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Materials and Methods 
Variant calling from WGS data 

The Roadmap Epigenomics Consortium generated WGS data on 11 tissue donors 
and 2 cell lines from the Roadmap Epigenomics Project, which we utilized for genome-
wide identification of SNPs, insertions and deletions (INDELS), and copy number 
variants (CNVs). FastQC (v0.10.1) was used to trim adapter contigs and perform fastq 
quality control. The sequence data was aligned against human reference assembly 
GRCh37 using BWA mem (56) (v0.7.8). Picard (1.111) was used to remove PCR 
duplicate reads, after which INDEL realignment and base quality recalibration was 
performed using GATK (v3.2.2) (57). The SNP and INDEL calling was done using 
goSNAP (58), an ensemble joint calling pipeline, in which we employed three callers, 
Atlas-SNP (v1.4.3) (59), GATK (v3.2.2) HaplotypeCaller (HC) (60), and GATK 
UnifiedGenotyper (UG) for SNP calling. Four callers were utilized for INDEL calling: 
Atlas-Indel (v1.4.3), GATK-HC, GATK-UG, and Platypus (v0.7.9.1) (61). With each 
caller we enforced the joint calling mode, across all 13 WGS sources, during both the 
SNP and INDEL discovery. Only the variants passing the default filter of each caller 
were retained. To achieve high sensitivity and specificity, as well as to reduce caller 
specific bias, we further applied a consensus strategy using goSNAP to generate a high 
quality SNP call set via 3-out-of-3 consensus. Similarly for INDELS, we generated a call 
set by taking the intersection of INDELS called by both Atlas-Indel and GATK-UG and 
then merged with INDELS called by GATK-HC. Rescoring and filtering was then 
performed on this set using Platypus. Genotype likelihood was then calculated for SNPs 
and INDELS using SNPTools BBMM algorithm (62) and Platypus, respectively. 

We were able to assess the SNP call set quality of 5 (H9, STL001,STL002,STL003, 
skin02) of 13 of our WGS sources by comparing against their genotyping array data 
available on the Gene Expression Omnibus database 
(https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/?search=Genotyping&display=
500). The average per sample SNP calling sensitivity, specificity, and false discovery 
rates were 94.63%, 99.87%, and 0.29%, respectively. The average genotype discordance 
rate was 0.14%, with a heterozygous genotype discordance rate of 0.27%. On average, 
we called 3.74 million SNPs per sample (98% in dbSNPv141), with a Ti/Tv ratio of 2.02, 
and 589.5 thousand INDELS per sample (92% in dbSNPv141). 

CNVs may have significant impact on the set of detected heterozygosities as every 
SNP appearing in one of the copies of a duplicated region can be mistakenly called as 
heterozygous SNP when reads obtained from different copies of the same duplicated 
region are stacked together during their alignment to the reference genome. This situation 
occurs when the length of duplicated region is significantly larger than the length of 
reads. We detected false heterozygous SNPs, introduced by CNVs, by analyzing the 
value of read depth. Duplicated genome regions should have significantly larger coverage 
than “standard” regions, where reads originate only from single copies on two 
chromosomes. Furthermore, the coverage of “standard” regions should be twice as large 
as a coverage of regions with simple deletion, where sequence on one of the 
chromosomes is deleted. To detect duplicated regions, as well as simple deletions, we 
utilized a tool called CNVnator with the embedded GC-correction algorithm (63) 
(version 0.3). Analysis with the use of CNVnator was performed for every donor 
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separately based on available WGS data. The pipeline prepared by us was based on the 
description contained in the README file from the tarball with CNVnator sources. 
During computations, the whole reference genome was divided into sequences of 
adjacent regions (bins) with lengths equal to a user-specified “bin size” of 1000 bp. 1000 
bp was chosen as all input WGS data was composed of paired-end 100 bp reads and the 
average distance between reads from a single pair equaled ~300 bp, we therefore 
assumed that a single read pair covers ~500 bp and that the value of “bin size” parameter 
should be set to 1000 bp (two times as long as “read size”). Average read depths were 
calculated for each bin separately, followed by the merging of bins with similar 
coverages. As a result, CNVnator returned a list of regions with coverage significantly 
different than the “standard” (i.e. coverage of standard regions). In the obtained results 
we noticed that some regions that contained unknown sequences (many base-pairs 
marked as “N”) were called by CNVnator as deletions. To remove these false calls we 
calculated a list of regions containing significant amount of “N” base pairs and subtracted 
them from CNV results. Every returned region had assigned a special parameter RD, 
which equals the estimated ratio between measured coverage of this region and the 
“standard” coverage. To examine the influence of regions called by CNVnator as under- 
or over-covered on the set of found heterozygous SNPs, we calculated the density of 
occurrences of heterozygous SNPs in these regions (fig. S12).  

 
Allele-specific methylation detection 

Reads from WGBS experiments were mapped using Pash (64), deduplication was 
performed using Picard, and local realignment around regions with potential INDELS 
and quality score recalibration were performed using Bis-SNP (65). In the process of 
identification of allele-specific methylation, WGS variant calls were used both to 
determine the positions of heterozygous SNPs and to identify all homozygous CpG 
positions in the genome of each donor. With such information, and with the fully 
processed WGBS aligned reads, an in house script was then used to identify positions 
exhibiting significant allelic differences in CpG methylation. 

