood pressures. 

Before combining these sub-measures into the three indexes, each measure will first be 
standardized separately by gender, using as a reference those born in the 12 months before 
September 1, 1957. We then will combine these measures into the three indexes following the 
procedure proposed by Anderson (2008), an approach that assigns weights based on the variance-
covariance matrix of the input measures. Finally, we will construct a fourth summary index that is 
a summary of the body size, the lung function, and the blood pressure indices, using the same 
weighting procedure. We will construct all four indices so that a higher number corresponds to 
worse health. 

                                                           
3 They were instructed to continue blowing until no more air came out of their lungs. Up to three attempts were 
allowed. The participant was allowed a third attempt if the first two blows did not satisfy the reproducibility criteria 
of the spirometry protocol. 
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In order to preserve the cutoffs derived in our previous work (see section VI. Health Outcomes), 
we standardized the measures using the entire sample used in Barcellos et al. (2017), including 
those without valid genotypic data and non-whites. After the standardization, we drop non-
whites and those without genotypic data or whose genotypic data did not pass quality controls. 

 

IV. Polygenic Scores 

Genetic heterogeneity will be measured using polygenic scores that predict poor health and 
educational attainment. These scores are a weighted sum of single-nucleotide polymorphism 
(SNP) genotypes: 

𝑆𝑆𝑖𝑖 = �𝑥𝑥𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗
𝑗𝑗

, 

where 𝑆𝑆𝑖𝑖 is the genetic predictor of a trait (such as BMI or education) for individual 𝑖𝑖, 𝑥𝑥𝑖𝑖,𝑗𝑗 ∈
{0, 1, 2} is a count of the number of reference alleles for individual 𝑖𝑖 at SNP 𝑗𝑗, and 𝑤𝑤𝑗𝑗 is a weight 
associated with SNP 𝑗𝑗. 

In the pre-analysis plan we made a notation mistake and wrote that “𝑆𝑆𝑖𝑖,𝑗𝑗 is the genetic predictor 
of trait 𝑗𝑗”, which was confusing because 𝑗𝑗 was also used to index the SNP. To correct this 
mistake we dropped the subscript 𝑗𝑗 from 𝑆𝑆𝑖𝑖,𝑗𝑗. 

 

The weights used in a polygenic score are based on genome-wide association study (GWAS) 
summary statistics. A GWAS is a series of regressions of some outcome onto the genotype of a 
single SNP and a set of covariates. These covariates normally include sex, age, and the first several 
principal components of the genetic data. The principal components are included to control for 
omitted variable bias that may occur as a result of an individual’s ancestry (Price et al. 2006). 

GWAS summary statistics for a number of traits are publicly available. To produce the final 
weights, we transform these summary statistics using a standard method, LDpred (Vilhjalmsson 
2015). In addition to GWAS summary statistics, LDpred requires a reference sample to estimate 
the linkage disequilibrium structure (i.e., the correlation structure) of the genotypic data and an 
assumption about the fraction of SNPs which are truly associated with the outcome. Following the 
procedure described in Turley et al. (2017), we will use data from the 1000 Genomes Project as a 
reference sample and will assume that 100% of SNPs are associated with the outcome of interest. 
This assumption is unlikely true, but varying this parameter usually has little effect on the 
predictive power of polygenic scores produced by LDpred. 
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The two polygenic scores we plan to use for this study are for body-mass index (BMI) and 
educational attainment (EA). These were chosen due to their relevance to the outcomes considered 
and because large GWASs for these traits are publicly available: Locke et al. (2015) for BMI and 
Okbay et al. (2016) for EA. In the Health and Retirement Study, a score based on the GWAS 
results from Locke et al. (2015) explains 7% of the variation in BMI and a score based on Okbay 
et al (2016) explains roughly 5% of the variation in educational attainment. If larger-scale GWASs 
for these traits become available while this research is still in progress, we will use those instead. 
Additionally, if polygenic scores become available for traits related to our indexes (e.g., smoking 
behavior or blood pressure) that explain more than 5% of the variation in our health indexes in the 
UKB, we will also use those. 

To avoid overfitting, it is important that the sample used for estimating the weights does not 
include individuals from the prediction sample. While neither Locke et al. nor Okbay et al. use 
data from the UKB, if new GWAS summary statistics become available that include the UKB, we 
will request results that omit it. 

We note, however, that we can use the UKB data to augment the published GWASs in two ways 
that won’t lead to bias due to over-fitting. First, for each outcome that is measured in the UKB and 
for which we have a polygenic score, we will run a GWAS of that outcome using individuals in 
the UKB that are not included in any of the main analyses. (For example, this includes those born 
more than 10 years from the September 1, 1957 threshold and those not born in England, Scotland, 
and Wales.) We will follow the quality control protocols described in the Supplementary Note of 
Turley et al. (2017) to conduct this GWAS. The UKB GWAS results will then be meta-analyzed 
with the existing published GWAS results for the outcome. 

Second, we will use a cross-validation-style procedure to use even more of the sample to boost 
power in the polygenic score. Specifically, we will hold out 10% of the sample and include the 
remaining 90% in the GWAS in the UKB described above. After meta-analyzing the UKB GWAS 
with the published GWAS results, we will create a polygenic score for the held-out 10% using 
LDpred. We will repeat this 10 times for each possible hold-out sample 

This approach will induce some correlation in the polygenic scores between individuals, however, 
that would affect the standard errors. There is not a well-developed literature on how exactly the 
standard errors should be corrected. A variation on how this may be done is found in 
Chernozhukov et al. (2017), though it would need to be adapted to apply to the cross-validation 
procedure described here. If we cannot adapt this method to obtain valid standard errors or identify 
one that is more appropriate, we will forego this cross-validation procedure, restricting the GWAS 
sample to that used in the published work and the individuals in the UKB that are not included in 
the regression discontinuity analysis as described above. 
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We forewent the cross-validation-style procedure because we could not adapt this approach to 
obtain valid standard errors.   

