
Supplementary	Methods	for	Majoros	et	al.,	
“Predicting	Gene	Structure	Changes	Resulting	from	
Genetic	Variants	via	Exon	Definition	Features.”	
	
	
S1.	Gene	structure	prediction	in	real	genes	modified	with	premature	stop	codons	
	
To	systematically	investigate	the	behavior	of	traditional	gene	structure	predictors	on	genes	
with	possible	loss-of-function	mutations	in	personal	genomes,	we	ran	a	leading	HMM-based	
gene	finder	(Stanke	et	al.,	2006)	on	19,000	human	genes	modified	to	include	a	premature	stop	
codon.		First,	the	HMM	was	applied	to	the	genomic	sequence	of	each	gene	(including	1000	
nucleotides	of	flanking	sequence	on	either	side)	without	modification,	and	the	gene	structure	
predicted	by	the	HMM	was	noted;	no	comparison	to	the	annotated	gene	structure	was	made.		
Then	a	stop	codon	was	inserted	at	a	randomly-selected	location	in	the	predicted	coding	
segment,	while	ensuring	that	the	inserted	stop	codon	did	not	inadvertently	create	a	canonical	
donor	or	acceptor	splice	site	consensus.		Then	the	HMM	was	run	again	to	obtain	a	second	
prediction,	this	time	using	the	sequence	with	the	premature	stop	codon.			

The	splice	pattern	predicted	for	the	modified	sequence	was	compared	the	the	splice	
pattern	predicted	for	the	unmodified	sequence.		As	traditional	gene	finders	key	largely	on	
codon	biases	in	contiguous	reading	frames,	we	hypothesized	that	the	gene	finder	would	
frequently	modify	its	predicted	splice	pattern	so	as	to	omit	the	premature	stop	codon.		We	
tabulated	the	number	of	times	this	occurred.		

	
S2.	Regularized	logistic	regression	training	
	
For	logistic	signal	and	content	sensors	we	applied	regularized	(elastic	net)	logistic	regression.		
We	used	glmnet	version	2.0-2,	with	a	=	0.5	to	interpolate	equally	between	L1	and	L2	
regularization,	with	regularization	strength	l selected	to	minimize	the	mean	cross-validation	
error	(Friedman	et	al.,	2010).		This	value	of	a	was	chosen	after	observing	in	preliminary	runs	on	
individual	HG00096	that	a	=	0.5	produced	higher	prediction	accuracy	as	validated	via	RNA-seq	
(AUC	=	0.79)	than	pure	lasso	regression	(a	=	0,	AUC	=	0.76)	and	pure	ridge	regression	(a	=	1.0,	
AUC	=	0.77).		For	content	sensors,	all	4096	hexamers	were	used	as	features.		Hexamer	counts	
were	extracted	from	all	reading	frames	on	the	sense	strand	of	training	exons	and	introns,	and	
regularized	logistic	regression	was	applied	to	learn	a	weight	for	each	hexamer	for	classifying	
exons	versus	introns.		These	weights	were	taken	together	as	the	model	for	Fexon.		To	obtain	
Fintron,	the	weights	of	the	exon	model	were	negated.	

For	signal	sensors,	a	fixed	window	around	each	splice	site	was	used	to	define	indicator	
variables	at	each	position	within	the	window.		For	donor	splice	sites,	6	bp	of	sequence	was	
included	to	the	left	(5’)	of	the	2	bp	consensus,	as	well	as	12	bp	of	sequence	to	the	right	(3’)	of	
the	consensus;	only	sequences	GT,	GC,	and	AT	were	accepted	as	valid	consensuses.		For	



acceptor	splice	sites,	20	bp	of	sequence	left	(5’)	of	the	consensus	and	2	bp	right	(3’)	of	the	
consensus	were	included	in	the	window;	consensuses	AG	and	AC	were	considered	valid.		At	
each	window	position	we	set	four	indicator	variables,	one	for	each	of	the	four	possible	
nucleotides,	to	indicate	which	nucleotide	was	present	at	that	position	in	the	current	training	or	
test	case.		For	example,	if	nucleotide	C	was	present	at	that	position	in	the	training	case,	the	
indicator	for	C	was	set	to	1	and	the	indicators	for	A,	G,	and	T	were	set	to	0.		A	pseudocount	of	
0.1	was	added	to	all	counts.		Regularized	logistic	regression	(a	=	0.5)	was	applied	to	learn	a	
vector	of	weights	for	the	indicators	within	the	window.		Separate	models	were	learned	for	
donor	splice	sites	and	acceptor	splice	sites.	