Our script counted the number of times a methylated or unmethylated homozygous 
CpG occurred in the same read as each of the two possible alleles in the heterozygous 
SNP position for autosomal chromosomes. If the same read overlapped multiple CpGs, 
they were each considered as independent observations. Reads with a low quality score 
(Phred < 20) on the SNP position, or with a base call that did not match either of the two 
alleles expected in that position based on the WGS calls, were discarded. Due to the 
nature of bisulfite sequencing data, where cytosines may be observed as thymines due to 
bisulfite conversion, it was not possible to determine which allele the read came from in 
several cases. In such cases, the read was also discarded. If low quality score, or an 
unexpected base call was observed on a CpG position for a particular read, that 
observation did not contribute to the final counts. The significance of the association 
between the allele at the heterozygous SNP position and the methylation state of the 
CpGs in the 200bp surrounding region was assessed using Fisher’s exact test. 200bp 
windows surrounding the heterozygous SNP position were chosen as the WGBS dataset 
was composed of single-end 100 bp reads. The test was only performed for heterozygous 
SNP positions that showed a minimum of 6 observations of either a methylated or 
unmethylated CpG position for both alleles. Once the p-values were computed for all 
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such heterozygous SNP positions, the Benjamini-Hochberg procedure was used to 
control the false discovery rate for such associations. The difference in the level of 
methylation between alleles was also computed for each heterozygous SNP. Any 
positions overlapping CNVs, or small INDELS, were discarded from further analyses. 
Additionally, any positions falling within ENCODE blacklisted regions were removed 
(66). Finally, ASM calls were made by identifying the heterozygous SNP positions with 
false discovery rate (FDR) below a specified threshold (10%), and absolute difference in 
methylation between alleles above a minimum threshold (either 20 or 30%). Of the 49 
samples with WGBS, 3 were discarded from individual analyses due to low coverage (< 
15X mean read depth coverage for the sample). 

 
Allelic imbalance detection for histone marks and transcription 

The identification of autosomal allelic imbalances for histone marks and 
transcription were performed using the previously published AlleleSeq pipeline (19). 
Briefly, personal diploid genomes were built based on the WGS variant calls for each 
individual. Each read from ChIP-seq or RNA-seq datasets was aligned to both versions of 
the reference genome, and the best scoring mapping was kept. Duplicate reads were 
removed. For each heterozygous SNP position with at least 6 reads mapping to it, an even 
binomial test was used to determine whether there was a significant difference between 
alleles in the number of ChIP-seq or RNA-seq reads mapping to that position. Any 
positions that overlapped CNVs, INDELS, had low mappability, fell within ENCODE 
blacklisted regions (66), or overlapped repetitive regions (defined using the 
RepeatMasker software package) were removed from further analyses. After multiple 
hypothesis adjustment using the Benjamini-Hochberg procedure, allelic imbalances in 
expression or in specific histone marks were called by identifying the positions with an 
FDR below a specified threshold (10%) and with the most prevalent allele representing at 
least 70% of the reads. Patterns of co-occurrence of allelic imbalances in DNA 
methylation and other epigenomic marks were examined within the same samples. 

 
Detection of allelic imbalances within imprinted regions 

To evaluate the accuracy of our imbalance calling method, we measured the 
enrichment of allelic imbalances around imprinted genes. The annotation of imprinting 
control regions and imprinted gene regions used were those previously defined (67). For 
each methylome in our dataset, we used a Chi-squared test to determine whether ASM 
was significantly enriched around heterozygous SNPs falling within imprinting control 
regions compared to heterozygous SNPs falling outside of those regions. Only 
heterozygous SNPs accessible for detection (those having at least 6 counts per allele) 
were included. For all other types of epigenomic data (including RNA-seq), enrichment 
for allelic imbalances was investigated within imprinted gene clusters with an additional 
10kb extension up- and downstream and using heterozygous SNPs falling outside of such 
regions as controls. Enrichment for three histone marks (H3K4me1, H3K36me3, and 
H3K27me3) could not be reliably ascertained due to limited numbers of heterozygous 
loci with sufficient read coverage in these datasets. 
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Assaying ASM co-occurrence and directionality consistency 
To address the issue of whether ASM events tend to co-occur across samples, we 

identified in each pair of methylomes from our dataset, all heterozygous SNPs that were 
present in both samples, and had at least 20 homozygous CpG observations per allele in 
both of them. To further account for differences in detection power associated with 
differences in coverage, we down sampled the allelic methylation counts in the sample 
with the highest number of observations to match the number of observations in the other 
sample. ASM was then called in each sample using a threshold of 10% FDR and a 
minimum of 30% difference in methylation.  

For each pair of samples, we then determined the degree of co-occurrence of ASM 
by computing the proportion of all loci with ASM in at least one of the two samples that 
also had ASM in the other sample. Expected values of ASM co-occurrence for each pair 
of samples were computed based on the number of heterozygous loci found in both 
samples passing the coverage thresholds, the numbers of ASMs observed in each sample 
over those loci, and on the assumption that the distributions of ASM events over those 
loci was independent between the two samples. 

Using this set of ASM calls we were also able to determine whether the difference in 
methylation between alleles for a heterozygous SNP found in both samples was in the 
same (same allele having higher or lower methylation in both samples) or in different 
directions (fig. S6C). 

 
Gaussian mixture modeling of sub-threshold ASM 

For heterozygous SNPs around which ASM was observed in one methylome but not 
in the other, the distribution of methylation differences between alleles in the sample 
without ASM had one peak near zero and another around 30%, with the difference in the 
same direction as the sample with ASM. To quantitate the degree of sub-threshold ASM, 
we fitted a Gaussian Mixture Model with two components using expectation 
maximization (mixtools package in R) to those values of differences in methylation 
between alleles. We then assigned each of those co-occurring heterozygous loci to one of 
the two Gaussian component models based on their posterior probabilities for each locus.  
 