 

V. The Regression Discontinuity (RD) Model 

We would like to estimate the causal model 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑖𝑖 = 𝐻𝐻(𝐺𝐺𝑖𝑖)𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖 + 𝑓𝑓(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝒂𝒂𝟎𝟎 + 𝜀𝜀𝑖𝑖     (1) 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑖𝑖 is some health outcome of interest for individual 𝑖𝑖 (such as the body size index 
defined above), 𝐺𝐺𝑖𝑖 is that person’s genotype, 𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖 is an indicator of whether the individual 
stayed in school until at least age 16, 𝑓𝑓(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) is a term that captures trends in health before and 
after the ROSLA reform, 𝒙𝒙𝑖𝑖′ is a set of controls (including a constant and the genetic variables), 
and 𝜀𝜀𝑖𝑖 is the residual. We will use the same controls as in Barcellos et al. (2017). Notice that the 
causal effect of education on the health outcome is written as a function of 𝐺𝐺𝑖𝑖, allowing this effect 
to capture genetic heterogeneity. We will describe our choice of 𝐻𝐻(𝐺𝐺𝑖𝑖) in the following section. 

Of course, a person’s educational decisions may be correlated with factors in the residual, which 
would result in bias if this model were estimated directly. Following the literature, we will use the 
1972 ROSLA as an instrument for 𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖  and estimate this model using a regression discontinuity 
(RD) design (see Barcellos et al. 2017). 

For our first stage regression (i.e., the effect of the reform on 𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖), we estimate the model 

𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖 = 𝑏𝑏(𝐺𝐺𝑖𝑖)𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 + 𝑔𝑔(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝒃𝒃0 + 𝜇𝜇𝑖𝑖   (2) 

where 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 is an indicator variable for whether the individual was born on or after 1 September 
1957, which is the threshold determining whether a person had to stay in school until age 16 
according to the 1972 ROSLA. The corresponding reduced-form regression would be 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑖𝑖 = 𝜃𝜃(𝐺𝐺𝑖𝑖)𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 + ℎ(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝜽𝜽0 + 𝐻𝐻𝑖𝑖.     (3) 

VI. Health Outcomes 

We will consider two types of health outcomes for this research. First, we will use the four indexes 
described in Section III. The results from analyses using these continuous outcomes can be 
interpreted as the mean effect of staying in school until at least age 16 on the outcome. 

Second, we will construct binary outcomes from the indexes that equal one when the index is 
greater than some threshold. The binary outcomes may enable better powered analyses since 
Barcellos et al. (2017) find that the 1972 ROSLA had an impact on only part of the distribution 
for each of these indexes. We will therefore use the threshold at which the largest direct effect was 
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estimated in Barcellos et al. (2017): 1.036 for the Body Size Index, 0.786 for the Lung Function 
Index, -0.215 for the Blood Pressure Index, and 0.786 for the (combined) Summary Index. We 
highlight that because we will use the same data for this research as was used in Barcellos et al. 
(2017), selecting the threshold in this way will lead to direct-effect estimates that are biased away 
from zero in expectation. We, however, are interested in the interaction term. It can be shown that 
the direct effect is uncorrelated with the interaction effect, so the bias in the direct effect should 
not affect the interaction coefficient estimates (see section XI. Bias of Interaction Coefficient). 
Nevertheless, as a robustness analysis for our main specifications, we will also perform our 
analysis using a number of thresholds across the distribution of the index. 

VII. Genetic Heterogeneity 

As our main specification, we will define 𝐻𝐻(𝐺𝐺𝑖𝑖), 𝑏𝑏(𝐺𝐺𝑖𝑖), and 𝜃𝜃(𝐺𝐺𝑖𝑖) as linear combinations of the 
scores being studied and the first 15 principal components of the genetic data.4 That is, 

𝐻𝐻(𝐺𝐺𝑖𝑖) = 𝐻𝐻1 + 𝒂𝒂2𝑺𝑺𝑖𝑖 + 𝒂𝒂3𝑷𝑷𝑷𝑷𝑖𝑖      (4) 

𝑏𝑏(𝐺𝐺𝑖𝑖) = 𝑏𝑏1 + 𝒃𝒃2𝑺𝑺𝑖𝑖 + 𝒃𝒃3𝑷𝑷𝑷𝑷𝑖𝑖      (5) 

 𝜃𝜃(𝐺𝐺𝑖𝑖) = 𝜃𝜃1 + 𝜽𝜽2𝑺𝑺𝑖𝑖 + 𝜽𝜽3𝑷𝑷𝑷𝑷𝑖𝑖,     (6) 

where 𝑺𝑺𝑖𝑖 is a vector of polygenic scores for individual 𝑖𝑖 and 𝑷𝑷𝑷𝑷𝑖𝑖 is a vector of the principal 
components of the genetic data for individual 𝑖𝑖. Using this specification, 𝐻𝐻1 + 𝒂𝒂2𝑺𝑺𝑖𝑖 may be thought 
of as the causal effect of an additional year of education for an individual with polygenic-score 
vector 𝑺𝑺𝑖𝑖. As our main specifications, 𝑺𝑺𝑖𝑖 will be a scalar equal to either the BMI or EA polygenic 
score, but we will also perform secondary analyses where both polygenic scores are included in 𝑺𝑺𝑖𝑖 
in order to test whether each polygenic score can explain any variation in the causal effect of 
education on health holding the other polygenic score constant. 

As an additional, secondary, more nonparametric specification, we will create a set of indicator 
variables for each score of whether an individual has a polygenic score in the lowest, middle, or 
highest third of the sample. Then 𝐻𝐻(𝐺𝐺𝑖𝑖), 𝑏𝑏(𝐺𝐺𝑖𝑖), and 𝜃𝜃(𝐺𝐺𝑖𝑖) will have the same functional form as 
before, but 𝑺𝑺𝑖𝑖 is a vector composed of the full set of binary variables defined above, omitting the 
lowest group. We chose to divide the data into three categories because at least 3 points are needed 
to observe a trend, but we would like to maximize the power of each coefficient by keeping the 
size of each group as large as possible. 

