
Supplementary Methods 

Telomere Length Measurement  

Each assay (measuring the single copy gene 36B4 and measuring telomere repeats) was 

run three times and triplicate values were generated. One average value from each assay was 

then calculated for further analysis. If more than 2% discordance was found among triplicates, 

the data was removed from analyses. The T/S ratio value for all experimental samples was 

compared to the T/S ratio of five pooled genomic DNA reference samples, derived from normal 

human subjects of mixed age and sex. The relative T/S ratio (-ddCt) was determined by 

subtracting the reference sample T/S from the unknown sample T/S ratio, and then 

exponentiating (2- -ddCt). A modified version of the qPCR telomere assay was performed in a 

384-well format with a 7900HT PCR System (Life Technologies, Carlsbad, CA). 5ng of buffy-

coat derived genomic DNA was dried down in a 384-well plate and resuspended in 10µL of 

either the telomere or 36B4 reaction mixture and stored at 4°C up to 6 hours. The telomere 

reaction mixture consists of 1x Quantitect SYBR Green Master Mix (Qiagen, Venlo, 

Netherlands), 2.0mM of DTT, 270nM of Tel-1 primer-

(GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT), and 900nM of Tel-2 primer-

(TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA). The reaction proceeded for 1 

cycle at 95°C for 10 min, followed by 40 cycles at 95°C for 15 sec, and 54°C for 2 min. The 

36B4 reaction consists of 1x Quantitect SYBR Green Master Mix, 300nM of 36B4U primer-

(CAGCAAGTGGGAAGGTGTAATCC), and 500nM of 36B4D primer- 

(CCCATTCTATCATCAACGGGTACAA). The 36B4 reaction will proceed for 1 cycle at 95°C 

for 10 min, followed by 40 cycles at 95°C for 15 sec, and 58°C for 1 min 10 sec. Samples for 

both the telomere and 36B4 reactions were performed in triplicate on different plates. Each 384-



well plate contained a 6-point standard curve from 0.625ng to 20ng to assess PCR efficiency.  A 

slope of -3.33 +/- 10% for the standard curve of both the telomere and 36B4 reactions was 

deemed acceptable. Two quality controls were plated and run along with the primary study 

samples in every plate to measure inter- and intra- plate variability of Ct values. Each quality 

control sample was comprised of 2-4 different pooled DNA samples of mixed age and sex. The 

inter-plate % coefficient of variation (CV) for both the telomere Ct and 36B4 Ct values were 

consistently under 0.75% in previous projects performed at this facility and the CV for the T/S 

ratio of quality control samples was 14.3% in this sample. No threshold was set for critically 

short telomeres; all samples amplified within the expected range of cycle.  The telomere T/S 

ratio ranged from 0.2-1.2. 

Laboratory and Statistical Procedures for DNAm and DNA 

 Genotype. Full details on the genotyping techniques and data cleaning procedures are 

available in Logue et al. (2013) and are summarized here. DNA was isolated from peripheral 

blood samples on a Qiagen AutoPure instrument with Qiagen reagents; DNA samples were 

whole-genome amplified, fragmented, precipitated and resuspended before hybridization on 

Illumina HumanOmni2.5-8 beadchips per manufacturer’s protocol (Illumina, San Diego, CA). 

Samples with call rates less than 95% were excluded. We screened for cryptic relatedness and 

mismatches between sex and X-chromosome heterozygosity.  

 Methylation. The integrity and quantity of the DNA samples were determined by 

TaqMan® RNase P Detection assay (Applied Biosystems Assay, Life Technologies, Carlsbad, 

CA) with fluorescence detection on a 7900 Fast Real Time PCR System (Applied Biosystems, 

Life Technologies, Carlsbad, CA) according to the manufacturer's protocol. Samples were 

bisulfite-modified using Zymo EZ-96 DNA Methylation Kits (D5004). The bisulfite-mediated 



conversion efficiency was determined by PCR with DAPK1 primers (Zymo) and gel 

electrophoresis of PCR-products. Samples were hybridized to Illumina HumanMethylation 450 

beadchips for scanning using the Illumina iScan System. Internal quality control and 

performance was examined with GenomeStudio v2011.1 software using Methylation module 

v1.9.0 (see Wolf et al., in press).    

Background-corrected methylation-probe data were available for 489 white non-Hispanic 

samples. Of these, 20 duplicates and three previously identified sample swaps were excluded, 

leaving 466 samples for analysis. Of these, two were missing chronological age and 11 were 

missing other key variables (primarily TL estimates), yielding a final sample size of 453.  The 

pipeline established by the Psychiatric Genomics Consortium PTSD Workgroup for the 

processing, quality control, and cleaning of DNAm was utilized (see Ratanatharathorn et al. 

2017). DNAm data were cleaned using the CpGassoc package Bioconductor package in R (R 

Development Core Team, 2008). All samples passed intensity thresholds (intensity > 50% of the 

experiment-wide and > 20,000 arbitrary units). We set singleton probe values with detection-p 

greater than 0.001 to missing. Probes and subjects with > 10% missing values were excluded. 

Probe normalization was performed using beta mixture quantile dilation (BMIQ) method
 

(Teschendorff et al., 2013) which was implemented in the watermelon package (Pidsley et al., 

2013; Touleimat & Tost, 2012). The Bayes batch-correction method (ComBat; Johnson & 

Rabinovic, 2007) in the Bioconductor sva package (Leek et al., 2013) was used to remove chip 

and position effects. Missing data were imputed using a k nearest neighbor method
 
(KNN; Hastie 

et al., 1999) via the Bioconductor impute package 

(http://www.bioconductor.org/packages/release/bioc/html/impute.html).  This approach uses the 

http://www.bioconductor.org/packages/release/bioc/html/impute.html


methylation patterns for similarly behaving genes (Troyanskaya et al., 2001) to generate values 

for missing data.  