Cross-methylome SD-ASM calling  

For every autosomal locus displaying exactly two alleles across all the individuals in 
our dataset, we took all WGBS reads mapping to that position in any sample and counted 
the number of co-occurrences of either methylated or unmethylated homozygous CpGs in 
the same read as each of the possible alleles across all 49 methylomes. Note that samples 
with a homozygous locus were included as long as the total number of alleles across all 
individuals present at the locus was two. Fisher’s exact test was then used to determine 
whether the allele at that position was significantly associated with the methylation status 
of the surrounding CpGs. The test was only performed for heterozygous SNP positions 
that showed a minimum of 6 observations of either a methylated or unmethylated CpG 
position for both alleles and 6 mapped reads. Once a p-value was computed for all such 
heterozygous SNP positions, the Benjamini-Hochberg procedure was used to control the 
FDR for such associations. The difference in the level of methylation between alleles was 
also computed for each heterozygous SNP. As for the per methylome ASM calling, any 
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positions overlapping CNVs or small INDELS in any individual were discarded. 
Similarly, any positions falling within ENCODE blacklisted regions were removed (66). 

 
Assaying SD-ASM occurrence within regulatory regions 

The combined set of methylomes was utilized to assess the degree of SD-ASM 
occurrence over various regulatory regions. The distribution of SD-ASM loci around 
regulatory regions was determined by calculating the proportion of heterozygous loci 
exhibiting SD-ASM over the sum of loci with SD-ASM and control loci (methylation 
difference between alleles < 5%) in 200bp bins starting from the center of the regulatory 
element. Promoters with CpG islands were defined as the regions surrounding the 
transcription start site of protein-coding genes (Gencode v19 annotation) that were 
defined as promoters in Broad Institute’s Reg2Map HoneyBadger2 annotation and were 
within 5Kb of CpG islands. These regions were detected by DNase I data from 53 
epigenomes and were consistently classified as a promoter by ChromHMM across 127 
epigenomes using the 15 state model. Enhancers were defined based on the 
aforementioned dataset obtained from the Broad Institute’s Reg2Map HoneyBadger2 
annotation. These regions were detected by DNase I data from 53 epigenomes which 
were consistently classified as enhancers by ChromHMM across 127 epigenomes both 
with the 15 state and 25 state models, yielding a total of 474,004 enhancer regions                           
(https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2_release/).  

 
Calculation of sequence-dependent epiallele frequencies, Shannon entropy, and 
Coefficient of Constraint 

The set of loci retained for the cross-methylome analyses were further filtered to 
retain only those loci that exhibited at least 4 homozygous CpGs across all individuals in 
the 200 bp window (100 bp each side) surrounding the variants of interest. The loci 
displaying SD-ASM in the combined set, defined as falling below threshold of 10% FDR 
and a exhibiting a minimum of 30% difference in methylation, were chosen for analysis. 
A control set for comparison was generated by taking the closest variants without SD-
ASM in the combined set, defined as not having significant difference in methylation 
between alleles and a maximum of 5% difference in methylation between alleles. For the 
chosen loci, the patterns of methylation status of the 4 CpGs nearest to the variant were 
compiled for all reads across all samples. Only reads that contained both the complete 
observations of the methylation status of all 4 CpGs and the heterozygous SNP were 
retained. In order to compare the epiallele frequency spectra between alleles at the loci of 
interest, another filter was applied to select only those loci that had at least 10 complete 
reads (containing methylation status of all 4 CpGs) for each allele when combining 
across samples. In the following, X denotes allele random variable that takes values a1 or 
a2, the two alleles at the heterozygous SNP locus.  

Overall Shannon entropy H(Y) was calculated based on the epiallele frequency 
profile p(yi|X), for each of i= 1,...,16 (16 = 24) possible epialleles, yi over 4 CpG. 
Frequencies p(yi|X) were calculated by dividing the number of reads with an allele and a 
particular epiallele by the total number of reads with the same allele meeting the 
aforementioned criteria. The overall entropy (in bits) was calculated under assumption 
that a1 and a2 are equiprobable from a simple average of the two profiles as follows: 
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H (Y ) = − 0.5( p( yi | X = a1)+ p( yi | X = a2 )) log2(0.5( p( yi | X = a1)+ p( yi | X = a2 )))

i=1

16

∑  

 
Entropy conditional on equiprobable allele X was calculated by the following formula: 
 

  
H (Y | X ) = − 0.5p( yi | X = a1) log2( p( yi | X = a1))

i=1

16

∑ + 0.5p( yi | X = a2 ) log2( p( yi | X = a2 ))

 
and mutual information I(X;Y) was calculated as:  I(X;Y) = H(Y) - H(Y|X).  
 
An epiallele was defined to be “frequent” at a locus of interest if it belonged to the 
minimal-size set of epialleles with combined frequency of 60%. The minimal-size set 
was computed by sorting the 16 epialleles from most frequent to least frequent and 
adding epialleles starting from the most frequent into the set until the combined 
frequency of epialleles in the set reached 60%. For calculation of frequent epialleles, 
equal weight was given to each allele for the observed epialleles at heterozygous loci.  

For those set of loci exhibiting SD-ASM and containing exactly 2 frequent 
epialleles, which corresponded to either all methylated or all unmethylated CpGs, we 
measured the degree genetic variation determines (“constrains”) epigenetic variation 
using Coefficient of Constraint CXY that was calculated as follows: CXY = I(X;Y)/H(Y). 