VIII. Specifications 

 To estimate this model by RD, we make several specification decisions. As in Barcellos et al. 
(2017), for our main specifications, we adopt a global polynomial approach in our estimation (see 

                                                           
4 Principal components are included to control for ancestry effects that may be correlated with a person’s polygenic 
score (Price et al. 2006). Doing so is standard in analyses using genome-wide data. 
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Lee and Lemieux 2010). We restrict the data to study participants born within 10 years of 
September 1957 – that is, born between September 1, 1947 and August 31, 1967 – and use a 
quadratic polynomial in date of birth to capture cohort trends.5 If possible, we will use date of birth 
measured in days, though we may be restricted to using month of birth due to data constraints. If 
we use month of birth, we will cluster our standard errors by month of birth. We use triangular 
kernel weights in all of our regressions. 

We use date of birth measured in days and henceforth do not need to cluster the standard errors 
by month of birth. We calculate robust standard errors. 

 

As controls, we use sex, age in days (at the time of the baseline assessment) and age squared, 
dummies for ethnicity, dummies for country of birth, and dummies for calendar month of birth (to 
control for seasonality).6 

We do not use dummies for ethnicity as controls because everyone in our sample is white. 

 
The first-stage regression (2) and the reduced form regression (3) will be estimated using ordinary 
least squares. Equation (1) will be estimated via two-stage least squares, where we will use the 
indicator variable for whether the individual was born on or after 1 September 1957, 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖, to 
instrument for whether the individual stayed in school until at least age 16, i.e., 𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖 (and the 
interactions of 𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖 with 𝐺𝐺𝑖𝑖 and 𝑷𝑷𝑷𝑷𝑖𝑖 will be instrumented using the interactions of 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 with 
𝐺𝐺𝑖𝑖 and 𝑷𝑷𝑷𝑷𝑖𝑖). 

Of course, we will verify that all of our results are robust to deviations from each of these decisions. 
For example, we will test combinations of a number of shorter bandwidths, linear trends, and 
exclusion of control variables. Note that Barcellos et al. (2017) perform a McCrary test (McCrary 
2008) and a number of balance tests to strengthen the evidence that the assumptions of a regression 
discontinuity design are met. We will be using the same data (albeit with an updated polygenic 
score), but we will replicate those results nonetheless. 

IX. Analysis of Channels 

This project will also include several secondary analyses to better understand the potential 
channels through which any observed effects are found. These will consist primarily of analyses 
identical to those described above, replacing the health indexes with other outcomes in the UKB 

                                                           
5 Gelman and Imbens (2016) caution against the use of higher order polynomials (higher than 2) in RD.  
6 Because participants were surveyed for the baseline assessment between 2006 and 2010, date of birth and age are 
not perfectly collinear. 
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(as in Barcellos et al. 2017), including measures of household income, labor market outcomes, 
neighborhood deprivation, occupational prestige, diet, and smoking behavior. Since these analyses 
are only secondary we have not listed exhaustively all of the channels we will consider. 

In Appendix K we investigate the channels through which the effects on health are moderated 
by genetic risk of obesity by examining whether those with higher genetic risk of obesity make 
larger adjustments to their diet and physical activity. 

 

X. Power Calculations 

To calibrate our anticipated effect sizes for this power calculation, we look both to the literature 
and to preliminary results. There are many existing studies that consider interactions between 
environmental or policy variables and single SNP variables (see Duncan and Keller 2011 for a 
review), and a few that interact an endogenous environmental variable with a polygenic score (e.g., 
Belsky et al. 2016, Barth et al. 2017). There are few published studies, however, that estimate the 
effect of an interaction of a policy variable with a polygenic score (an exception is Schmitz and 
Conley 2016). This distinction is important since policy variables tend to explain much less of the 
variation in an outcome relative to endogenous environmental variables, and therefore larger 
samples are needed to be well powered to detect the direct and interaction effects. An advantage 
of using exogenous policy variables, however, is that the results of the analysis will have a causal 
interpretation. 

While Belsky et al. (2016) does not report a formal test of GxE, it contains a plot of the 
relationship between the polygenic score and their measure of “attainment,” stratified by 
familial socio-economic status (SES) and comments that the slopes are largely parallel across 
groups, implying there is no GxE interaction. 

 

In the studies listed above, the polygenic scores used in those studies explained around 5% of the 
variation in the outcome they study. For studies using endogenous environmental variables, the 
polygenic scores similarly explained roughly 5% of the variation. In contrast, the ROSLA, an 
exogenous policy variable, only explains around 0.01% of the variation in the health outcomes 
considered in Barcellos et al (2017). This suggests that the explanatory power of the interaction 
term in our setting (and therefore our power to detect a significant effect for a given sample size) 
may be substantially smaller than what has been observed in previous work. 

Table 1 below reports the two-stage least squares estimates following a similar analysis plan to the 
one described above. These results were prepared as part of a lecture on the power of gene-
environment interaction studies and therefore do not correspond exactly to what will be done in 
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this research. The results, however, should give ballpark estimates of the power to detect 
significant interactions in the UKB. The key differences between how these results were obtained 
and analysis plan described above are: (i) these results are based on the preliminary release of the 
UKB data (roughly a quarter of the full sample), (ii) the health outcome measures only include the 
continuous indexes (omitting the binary measures), (iii) the polygenic scores were included in the 
model jointly rather than separately, and (iv) date of birth was measured in months, and hence the 
standard errors were clustered by month of birth. Note that few of the interaction results reported 
are statistically significant even at the 5% level. 

Table 1: Preliminary Estimates 

 
Body 
Size 

Lung 
Function 

Blood 
Pressure 

Summary 
Index 

Edu16 -0.325 -0.055 -0.436 -0.291 
 (0.298) (0.345) (0.315) (0.318) 

BMI PGS 0.133*** 0.145** 0.036 0.151*** 
 (0.047) (0.062) (0.046) (0.054) 

EA PGS 0.004 0.003 0.004 0.026 
 (0.059) (0.070) (0.063) (0.075) 

BMI PGS * Edu16 0.089†  -0.145** 0.018 -0.022 
 (0.055) (0.07) (0.052) (0.062) 

EA PGS * Edu16 -0.077 -0.051 -0.062 -0.112 
 (0.066) (0.076) (0.069) (0.083) 

†, 0.15; *, 0.1; **, 0.05; ***, 0.01 
 

To be consistent with the body of the paper, in Table 1 we use “𝑃𝑃𝐺𝐺𝑆𝑆” to refer to the polygenic 
scores instead of “𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝐻𝐻”, which was the term used in Table 1 of the pre-analysis plan. 