DNAm age Estimates. The Horvath DNAm age estimate was calculated using the 

statistical software program R, as detailed by Dr. Horvath 

(http://labs.genetics.ucla.edu/horvath/dnamage/). We calculated Hannum DNAm age estimates 

from beta values (proportion of methylated DNA) after filtering quality control procedures. Of 

the 89 probes specified for use in the Hannum et al.
 
(2013) “all data” algorithm, two loci 

(cg25428494 and ch.13.39564907R) did not survive cleaning and quality control procedures and 

were excluded.   Of the 87 remaining probes, 15 had some missing data and imputed data were 

used for the Hannum DNAm age calculation; there was no more than 3.24% missing data for any 

probe.  Hannum methylation age estimates were computed via linear multiplication of the beta 

values from the 87 available probes and the coefficients reported by Hannum et al. in the R 

statistical analysis package. 

Ancestry. Self-reported ancestry was compared against DNA data using a Bayesian 

clustering analysis of single nucleotide polymorphisms via the program STRUCTURE (Falush, 

Stephens, & Pritchard, 2003; Pritchard, Stephens, & Donnelly, 2000). This process was used to 

identify the White non-Hispanic sample that would undergo DNA methylation analysis.  Within 

this sample, principal components (PC) were created to explore the potential confounding effect 

of population substructure (e.g., differences within the white non-Hispanic cohort). These PCs 

were generated with EIGENSTRAT (Shadick et al., 2006) based on 100,000 randomly chosen 

SNPs.  

White blood cells. White blood cell counts (CD4 and CD8 T-cells, natural killer cells, B 

cells, and monocytes) were estimated from the DNAm data as there is variability in the type of 

http://labs.genetics.ucla.edu/horvath/dnamage/


white blood cell that the DNA was extracted from. This was conducted in the R minfi package 

using the procedures described by Houseman et al. (2012) and Jaffe and Irizarry (2014). 
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Supplementary Table 1.  

 

Prevalence of Somatic Comorbidities in Subset of Study Sample (BMI n= 133, cigarette smoking 

n= 309, all other variables n= 219) 

 M SD % 

BMI 31.02 5.95  

Type 2 diabetes    10.0 

Hyperlipidemia   32.9 

Hypertension   32.4 

Cardiovascular disease   13.2 

History of cigarette smoking   78.1 

Note. BMI= body mass index.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2.  

 

Regression Examining Estimated White Blood Cell Count Proportions, Population Substructure, 

Demographic Variables, Trauma, and Lifetime PTSD Symptoms as Predictors of TL 

 Std. β ΔR
2
 

Step 1  .104*** 

Age -.252***  

Sex -.082  

Num. diff. traumas .043  

PTSD symptoms -.019  

CD4 T-cells -.040  

CD8 T-cells -.071  

NK cells -.086  

B cells -.039  

Monocytes -.118*  

PC1 -.030  

PC2 -.047  

Step 2  .025*** 

Age x PTSD symptoms -.161**  

Note. TL = telomere length; Unstd. B = unstandardized beta; SE = standard error; Std. β = 

standardized beta; Num. Diff. Traumas = number of different traumas as measured by the 

Traumatic Life Events Questionnaire (TLEQ); PTSD = posttraumatic stress disorder. PTSD 

symptoms= lifetime symptom score on the Clinician Administered PTSD scale (CAPS). NK 

Cells = Natural killer cells. PC= principal component (reflecting ancestry from genome wide 

genotype data). Age and PTSD symptoms were centered on their means. 

* p < .05, ** p < .01, *** p < .001. 



Supplementary Table 3.  

 

Results of Multiple Regressions predicting Estimated White Blood Cell Proportions 

Outcome CD4 T-Cells CD8 T-Cells NK Cells B Cells Monocytes 

 Std. β Std. β Std. β Std. β Std. β 

Age -.049 -.281*** .213*** -.018 .089 

Sex -.153** -.209*** .109* -.047 .291*** 

Num. Diff. Traumas -.022 .055 .091 .033 -.076 

PTSD symptoms .077 .024 -.076 .034 .047 

Age X PTSD symptoms -.023 .018 .019 .072 -.084 

Note. NK Cells = Natural killer cells; Num. Diff. Traumas = number of different traumas as 

measured by the Traumatic Life Events Questionnaire (TLEQ); PTSD = posttraumatic stress 

disorder. PTSD symptoms= lifetime symptom score on the Clinician Administered PTSD scale 

(CAPS). Age and PTSD symptoms were centered on their means. 

CD4 T Cells Model R
2 

= .029; CD8 T Cells Model R
2 

= .135; NK Cells Model R
2 

= .069; B Cells 

Model R
2
= .011; Monocytes Model R

2 
=  .107.  

* p < .05, ** p < .01, *** p < .001.  

See Supplementary Table 2 for a regression predicting to TL while controlling for estimated 

white blood cell proportions.  

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 4. 

 

Regression Examining Somatic Comorbidities as Predictors of TL 

 Std. β ΔR
2
 

Step 1  .104*** 

Age -.271***  

Sex -.159*  

Step 2  .008*** 

Type 2 diabetes .004  

Hyperlipidemia -.069  

Hypertension .003  

Cardiovascular disease .081  

Note. TL = telomere length; BMI = body mass index. In a separate regression examining a larger 

subset of the sample (n= 309), history of cigarette use was not a significant predictor of TL, 

controlling for age and sex (β = .010, p = .856). No significant associations were found between 

body mass index and TL when controlling for age and sex within a smaller subset of the sample 

for which we had this data available (n= 133; β= -.129, p = .131).  

* p < .05, ** p < .01, *** p < .001.  

 

 

 

 

 

 