 
Validation of stochasticity of epialleles at SD-ASM loci using ENCODE WGBS dataset 

Alignment files for WGBS datasets of smooth muscle cells (ENCSR076OHG) were 
downloaded from the ENCODE project website for both isogenic replicates 
(https://www.encodeproject.org). Duplicate removal, sorting, and indexing of BAM files 
was performed using Samtools (68). Alignments with MAPQ smaller than 20 were 
discarded from downstream use. Reads from both processed BAM files were then 
combined for quantification of epiallelic patterns. The same 200bp windows containing a 
minimum of 4 CpGs examined in the combined dataset, were examined in this dataset, if 
the allele which the window was centered on was in a homozygous state. Homozygosity 
in this ENCODE dataset was required to mitigate any confounding due to differential 
read mapping between two alleles and to show that stochasticity is not related to 
homozygous/heterozygous status. Coordinates from the combined dataset were converted 
from hg19 to GRCh38 using UCSC’s online liftOver tool (69). Those windows with a 
minimum of 30 reads containing complete observations for all 4 of the closest CpGs to 
the window center were retained for downstream calculations. 864 of the SD-ASM loci 
were homozygous and had sufficient coverage in the external ENCODE dataset. A 
similar number of control loci were chosen genome-wide from 200bp windows meeting 
the same criteria at random. Shannon entropy and quantification of number of frequent 
epialleles per locus were calculated in a similar fashion as described above. Tanghulu 
plots were generated by using CgmapTools (70) and utilizing only WGBS reads from 
replicate one from the aforementioned ENCODE dataset. 
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Calculating enrichment and directionality of SD-ASM in transcription factor motifs 
The R package motifbreakR (71) was utilized to determine whether a given 

polymorphism, in the combined DNA methylation dataset, significantly overlapped a 
sequence match against a library of human transcription factor motifs previously 
generated via high-throughput SELEX (36). Each allele was scored for a given motif to 
allow inference of how much information is affected by a change in sequence due to a 
polymorphism. The scoring parameters chosen included a threshold of 1e-4, background 
probabilities of 0.25, and using the log-probabilities scoring algorithm option. To filter 
for motifs more likely to be bound, tested heterozygous SNPs were restricted to motifs 
that overlapped DNAse I hypersensitive regions defined based on the complete set of 
epigenomes from the Roadmap Epigenomics Project, as described above. For each given 
motif, enrichment was performed by testing whether the proportion of heterozygous 
SNPs with SD-ASM was significantly higher within the motif relative to 500bp windows 
flanking the motif and using heterozygous SNPs without SD-ASM (methylation 
difference less than 5%) as controls by Fisher’s exact test. Directionality was assessed by 
testing whether, for a given motif, the allele with higher methylation was significantly 
associated with the higher scoring allele for heterozygous SNPs falling within the motif 
using a binomial test. A motif was required to contain at least 10 heterozygous SNPs 
falling within in order for directionality to be assayed. Only heterozygous SNPs passing a 
threshold of difference in scores greater than 1.5 between alleles were retained for 
directionality analyses. All p-values had multiple hypothesis adjustment using the 
Benjamini-Hochberg procedure, for the number of transcription factor motifs assayed. 

 
Testing relation of allelic looping and CTCF binding with allelic imbalances in DNA 
methylation 

A list of previously identified heterozygous SNPs, exhibiting both allelic looping 
and CTCF binding in the GM12878 cell line, were referenced and those that were present 
in our combined DNA methylation dataset were retained for further analyses (35). Of the 
48 heterozygous SNPs that were common between the datasets, 44 fell within a DNAse I 
hypersensitive region as defined based on the complete set of epigenomes from the 
Roadmap Epigenomics Project. To assay whether the presence SD-ASM at an 
heterozygous SNPs position falling within an CTCF motif was a better predictor of allelic 
looping than difference in scores, based on the log-probabilities scoring algorithm, a 
threshold of “disruptiveness” was set to compare the specificity of allelic imbalances in 
methylation compared to score differences at a similar sensitivity. Utilizing the 
motifbreakR_motif library of motifs in the motifbreakR package (71), heterozygous 
SNPs falling within CTCF motifs present in accessible regions (within the 
aforementioned DNAse hypersensitive region) within the combined DNA methylation 
dataset were identified. If a heterozygous SNP fell within several different CTCF motifs, 
the score for each allele was averaged across all possible CTCF motif scores for that 
allele. A similar sensitivity was achieved by setting a threshold for score differences, 
where a similar number of heterozygous SNPs were deemed to have a “disruptive” 
difference between alleles as heterozygous SNPs showing SD-ASM. CTCF motif-
containing loci genome-wide were ranked by both motif disruption scores, as well as by 
allelic methylation imbalance scores, and the two top-lists were examined for the loci that 
showed allelic looping by ChIA-PET. The specificity of each metric to predict allelic 
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looping was then determined by comparing how many heterozygous SNPs had a 
“disruptive” difference between alleles, based on the calculated threshold, to how many 
exhibited SD-ASM for the 44 overlapping heterozygous SNPs that previously exhibited 
allelic looping.  

 
Selection of genomic regions with allelic imbalance DNA variations and cis-overlapping 
motifs for P53 and cMYC for luciferase assays 

Regions associated with SD-ASM in the combined dataset were selected for 
functional analysis to determine the effect of the associated DNA sequence variation on 
target gene expression. A threshold of methylation difference of more than 20% and FDR 
< 0.1 were chosen as cutoffs to select variants with SD-ASM. 10 heterozygous SNP loci 
were selected on the basis of the following criteria: (1) > 20% SD-ASM; and (2) allelic 
differences in predicted transcription factor binding affinities; and one or more of the 
following: (3a) being in strong (r2 > 0.9) linkage disequilibrium with GWAS SNPs; (3b) 
falling near eQTLs whose associated genes showed ASE; or (3c) falling within CisOMs 
(table S5). Those loci near GTEx (72) eQTLs were further restricted to sites defined as 
active enhancers from the aforementioned Broad Institute’s Reg2Map HoneyBadger2 
annotation. All selected loci were predicted to harbor drastic differences in predicted 
transcription factor binding affinities between alleles based on the R package 
motifBreakR and further visual inspection in the Jaspar database (73). DNA conservation 
and epigenetic markers for these regions were considered for prioritization purposes. Of 
these 10 loci, four constructs were successfully generated and tested.  
 