 

We believe that many of these coefficients will be significant once the full data are available, 
however, for four reasons. First, the sample will be approximately four times larger, cutting the 
size of the standard errors in half. Second, with a more powerful polygenic score, the magnitude 
of the coefficients should rise. Third, the parallel specifications with binary variables may have 
larger effects since the binary variables correspond to regions of the outcome distribution more 
strongly affected by the 1972 ROSLA. Fourth, if date of birth is measured in days, our estimates 
should become more precise both because we can capture more of the variation with a more precise 
running variable and because it removes the need to cluster standard errors by month of birth. On 
the other hand, due to the winners’ curse, it may be that the coefficients estimated here are larger 
in magnitude that the true coefficients. 
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In Table 2, we report the power of detecting effects with a p-value of less than 0.05 assuming that 
the true effect is (a) half what is observed in our data, (b) exactly what is observed in our data, and 
(c) 20% larger than what is observed in our data. In all cases, we assume that the standard errors 
are half as large as what is reported in Table 1, assuming a four-fold increase in sample size. We 
model the aggregate effect of the other factors affecting power (e.g., using a more powerful 
polygenic score) by adjusting the assumed effect size, as described in this paragraph. 

In the pessimistic case (a), we do not exceed 80% power for any of the interaction terms, though 
we have greater than 50% power for 2 of the 8 estimates. If the true effect is equal to the estimate 
in our preliminary analyses, we have 80% power to reject the null for these same two coefficients. 
In the optimistic case (c), 3 of the 8 estimates have 80% power, and one more has a power of 77%. 

We highlight that, consistent with the results of Barcellos et al. (2017), the power remains low for 
the main effect (Edu16) even in the optimistic case, likely due to treatment effect heterogeneity. 

Table 2: Power at 𝑝𝑝 = 0.05 

 
Case Body 

Size 
Lung 

Function 
Blood 

Pressure 
Summary 

Index 
Edu16 a 0.28 0.06 0.41 0.21 

 b 0.59 0.06 0.79 0.45 
 c 0.71 0.07 0.89 0.56 

BMI PGS a 0.94 0.83 0.17 0.94 
 b 1.00 1.00 0.35 1.00 
 c 1.00 1.00 0.44 1.00 

EA PGS a 0.05 0.05 0.05 0.07 
 b 0.05 0.05 0.05 0.11 
 c 0.05 0.05 0.05 0.13 

BMI PGS * Edu16 a 0.53 0.74 0.07 0.07 
 b 0.90 0.99 0.11 0.11 
 c 0.96 1.00 0.13 0.13 

EA PGS * Edu16 a 0.31 0.13 0.20 0.39 
 b 0.65 0.27 0.44 0.77 
 c 0.77 0.34 0.54 0.87 

 

To be consistent with the body of the paper, in Table 2 we use “𝑃𝑃𝐺𝐺𝑆𝑆” to refer to the polygenic 
scores instead of “𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝐻𝐻”, which was the term used in Table 2 of the pre-analysis plan. 
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XI. Bias of Interaction Coefficient 

To avoid confusion, this section, which was titled “Appendix” in the pre-analysis plan, was 
renamed “Bias of Interaction Coefficient.” 

To be consistent with the body of the paper, we use “𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖” to refer to the indicator variable 
of being born on or after September 1, 1957 instead of “𝐴𝐴𝑓𝑓𝐻𝐻𝐻𝐻𝑆𝑆𝑖𝑖”, which was used in the pre-
analysis plan. 

 

We will show that the estimation error in the coefficient associated with the 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 term of the 
regression is uncorrelated with the estimation error in the coefficient associated with the 
interaction variable, 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 × 𝑆𝑆𝑖𝑖, where 𝑆𝑆𝑖𝑖 is the polygenic score of interest. 

First note that the variance-covariance matrix of the estimation is proportional to 𝛀𝛀−1, where 𝛀𝛀 
is the variance-covariance matrix of the variables in the model, including the variable 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖, 𝑆𝑆𝑖𝑖, 
their interaction, and the controls. By the assumption of the RD design, 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 is independent to 
𝑆𝑆𝑖𝑖 and the controls. Furthermore, 

𝐶𝐶𝐷𝐷𝐶𝐶(𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 × 𝑆𝑆𝑖𝑖,𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖) = 𝐸𝐸(𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖2 × 𝑆𝑆𝑖𝑖) = 𝐸𝐸(𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 × 𝑆𝑆𝑖𝑖) = 0, 

so 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 is uncorrelated with the interaction as well. This means that the elements of the row and 
column of 𝛀𝛀 that corresponds to the variable 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 are uniformly zero. This also means that the 
elements of the row and column of 𝛀𝛀−1 that corresponds to the variable 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 are also uniformly 
zero. This implies that the estimation error of the coefficient for the 𝑃𝑃𝐷𝐷𝑃𝑃𝐻𝐻𝑖𝑖 variable is 
uncorrelated with the estimation error of the coefficient of the interaction term. 
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APPENDIX B: McCrary and Balance Tests 

In this section we carry out a McCrary test and conduct balance tests to investigate whether 
predetermined characteristics, such as genetic markers, are discontinuous around September 1, 
1957. 