Allelic enhancer activity measurement using luciferase assay 

HEK293 cells were used for testing genomic regions for enhancer activity using 
luciferase assay. Cells were grown in DMEM, 10% FBS without antibiotics medium at 
37°C as previously described (44). After trypsin digestion, the cells were grown for 2 
hours then transfected using lipofectamine 3000 (Life Technology, CA) with pGL3-
basic-Luc and pGL3-enh-Luc as negative and positive controls, respectively. The pGL3-
SV40-Renilla plasmid served as an internal control for normalization and transfection 
efficiency. Site directed mutagenesis was used to introduce the identified DNA variations 
(SNPs) within regulatory regions that show enhancer activity in cell-based assay as 
previously described (74). Allelic differences in luciferase expression with 5 replicates 
for each allele. 

 
Testing enrichment of heterozygous loci with ASM associated with ASE 

Tissue types from the DNA methylation datasets were matched with the 
corresponding RNA-seq dataset from the same sample to determine if there was an 
enrichment of ASM in promoters of genes that exhibited ASE. Forty-three samples had 
both RNA-seq and DNA methylation datasets available. In order to call ASM, a 
difference in methylation of more than 30% between alleles at an FDR of less than 0.10 
was used. For ASE calling in the RNA-seq dataset, a difference in reads aligned of more 
than 70% between alleles and a FDR less than 0.10 was used. ASM was screened in 
protein coding promoters matched with their downstream gene from the RNA-seq 
dataset. The promoters were defined based on their overlap with the transcription start 
sites (500bp upstream and 1000bp downstream). Enrichment was obtained by testing 
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whether heterozygous variants with ASM in promoters, whose associated genes exhibited 
ASE, were significantly more enriched than heterozygous variants without ASM by Chi-
square analysis. Similarly, enrichment was performed for aforementioned enhancers 
regions defined from the Broad Institute’s Reg2Map HoneyBadger2 annotation.  

 
Testing enrichment of ASM in proximity to previously published eQTLs 

Relevant tissue-specific eQTLs from the GTEx (72) dataset were matched with 
similar tissue types to our DNA methylation datasets to determine if there was an 
enrichment of heterozygous variants with ASM in proximity to eQTLs whose associated 
gene exhibited ASE in our RNA-seq dataset from the same sample as well. Thirty-four 
samples were present with matching tissues. A window of 1000 base pairs surrounding an 
eQTL was set to test nearby heterozygous variants in the methylation dataset. Enrichment 
was determined by testing whether the number of heterozygous variants with ASM was 
significantly higher than heterozygous variants without ASM near eQTLs whose 
associated gene had ASE via Chi-square analysis. 

 
Testing enrichment of allelic imbalances in promoters marked by H3K4me3 or H3K27ac 
and enhancers marked by H3K27ac 

ChIP-seq for histone marks and RNA-seq datasets were utilized from the same 
sample, of which 40 samples had both H3K27ac and RNA-seq data generated and 35 
samples that had both H3K4me3 and RNA-seq datasets. The promoters were defined 
based on their overlap with the transcription start sites as previously mentioned. 
Enhancers were defined based on the aforementioned dataset obtained from the Broad 
Institute’s Reg2Map HoneyBadger2 annotation. Only enhancers at a distance of less than 
100,000 base pairs from the gene were used. Histone allelic imbalance was defined as a 
difference between alleles of more than 70% of aligned reads and an FDR of less than 
0.10. Enrichment of histone allelic imbalances in enhancers and promoters was 
determined by testing whether the number of heterozygous variants with histone allelic 
imbalance in promoters or enhancers, whose genes showed ASE, was significantly higher 
than for the heterozygous variants with no histone allelic imbalance using a Chi-square 
test. 

 
Testing enrichment of SD-ASM near reported GWAS loci 

The utilized GWAS dataset was obtained from both the National Human Genome 
Research Institute (NHGRI) and the European Bioinformatics Institute (EMBL-EBI) 
websites. The data was divided between the SNPs that have been replicated in a second 
study and those SNPs that haven’t been replicated. A window of 1000 base pairs was set 
surrounding GWAS SNPs to screen for nearby heterozygous variants exhibiting SD-
ASM. For these analyses, the combined methylation dataset was used. Enrichment near 
GWAS SNPs was tested by comparing whether the number of heterozygous variants with 
SD-ASM was significantly higher than the number of variants without SD-ASM in 
proximity to a GWAS SNP using Chi-square analysis. These analyses were done 
genome-wide. Similar analyses were performed focusing on GWAS SNPs and variants 
with SD-ASM falling solely in enhancer elements. An enhancer was defined similarly as 
mentioned above. Chi-square analysis was performed to test whether the number of 
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variants with SD-ASM was significantly higher than variants without SD-ASM near 
GWAS SNPs falling in enhancer regions. 

 
Analysis of derived allele frequency of variants with ASM 

For each of the 46 individual samples with WGBS and adequate coverage, estimates 
of DAF for variants exhibiting ASM were obtained from the 1000 genomes project (48). 
Variants overlapping regions with low accessibility to variant calling were excluded. For 
each methylome in our dataset, we used a Chi-squared test to determine whether ASM 
was significantly enriched for heterozygous SNPs with a low DAF (< 1%) compared to 
those without ASM (methylation difference between alleles < 5%). This test was 
performed both genome wide and in aforementioned enhancer regions. A similar test was 
performed on the combined set to test enrichment of low DAF (< 1%) with SD-ASM. To 
minimize any locus-dependent confounding, we chose variants without SD-ASM 
(methylation differences between alleles < 5%), occurring within 1kb of a variant with 
SD-ASM, as controls. To minimize confounding due to ascertainment biases, we tracked 
the number of individuals where each ASM and control “index hets” could be ascertained 
and matched the distributions of ASM and controls. 