 

 
Appendix Figure B1: McCrary Test The figure shows the fraction of study participants by year of birth. The 
dashed vertical line marks the first birth cohort affected by the 1972 school-leaving age reform. Cohorts born to the 
right of the line had to stay in school until age 16 while cohorts born before could leave at age 15. The estimated 
discontinuity of the density is -0.0206 with a standard error of 0.0169. N = 253,715.   
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Appendix Figure B2: Balance Tests  The figures show averages by year of birth. The dashed vertical line marks 
the first birth cohort affected by the 1972 school-leaving age reform. Cohorts born to the right of the line had to stay 
in school until age 16 while cohorts born before could leave at age 15. PC1 to PC 15 refers to the first 15 principal 
components of the genotypic data. “East-West” and “North-South” correspond to the latitude and longitude 
coordinates of place of birth.  N = 253,567 for all variables with the following exceptions: birthplace coordinates (N 
= 249,897); right- or left-handed (N = 253,519); and adopted (N = 253,279).   
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Appendix Table B1: Balance Tests This table investigates whether predetermined characteristics are smooth 
around the September 1, 1957 cutoff. It reports the coefficient on an indicator for being born on or after September 1, 
1957 (i.e., “Post”) from regressions where the dependent variables is listed in the column. The regressions include a 
quadratic polynomial in date of birth, which is allowed to be different before and after September 1, 1957. Robust 
standard errors. The mean of Y corresponds to the mean of the dependent variable among those born in the 12 months 
before September 1, 1957.  

 
 
 
The p-value for a joint test of the null hypothesis that there is no discontinuity for any of the 
25 variables above is 0.6921.   
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APPENDIX C: Replication of Barcellos, Carvalho, and Turley (2017)  

 

This section provides a summary of the results in Barcellos, Carvalho, and Turley (2017). Notice, 
however, that the results shown here are not identical to the results in Barcellos, Carvalho, and 
Turley (2017) because we use a slightly different sample. In particular, we drop from our sample 
non-whites and study participants with no genotypic data or with genotypic data that did not pass 
the quality controls. 

 

Appendix Table C1: First Stage This table 
estimates the effects of the 1972 school-leaving 
age reform on the fraction staying in school until 
age 16. The dependent variable is an indicator 
variable for whether participant stayed in school 
until at least age 16. “Post” in an indicator 
variable for being born on or after September 1, 
1957. The regressions include a quadratic 
polynomial in date of birth, which is allowed to be 
different before and after September 1, 1957. The 
second column includes controls, namely male, 
age in days and age squared, dummies for 
calendar month of birth, and dummies for country 
of birth. Robust standard errors. N = 253,567. 
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Appendix Figure C1: Mean Health Indices by Year Before and After the Reform’s Date-of-Birth 
Cutoff. The figures show averages of continuous measures of (a) body size (b) lung function (c) blood pressure and 
(d) summary indices by year of birth. The dashed vertical line marks the first birth cohort affected by the 1972 school-
leaving age reform. Cohorts born to the right of the line had to stay in school until age 16 while cohorts born before 
could leave at age 15. N = 249,699 (a), 203,048 (b), 253,377 (c), 200,398 (d).   
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Appendix Figure C2: Fraction with a Health Index above the Pre-specified Threshold by Year Before 
and After the Reform’s Date-of-Birth Cutoff. The figures show averages of binary measures of (a) body size 
(b) lung function (c) blood pressure and (d) summary indices by year of birth. The dashed vertical line marks the first 
birth cohort affected by the 1972 school-leaving age reform. Cohorts born to the right of the line had to stay in school 
until age 16 while cohorts born before could leave at age 15. N = 249,699 (a), 203,048 (b), 253,377 (c), 200,398 (d).   
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Appendix Table C2: Effects of Education on Health This table show estimates of the effects of education on 
health. The top panel shows reduced-form estimates of the effect of the 1972 raising of the school-leaving age reform. 
The bottom panel shows two-stage least squares (2SLS) estimates of the effect of staying in school until age 16. Above 
threshold is 1 if index is above the threshold specified in pre-analysis plan (see Appendix A). “Post” in an indicator 
variable for being born on or after September 1, 1957. Edu16 is an indicator for staying in school until age 16 and is 
instrumented by “Post”. The regressions include a quadratic polynomial in date of birth, which is allowed to be 
different before and after September 1, 1957, and controls for gender, age in days and age squared, dummies for 
calendar month of birth, and dummies for country of birth. Robust standard errors. 
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APPENDIX D: Mean Health Outcomes by the BMI and EA PGS 

 

The figures in this section are comparable to Figure 1 in the body of the paper. 

 
Appendix Fig. D1.  Mean Health Indices by BMI PGS. Bars show means of continuous measures of (a) 
body size, (b) lung function, (c) blood pressure, and (d) summary indices for the bottom, middle, and top 
terciles of the BMI PGS distribution with 95% confidence intervals. Sloped lines give linear projection of 
outcomes on BMI PGS. R2 gives the fraction of the variation in the outcome explained by the BMI PGS. 
We restrict the sample to participants born before September 1, 1957 who dropped out at age 15 or younger 
and control for a quadratic polynomial in date of birth.  
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Appendix Fig. D2.  Mean Health Indices by BMI PGS. Bars show means of continuous measures of (a) 
body size, (b) lung function, (c) blood pressure, and (d) summary indices for the bottom, middle, and top 
terciles of the EA PGS distribution with 95% confidence intervals. Sloped lines give linear projection of 
outcomes on EA PGS. R2 gives the fraction of the variation in the outcome explained by the EA PGS. We 
restrict the sample to participants born before September 1, 1957 who dropped out at age 15 or younger and 
control for a quadratic polynomial in date of birth.  
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Appendix Fig. D3.  Fraction with Health Index above the Pre-specified threshold by EA PGS. Bars 
show means of binary measures of (a) body size, (b) lung function, (c) blood pressure, and (d) summary 
indices for the bottom, middle, and top terciles of the EA PGS distribution with 95% confidence intervals. 
Sloped lines give linear projection of outcomes on EA PGS. R2 gives the fraction of the variation in the 
outcome explained by the EA PGS. We restrict the sample to participants born before September 1, 1957 
who dropped out at age 15 or younger and control for a quadratic polynomial in date of birth.  
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APPENDIX E: First Stage and Reduced-Form Results  

 

See Appendix Table C1 for first stage results that do not break by genetic makeup.  

 

Appendix Table E1: Does the Effect of the 1972 Raising of the School Leaving-Age on 
Education depend on the BMI PGS? This table investigates whether the effects of the 1972 school-
leaving age reform on the fraction staying in school until age 16 depend on the BMI PGS. The dependent 
variable is an indicator variable for whether participant stayed in school until at least age 16. “Post” in an 
indicator variable for being born on or after September 1, 1957. “Bottom Tercile”, “Middle Tercile”, and 
“Top Tercile” are indicator variables for whether participant was in the bottom, middle, or top tercile of the 
BMI PGS distribution. The regressions include a quadratic polynomial in date of birth, which is allowed to 
be different before and after September 1, 1957; the first 15 principal components of the genotypic data; 
and the interactions of those principal components with “Post.” Even columns include controls, namely 
male, age in days and age squared, dummies for calendar month of birth, and dummies for country of birth. 
Robust standard errors. N = 253,567. 
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Appendix Table E2: Does the Effect of the 1972 Raising of the School Leaving-Age on 
Education depend on the EA PGS? This table investigates whether the effects of the 1972 school-
leaving age reform on the fraction staying in school until age 16 depend on the EA PGS. The dependent 
variable is an indicator variable for whether participant stayed in school until at least age 16. “Post” in an 
indicator variable for being born on or after September 1, 1957. “Bottom Tercile”, “Middle Tercile”, and 
“Top Tercile” are indicator variables for whether participant was in the bottom, middle, or top tercile of the 
EA PGS distribution. The regressions include a quadratic polynomial in date of birth, which is allowed to 
be different before and after September 1, 1957; the first 15 principal components of the genotypic data; 
and the interactions of those principal components with “Post.” Even columns include controls, namely 
male, age in days and age squared, dummies for calendar month of birth, and dummies for country of birth. 
Robust standard errors. N = 253,567. 
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Appendix Table E3: Effects of the 1972 Raising of the School-Leaving Age Reform on Health Reduced-
form estimates. Above threshold is 1 if index is above the threshold specified in pre-analysis plan (see Appendix A). 
“Post” in an indicator variable for being born on or after September 1, 1957. The regressions include a quadratic 
polynomial in date of birth, which is allowed to be different before and after September 1, 1957; the first 15 principal 
components of the genotypic data; the interactions of those principal components with “Post”; and controls for age, 
age in days and age squared, dummies for calendar month of birth, and dummies for country of birth. Robust standard 
errors. The “P-value for H0: No Effect of Education” is the p-value from a joint test that 𝛽𝛽1 = 𝛽𝛽2 = 0. The last row 
shows means of the dependent variable among pre-reform compliers, defined as individuals born before September 1, 
1957 who dropped out before age 16. 

 
 
 
Appendix Table E3 corresponds to the reduced-form version of Table 1 shown in the body of the 
paper.  
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APPENDIX F: The Two-Stage Least Squares Effect of an Additional Year of Schooling at 
Age 16 on Health Indices by the BMI and EA PGS 

 
Appendix Figure F1. The 2SLS Effect of an Additional Year of Schooling at Age 16 on Health 
Indices by BMI PGS. Bars show 2SLS point estimates of effect of staying in school until age 16 on 
continuous measures of (a) body size (b) lung function (c) blood pressure and (d) summary indices for the 
bottom, middle, and top terciles of the BMI PGS distribution. Brackets show 95% confidence intervals. 
Sloped lines plot �̂�𝛽1𝑃𝑃𝐺𝐺𝑆𝑆𝑖𝑖 + �̂�𝛽2. “P” corresponds to the p-value of 𝐻𝐻0:𝛽𝛽1 = 0. The regressions include a 
quadratic polynomial in date of birth, which is allowed to be different before and after September 1, 1957; 
the first 15 principal components of the genotypic data; the interactions of those principal components with 
“Edu 16”; and controls for age, age in days and age squared, dummies for calendar month of birth, and 
dummies for country of birth. 
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Appendix Figure F2. The 2SLS Effect of an Additional Year of Schooling at Age 16 on Health 
Indices by EA PGS.  Bars show 2SLS point estimates of effect of staying in school until age 16 on 
continuous measures of (a) body size (b) lung function (c) blood pressure and (d) summary indices for the 
bottom, middle, and top terciles of the EA PGS distribution. Brackets show 95% confidence intervals. 
Sloped lines plot �̂�𝛽1𝑃𝑃𝐺𝐺𝑆𝑆𝑖𝑖 + �̂�𝛽2. “P” corresponds to the p-value of 𝐻𝐻0:𝛽𝛽1 = 0. The regressions include a 
quadratic polynomial in date of birth, which is allowed to be different before and after September 1, 1957; 
the first 15 principal components of the genotypic data; the interactions of those principal components with 
“Edu 16”; and controls for age, age in days and age squared, dummies for calendar month of birth, and 
dummies for country of birth. 
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Appendix Figure F3. The 2SLS Effect of an Additional Year of Schooling at Age 16 on the 
Fraction with a Health Index above the Pre-specified Threshold by BMI PGS. Bars show 2SLS 
point estimates of effect of staying in school until age 16 on binary measures of (a) body size (b) lung 
function (c) blood pressure and (d) summary indices for the bottom, middle, and top terciles of the EA PGS 
distribution. Brackets show 95% confidence intervals. Sloped lines plot �̂�𝛽1𝑃𝑃𝐺𝐺𝑆𝑆𝑖𝑖 + �̂�𝛽2. “P” corresponds to 
the p-value of 𝐻𝐻0:𝛽𝛽1 = 0. The regressions include a quadratic polynomial in date of birth, which is allowed 
to be different before and after September 1, 1957; the first 15 principal components of the genotypic data; 
the interactions of those principal components with “Edu 16”; and controls for age, age in days and age 
squared, dummies for calendar month of birth, and dummies for country of birth. 