 
Allelic Epigenome Atlas 

The Allelic Epigenome Atlas was developed using the GenboreeKB document 
modeling system and is accessible at https://genboree.org/genboreeKB/projects/allelic-
epigenome. The annotations are downloadable in JSON document format and include 
allelic epigenome states and additional metadata. The JSON document collections are 
divided by chromosome. JSON documents provide information about a particular allele 
both at the level of individual samples and for the combined dataset. Allelic imbalance p-
values are provided both before and after correction for multiple hypothesis testing. If the 
allele is associated with a given transcription factor motif, the name of the transcription 
factor is included, along with the associated motif scores for both the reference and 
alternate alleles. Proximity to known GWAS variants, promoter, and/or enhancer regions 
is flagged. Lastly, all variants have been registered within the ClinGen Allele Registry 
(https://reg.clinicalgenome.org/) and assigned canonical allele IDs. Additional metadata 
describes experiments performed and the tissues/cell types analyzed. Many descriptors in 
the metadata document collections for Experiment and Tissue use ontology terms from 
the Experimental Factor Ontology (EFO) (75), the Sequence Ontology (SO) (76), and/or 
the UBERON ontology (77). 
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Fig. S1: Description of utilized datasets for detection of allelic imbalances. Each 
colored box represents which of the 8 assays were available for each of the 71 samples. 
For DNA methylation, a half mark indicates samples that were excluded from individual 
analyses due to low coverage, but were included in the combined dataset. Noted in 
parentheses for each donor is the donor ID code used in the Roadmap Epigenomics 
project.  
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Fig. S2: Calling allelic imbalance. (A) Detection of allele-specific methylation. WGS 
variant calls are used both to determine the positions of heterozygous SNPs and to 
identify all homozygous CpG positions in the genome of each individual. For every 
heterozygous SNP position, WGBS is used data to count the number of times a 
methylated or unmethylated homozygous CpG occurs in the same read as each of the two 
possible alleles in the SNP position. The significance of the association between the allele 
at the heterozygous SNP position and the methylation state of the CpGs in the 
surrounding region is assessed using Fisher’s exact test. (B) Detection of allelic 
imbalances in ChIP-seq and RNA-seq datasets. Personal diploid genomes are built based 
on WGS variant calls for each individual. Each read, from ChIP-seq or RNA-seq 
datasets, is aligned to both versions of the reference genome, and the best scoring 
mapping is kept. For each heterozygous SNP an even binomial test is used to determine 
whether there is a significant difference between alleles in the number of ChIP-seq or 
RNA-seq reads mapping to that position. 
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Fig. S3: Extent of loci showing allelic imbalance per sample. Each dot in the plots 
displayed in this figure represents one sample in the dataset. The x-axis represents the 
number of heterozygous loci that were accessible to allelic imbalance calling in each 
sample. The y-axis represents the number of allelic imbalance calls made in each sample. 
The slope of the line in each plot, as well as the number above each plot, represent the 
median percentage of accessible loci where allelic imbalances were found. For DNA 
methylation the three samples with insufficient coverage are noted in red. 
 



 
 

15 
 

 
 
Fig. S4: Enrichment of allelic imbalances in imprinted regions. Each dot in the plots 
represents one sample in the dataset. For each of those samples the number of AI loci 
were compared to other heterozygous loci within and around imprinted regions of the 
genome using a Chi-square test. For DNA methylation, the enrichment was tested over 
known imprinting control regions. For all other marks, the enrichment was tested over 
imprinted genes with 10kb windows added around them. 



 
 

16 
 

 
 