 



 
32 

APPENDIX G: Sensitivity to Simultaneous Inclusion of BMI and EA PGSs and to 
Exclusion of Controls 

 
 
Appendix Table G1. Sensitivity to Simultaneous Inclusion of BMI and EA PGSs. 2SLS estimates. Above 
threshold is 1 if index is above the threshold specified in pre-analysis plan (see Appendix A). Edu16 is an indicator for 
staying in school until age 16 and is instrumented by an indicator for being born after September 1, 1957. The 
regressions include a quadratic polynomial in date of birth, which is allowed to be different before and after September 
1, 1957; the first 15 principal components of the genotypic data; the interactions of those principal components with 
“Edu 16”; and controls for age, age in days and age squared, dummies for calendar month of birth, and dummies for 
country of birth. Robust standard errors. The “P-value for H0: No Effect of Education” is the p-value from a joint test 
that the coefficients on “BMI PGS × Edu16”, “EA PGS × Edu16 “, and on “Edu16” are all equal to zero. The last row 
shows means of the dependent variable among pre-reform compliers, defined as individuals born before September 1, 
1957 who dropped out before age 16.  

 
 
 

Appendix Table G1 corresponds to the results shown in Table 1 in the body of the paper when 
both the BMI and EA PGSs are included in the regression – see section VII. Genetic Heterogeneity 
in Appendix A.  



 
33 

Appendix Table G2.  Sensitivity to Exclusion of Controls. 2SLS estimates. Above threshold is 1 if index is 
above the threshold specified in pre-analysis plan (see Appendix A). Edu16 is an indicator for staying in school until 
age 16 and is instrumented by an indicator for being born after September 1, 1957. The regressions include a quadratic 
polynomial in date of birth, which is allowed to be different before and after September 1, 1957; the first 15 principal 
components of the genotypic data; and the interactions of those principal components with “Edu 16”. It excludes 
controls for age, age in days and age squared, dummies for calendar month of birth, and dummies for country of birth. 
Robust standard errors. The “P-value for H0: No Effect of Education” is the p-value from a joint test that 𝛽𝛽1 = 𝛽𝛽2 =
0. The last row shows means of the dependent variable among pre-reform compliers, defined as individuals born 
before September 1, 1957 who dropped out before age 16.  

 
 

 
Appendix Table G2 corresponds to Table 1 in the body of the paper when we drop controls for 
gender, age in days, age squared, dummies for calendar month of birth, and dummies for country 
of birth.  
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APPENDIX H: Robustness to Different Bandwidths and Linear Trends 

The figures in this section investigate the sensitivity of our results to using linear trends instead of 
quadratic trends and to using shorter bandwidths of 3 or 5 years instead of 10 years.  

 

 
Appendix Fig. H1.  Interaction Estimates for Alternative Bandwidth and Trend Specifications 
(Continuous Health Indices and BMI PGS). Markers show 2SLS estimates of the coefficient on the 
interaction of BMI PGS and an indicator for staying in school until age 16 for different bandwidths and 
birth cohort trends. The dependent variables are continuous measures of (a) body size (b) lung function (c) 
blood pressure and (d) summary indices. The regressions include a quadratic polynomial in date of birth, 
which is allowed to be different before and after September 1, 1957; the first 15 principal components of 
the genotypic data; the interactions of those principal components with “Edu 16”; and controls for age, age 
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in days and age squared, dummies for calendar month of birth, and dummies for country of birth. Brackets 
show 95% confidence intervals.  

 
 
 

 
Appendix Fig. H2.  Interaction Estimates for Alternative Bandwidth and Trend Specifications 
(Continuous Health Indices and EA PGS). Markers show 2SLS estimates of the coefficient on the 
interaction of EA PGS and an indicator for staying in school until age 16 for different bandwidths and birth 
cohort trends. The dependent variables are continuous measures of (a) body size (b) lung function (c) blood 
pressure and (d) summary indices. The regressions include a quadratic polynomial in date of birth, which 
is allowed to be different before and after September 1, 1957; the first 15 principal components of the 
genotypic data; the interactions of those principal components with “Edu 16”; and controls for age, age in 
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days and age squared, dummies for calendar month of birth, and dummies for country of birth. Brackets 
show 95% confidence intervals.  

 

 
Appendix Fig. H3.  Interaction Estimates for Alternative Bandwidth and Trend Specifications 
(Binary Health Indices and BMI PGS). Markers show 2SLS estimates of the coefficient on the interaction 
of BMI PGS and an indicator for staying in school until age 16 for different bandwidths and birth cohort 
trends. The dependent variables are binary measures of (a) body size (b) lung function (c) blood pressure 
and (d) summary indices. The regressions include a quadratic polynomial in date of birth, which is allowed 
to be different before and after September 1, 1957; the first 15 principal components of the genotypic data; 
the interactions of those principal components with “Edu 16”; and controls for age, age in days and age 
squared, dummies for calendar month of birth, and dummies for country of birth. Brackets show 95% 
confidence intervals.  
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Appendix Fig. H4.  Interaction Estimates for Alternative Bandwidth and Trend Specifications 
(Binary Health Indices and EA PGS). Markers show 2SLS estimates of the coefficient on the interaction 
of EA PGS and an indicator for staying in school until age 16 for different bandwidths and birth cohort 
trends. The dependent variables are binary measures of (a) body size (b) lung function (c) blood pressure 
and (d) summary indices. The regressions include a quadratic polynomial in date of birth, which is allowed 
to be different before and after September 1, 1957; the first 15 principal components of the genotypic data; 
the interactions of those principal components with “Edu 16”; and controls for age, age in days and age 
squared, dummies for calendar month of birth, and dummies for country of birth. Brackets show 95% 
confidence intervals.  
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APPENDIX I: Robustness to Binary Outcomes’ Thresholds 

The figures in this section investigate the sensitivity of our results to using different thresholds 
across the distributions of the indices.  

 

 
Appendix Fig. I1.  Robustness of Interaction Coefficient Estimates when Alternative Threshold Is 
Used to Define Binary Health Index (BMI PGS). The figures show the robustness of the coefficient on 
the BMI PGS and Edu16 interaction to changing the threshold used in the binary measures of (a) body size, 
(b) lung function, (c) blood pressure, and (d) summary indices. Edu 16 is an indicator for staying in school 
until at least age 16. The red square marker shows estimates of the preregistered threshold. The blue circle 
markers show estimates for alternative thresholds. The regressions include a quadratic polynomial in date 
of birth, which is allowed to be different before and after September 1, 1957; the first 15 principal 
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components of the genotypic data; the interactions of those principal components with “Edu 16”; and 
controls for age, age in days and age squared, dummies for calendar month of birth, and dummies for 
country of birth. 95% confidence intervals. 

 
Appendix Fig. I2.  Robustness of Interaction Coefficient Estimates when Alternative Threshold Is 
Used to Define Binary Health Index (EA PGS). The figures show the robustness of the coefficient on the 
EA PGS and Edu16 interaction to changing the threshold used in the binary measures of (a) body size, (b) 
lung function, (c) blood pressure, and (d) summary indices. Edu 16 is an indicator for staying in school 
until at least age 16. The red square marker shows estimates of the preregistered threshold. The blue circle 
markers show estimates for alternative thresholds. The regressions include a quadratic polynomial in date 
of birth, which is allowed to be different before and after September 1, 1957; the first 15 principal 
components of the genotypic data; the interactions of those principal components with “Edu 16”; and 
controls for age, age in days and age squared, dummies for calendar month of birth, and dummies for 
country of birth. 95% confidence intervals. 
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APPENDIX J: Biomedical Cutoffs 

 

Appendix Table J1.  Effect of staying in school until age 16 on clinical cutoffs. 2SLS estimates. Edu16 
is an indicator for staying in school until age 16 and is instrumented by an indicator for being born after 
September 1, 1957. The “P-value for H0: No Effect of Education” is the p-value from a joint test that 𝛽𝛽1 =
𝛽𝛽2 = 0. The last row shows means of the dependent variable among pre-reform compliers, defined as 
individuals born before September 1, 1957 who dropped out before age 16. 
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Appendix Fig. J1. Biomedical cutoffs and BMI PGS.  Bars show 2SLS point estimates of effect of staying 
in school until age 16 on (a) fraction overweight (b) fraction obese (c) fraction obese according to waist-
hip ratio (d) fraction with chronic obstructive pulmonary disease (COPD) (e) fraction with diastolic blood 
pressure above 80 mm Hg (f) fraction with diastolic blood pressure above 90 mm Hg (g) fraction with 
systolic blood pressure above 130 mm Hg (h) fraction with systolic blood pressure above 140 mm Hg for 
the bottom, middle, and top terciles of the BMI PGS distribution. Overweight is defined as having a BMI 
over 25. Obesity is defined as having a BMI over 30 (panel (b)) or as having a waist-hip ratio above 0.85 
for women and above 0.9 for men (panel (c)). COPD is defined as having a FEV1-FVC ratio below 0.7. 
Brackets show 95% confidence intervals. Sloped lines plot �̂�𝛽1𝑃𝑃𝐺𝐺𝑆𝑆𝑖𝑖 + �̂�𝛽2. “P” corresponds to the p-value of 
𝐻𝐻0:𝛽𝛽1 = 0. 
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Appendix Fig. J2. Biomedical cutoffs and EA PGS.  Bars show 2SLS point estimates of effect of staying 
in school until age 16 on (a) fraction overweight (b) fraction obese (c) fraction obese according to waist-
hip ratio (d) fraction with chronic obstructive pulmonary disease (COPD) (e) fraction with diastolic blood 
pressure above 80 mm Hg (f) fraction with diastolic blood pressure above 90 mm Hg (g) fraction with 
systolic blood pressure above 130 mm Hg (h) fraction with systolic blood pressure above 140 mm Hg for 
the bottom, middle, and top terciles of the EA PGS distribution. Overweight is defined as having a BMI 
over 25. Obesity is defined as having a BMI over 30 (panel (b)) or as having a waist-hip ratio above 0.85 
for women and above 0.9 for men (panel (c)). COPD is defined as having a FEV1-FVC ratio below 0.7. 
Brackets show 95% confidence intervals. Sloped lines plot �̂�𝛽1𝑃𝑃𝐺𝐺𝑆𝑆𝑖𝑖 + �̂�𝛽2. “P” corresponds to the p-value of 
𝐻𝐻0:𝛽𝛽1 = 0. 
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APPENDIX K: Mechanisms 

 

Appendix Table K1.  Effect of staying in school until age 16 on obesity-related health behaviors. 2SLS 
estimates. Edu16 is an indicator for staying in school until age 16 and is instrumented by an indicator for 
being born after September 1, 1957. The “P-value for H0: No Effect of Education” is the p-value from a 
joint test that the coefficient on “BMI PGS  ×  Edu16” and on “Edu16” are each equal to zero. The last row 
shows means of the dependent variable among pre-reform compliers, defined as individuals born before 
September 1, 1957 who dropped out before age 16.  

 

 

Appendix Table K2.  Effect of staying in school until age 16 on income. 2SLS estimates. Edu16 is an 
indicator for staying in school until age 16 and is instrumented by an indicator for being born after 
September 1, 1957. The “P-value for H0: No Effect of Education” is the p-value from a joint test that the 
coefficient on “BMI PGS  ×  Edu16” and on “Edu16” are each equal to zero. The last row shows means of 
the dependent variable among pre-reform compliers, defined as individuals born before September 1, 1957 
who dropped out before age 16.  
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APPENDIX L: Outcomes Composing Indices 

 

Appendix Table L1.  Effect of staying in school until age 16 on health outcomes. 2SLS estimates. Above 
Threshold is an indicator of whether the outcome is greater than its threshold. Edu16 is an indicator for 
staying in school until age 16 and is instrumented by an indicator for being born after September 1, 1957. 
The “P-value for H0: No Effect of Education” is the p-value from a joint test that 𝛽𝛽1 = 𝛽𝛽2 = 0. The last 
row shows means of the dependent variable among pre-reform compliers, defined as individuals born before 
September 1, 1957 who dropped out before age 16. 
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