Fig. S5: ASM calls per imprinting control region across 49 methylomes. Shown in 
each cell is the number of ASM calls made out of the total number of accessible loci that 
overlapped an imprinting control region (ICR) for each methylome. Green cells represent 
ICRs overlapping at least one ASM call in that methylome. Red cells represent ICRs that 
overlap at least one accessible heterozygous SNP, but no ASM is observed. Yellow cells 
represent ICRs that did not overlap any accessible heterozygous SNPs in the methylome. 
A total of 1,259 distinct ascertained heterozygous SNPs overlapped a known imprinting 
control region in at least one of the methylomes. Of those, 892 (70.8%) displayed ASM. 
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Fig. S6: ASM co-occurs across samples towards the same allele. (A) Histogram of 
observed versus expected number of ASM co-occurrences across all pairs of methylomes. 
(B) Boxplots of co-occurrence of ASM across all pairs of samples for pairs of samples 
from different tissues of the same individual, from pairs of the same tissue but different 
individuals, and from pairs of samples without matching tissue or individual of origin. 
Significance calculated using two-sided t-test. (C) Consistency of directionality of 
difference in methylation between alleles either in loci where both samples in a pair 
display ASM or in loci where neither sample displays ASM. (D) Distribution of 
methylation differences between alleles for heterozygous SNPs around which ASM was 
observed in one of the methylomes but not in the other in a pair. Plotted is the distribution 
of methylation differences between alleles for the sample that did not display ASM, 
relative to the direction of methylation difference in the other sample. Overlaid is the 
Gaussian Mixture Model fitting showing the distribution as a mixture of two normal 
distributions (E) The posterior probability of a heterozygous SNP having subthreshold 
ASM, or not having ASM, as determined by fitting a Gaussian Mixture Model (from 
subpanel D).  
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Fig. S7: Pooling methylomes increases power to detect SD-ASM. (A) Calling SD-
ASM by combining observations from all methylomes. For every SNP position with a 
total of two alleles across all samples, we use WGBS data to count the number of times a 
methylated or unmethylated homozygous CpG occurred in the same read as each of the 
two possible alleles in the SNP position. (B) Number of loci with SD-ASM in the 
combined set, in at least one individual sample, or in both. Of all the “index hets” 
accessible in the combined set only 84% (4,129,430) were accessible (by the same 
criterion of at least 6 counts per allele) in at least one individual sample. Of all the loci 
accessible in the combined set, about 5% (241,360 out of 4,913,361) displayed SD-ASM 
at an FDR < 0.1 and with methylation difference between alleles of at least 30%, while 
only 125,156 displayed SD-ASM in at least one individual sample under the same 
detection thresholds. The overlap between the loci with SD-ASM called in the combined 
and individual sets was 19,338. (C) Increase in detection power is responsible for 
increase in SD-ASM called in combined set (top), but not in single samples (bottom). 
Specifically, 57% of the loci where SD-ASM was detected in the combined set, but not in 
individual samples, were not accessible for detection (having < 6 counts per allele) in any 
individual sample. (D) Proportion of variants with ASM in at least X samples that also 
displayed SD-ASM in the combined set of imbalances. Notice that if a locus displayed 
ASM in multiple samples, it was more likely to also display SD-ASM in the combined 
set. 
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Fig. S8: Loci showing ASM in multiple tissues across donors are over-represented 
within the list of loci showing SD-ASM in the combined dataset. (A) The amount of 
ASM loci per donor, for 4 donors (3 individuals and 1 cell line), where total ASM per 
donor is defined as all ASM loci that show ASM in at least 1 tissue of that donor. The 
ASM signal was defined to be context-dependent if ASM was observed in multiple 
tissues, but directionality of ASM across these tissues was inconsistent. (B) Pairwise 
comparisons of ASM prevalence across tissues between two donors at shared 
heterozygous loci. Average values across all possible pairwise comparisons of donors 
from (A) of the percent of shared loci exhibiting possible combinations of ASM 
prevalence across tissues for each donor in a pair. The callout shows an example of the 
six possible pairwise donor comparisons comprising an average percentage. Shared loci 
profiled in pairwise comparisons of donors were split into two groups based on their SD-
ASM status in the combined dataset: those loci that showed SD-ASM in the combined 
dataset (red) or those that did not show SD-ASM in the combined dataset, but showed 
ASM in at least one tissue of an individual donor (gray). The two check marks under 
each group of bars denote the possible status of ASM prevalence across the tissues of a 
donor, at a shared locus, for each donor in the pair.  
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Fig. S9: SD-ASM loci display higher frequency of multiple epialleles compared to 
genome-wide control loci in an external dataset. (A) A larger percentage of SD-ASM 
loci (red), which were examined for their epiallele frequency spectra in the combined 
dataset, show a shift to higher Shannon entropy (in bits) compared to randomly chosen 
control loci (black) when checked in an external WGBS dataset. A Quantile-Quantile plot 
is included showing entropy distribution between control (x-axis) and SD-ASM loci (y-
axis). (B) Histogram of the number of frequent epialleles for those loci with SD-ASM 
(red) in our combined dataset or control loci (black). The callout indicates that among the 
SD-ASM loci with two frequent epialleles, more than twice the amount show 
predominately the completely methylated and unmethylated epialleles compared to 
controls in this external dataset. (C) Tanghulu plot of a bistable SD-ASM locus. 
Individual CpGs, represented as circles on each WGBS read, are either methylated 
(black) or unmethylated (white).  
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Fig. S10: Allelic imbalances in regulatory regions are associated with ASE of nearby 
genes. (A) Comparison of ASM to non-ASM heterozygous variants in promoters, and 
enhancers within 100kb, of genes with ASE. All occurrences of ASE and ASM across all 
matched pairs of RNA-seq and methylomes in our dataset were utilized. (B) Comparison 
of ASM in the neighborhood of tissue specific eQTLs (from GTEx) displaying ASE of 
associated genes compared to nearby eQTLs without such ASE events. Enrichments were 
performed for each matched pair of methylome and RNA-seq experiments in our dataset 
with a matched tissue type in GTEx. (C) ASM events are more prevalent in the 
neighborhood of tissue specific eQTLs (GTEx), displaying ASE of associated genes, than 
in nearby eQTLs without such ASE events after combining across all pairs of methylome 
and RNA-seq experiments in our dataset with a matched tissue in GTEx. (D-F) 
Promoters upstream of genes displaying ASE are enriched for AI in H3K4me3 (D) and 
H3K27ac (E) and H3K27ac AIs are enriched in enhancers within 100 kb of genes with 
ASE (F) compared to non-AI controls. All enrichments tested using Chi-square test. 
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Fig. S11: Differential enhancer activity between alleles at variants with SD-ASM at 
putative transcription factor binding sites. Comparison of enhancer activity on 
luciferase expression between alleles (marked blue for the reference allele and red for the 
alternate allele) at 4 variants with SD-ASM with allelic differences in predicted 
transcription factor binding. All four SD-ASM variants show significant (p-value < 0.05, 
one-way analysis of variance) differences in downstream luciferase expression as noted 
by an asterisk. Nucleotides for both alleles are noted for each of the 4 SD-ASM variants 
along with their associated rsID. Positive (dark gray) and negative (light gray) controls 
are included for comparison.  
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Fig. S12: Density of heterozygous SNPs in regions returned by CNVnator depending 
on detected Read Depth (RD value). Each bar corresponds to the average number of 
heterozygous SNPs per 1 kilobase (Kb) window detected in regions with RD values 
within a given range. Regions called by CNVnator as deletions are marked by the red 
color, while bars corresponding to regions called as duplications are marked in blue. The 
green bar in the middle of the histogram corresponds to the average number of 
heterozygous SNPs per 1 Kb calculated for regions omitted by CNVnator (regions with 
standard coverage). For each donor these values were calculated separately. Bars 
presented on the histogram are averages with standard deviations calculated across 
donors. 
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Table S1: Statistics on number of allelic imbalance calls. 

 25th 
Percentile 

Median 75th 
Percentile 

AI in at least 
one sample 

DNA 
methylation 

1,668 4,600 7,237 125,156 

mRNA 592 912 1,666 76,729 

H3K27ac 5 28 776 36,481 

H3K27me3 0 3 7 521 

H3K36me3 0 2 5 2,000 

H3K4me1 0 1 3 133 

H3K4me3 8 25 52 4,535 

H3K9me3 10 31 60 1,273 
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Table S2: Sequencing read depth coverage metrics for 49 individual and the 
combined WGBS datasets.  Samples highlighted in red did not have sufficient coverage 
for individual analyses, but were included in the combined dataset. 
 
WGBS Dataset 25th 

Percentile 
50th 

Percentile 
75th 

Percentile 
Mean 

Combined 1409 1870 2180 1691.3 
Donor 1: Brain Substantia Nigra 3 13 29 18 
Donor 2: Brain Hippocampus Middle 5 18 34 21.3 
Donor 3: Brain Hippocampus Middle 6 21 40 25.5 
Donor 4: Brain Cerebellum 2 4 6 4 
Donor 4: Brain Germinal Matrix 1 7 25 16.9 
Donor 5: Adipose Tissue 13 21 29 20.7 
Donor 5: Bladder 35 54 70 50.9 
Donor 5: Gastric 16 25 33 23.8 
Donor 5: Left Ventricle 36 55 71 51.4 
Donor 5:Lung 14 22 30 21.7 
Donor 5: Psoas Muscle 13 22 30 21.4 
Donor 5: Right Ventricle 17 26 34 24.4 
Donor 5: Sigmoid Colon 35 49 61 46.9 
Donor 5: Small Intestine 35 49 61 46.7 
Donor 5: Spleen 16 26 34 24.7 
Donor 5: Thymus 33 50 64 46.8 
Donor 6: Adipose Tissue 16 25 32 23.5 
Donor 6: Adrenal Gland 17 26 34 24.7 
Donor 6: Aorta 14 22 29 20.9 
Donor 6: Esophagus 15 24 32 23.1 
Donor 6: Gastric 17 27 35 25.3 
Donor 6: Lung 34 48 59 44.1 
Donor 6: Ovary 38 54 67 49.7 
Donor 6: Pancreas 14 23 30 21.7 
Donor 6: Psoas Muscle 14 23 30 21.7 
Donor 6: Small Intestine 14 21 28 20.2 
Donor 6: Spleen 17 27 35 25.2 
Donor 7: Adipose Tissue 31 50 66 47.3 
Donor 7: Adrenal Gland 29 46 62 44.6 
Donor 7: Aorta 56 81 100 74.9 
Donor 7: Esophagus 30 43 54 40.4 
Donor 7: Gastric 34 52 67 48.8 
Donor 7: Left Ventricle 31 46 57 42.8 
Donor 7: Pancreas 32 47 59 43.7 
Donor 7: Psoas Muscle 35 52 66 48.4 
Donor 7: Right Atrium 34 52 67 48.5 
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Donor 7: Right Ventricle 35 54 70 50.8 
Donor 7: Sigmoid Colon 37 51 61 46.3 
Donor 7:  Small Intestine 14 23 32 22.6 
Donor 7: Spleen 31 45 57 43 
Donor 8: Adult Liver 38 55 68 50.6 
Donor 11: Penis Foreskin Fibroblast 4 8 14 11 
Donor 11: Penis Foreskin Keratinocyte 17 29 41 28.6 
Donor 11: Penis Foreskin Melanocyte 6 11 17 12.3 
Cell Line 1: Embryonic Stem Cell 15 28 39 27.6 
Cell Line 2: hESC Derived CD184+  Endoderm 24 55 84 55.4 
Cell Line 2: hESC Derived CD56+  Ectoderm 15 49 95 59.5 
Cell Line 2: hESC Derived CD56+ Mesoderm 11 33 62 39 
Cell Line 2: Embryonic Stem Cell 7 29 65 39.8 

 



 
 

27 
 

 
 

Table S4: An association between TFs with enrichment of SD-ASM within their 
binding motifs that that did not show directionality, while another group of TFs 
showed neither SD-ASM enrichment within their binding motifs nor directionality. 
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Table S5: A group of 10 heterozygous SNP loci with SD-ASM selected for testing 
allelic differences in luciferase expression. The first column contains the rsID of the 10 
selected variants with SD-ASM. Columns 2-6 contain criteria used for selection of 
variants, with highlighted cells in green showing the criteria that was met. Column 2 
details the percent of methylation difference between alleles. Column 3 contains the 
transcription factor motifs that were deemed to have drastic differences in predicted 
binding affinity between alleles. Column 4 shows the rsID of the GWAS variant that was 
in linkage disequilibrium with the SD-ASM locus (78). Column 5 details the tissue and 
associated gene that exhibited ASE for the eQTL that was nearby the SD-ASM variants. 
Variants that were successfully tested for effect on luciferase expression are highlighted 
in yellow.  
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Additional Data:  

Table S3 (separate Excel file) 
A list of correlations between coefficient of constraint and absolute differences in 
predicted binding likelihood of 203 transcription factors for SD-ASM loci with 2 frequent 
epialleles. 
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