	
S3.	Evaluation	of	SGRF	prediction	accuracy	using	Geuvadis	data	
	
RNA-seq	data	from	LCLs	for	150	individuals	in	the	Geuvadis	project	was	used	to	validate	the	
SGRF	predictions.		For	each	individual	and	each	gene	in	GENCODE	v19,	phased	variants	were	
used	to	construct	explicit	haplotype	sequences	for	the	gene,	as	previously	described	(Majoros	
et	al.,	2017).		Insertion/deletion	variants	were	used	to	infer	an	alignment	between	the	
reference	sequence	and	the	personal	genome.		For	each	annotated	isoform	of	each	gene,	the	
isoform	was	projected	onto	the	personal	genomic	sequence	using	the	inferred	alignment.		The	
SGRF	was	then	applied	to	produce	predicted	splice	forms	in	the	personal	genome.			

Predictions	were	made	separately	using	the	human	logistic	model,	the	Arabidopsis	
logistic	model,	and	the	minigene	weights	from	Rosenberg	et	al.	(2015).		RNA-seq	data	was	then	
aligned	to	the	personal	genome	by	TopHat2	(Kim	et	al.,	2013),	with	the	projected	annotations	
and	pooled	predictions	provided	to	TopHat2	as	annotations.		Alignment	to	the	personal	
genome	rather	than	to	the	reference	was	performed	in	order	to	reduce	reference	bias	in	read-
mapping	(Degner	et	al.,	2009).		For	each	prediction,	novel	splice	junctions	that	did	not	occur	in	
any	annotated	isoform	of	the	gene	were	considered	to	be	consistent	with	RNA-seq	if	at	least	
one	spliced	read	exactly	matched	both	coordinates	of	the	splice	junction.		A	threshold	of	one	
read	was	selected	due	to	the	low	coverage	of	the	Geuvadis	data,	and	was	justified	by	previous	
results	in	which	higher	thresholds	produced	similar	accuracy	estimates	(Majoros	et	al.,	2017).	

Transcripts	not	expressed	in	LCLs	at	an	FPKM	of	at	least	3	were	omitted	from	the	
analysis,	as	these	may	unfairly	penalize	predictors.		Splicing	changes	predicted	to	induce	
nonsense-mediated	decay	(NMD)	were	also	omitted	from	the	evaluation,	as	NMD	reduces	
transcript	levels,	which	may	in	turn	unfairly	penalize	predictors.		True	positive	rate	and	false	
positive	rate	were	calculated	by	tabulating	predictions	at	the	individual	splice-junction	level	and	
were	then	used	to	construct	ROC	curves.		Because	a	very	large	number	of	decoy	splice	sites	will	
exist	in	a	typical	sequence,	resulting	in	an	excessively	large	number	of	possible	splice	junctions,	
evaluating	classification	accuracy	on	the	set	of	all	possible	junctions	would	vastly	inflate	the	
number	of	true	negatives	and	thereby	inflate	estimates	of	classification	accuracy.		The	set	of	
junctions	(real	and	decoy)	used	for	evaluation	was	therefore	limited	to	the	union	of	all	junctions	
predicted	by	any	predictor	(including	junctions	assigned	a	probability	of	zero).		All	predictors	
were	evaluated	on	this	same	union	set	of	junctions.		Reported	ROC	curves	reflect	only	the	
accuracy	of	novel	junctions	not	occurring	in	any	annotated	isoform	of	the	gene.	
	



S4.	Classification	of	whole	exons	and	introns	
	
To	assess	whether	learned	hexamer	weights	reflected	coding	features,	noncoding	features,	or	
both,	we	used	the	logistic	regression	model	alone	(without	the	SGRF)	to	classify	an	equal	
number	of	exons	versus	introns	shortened	to	the	same	length;	splice	sites	and	10	bp	flanking	
them	were	removed	from	all	introns	prior	to	shortening	them	to	match	exon	lengths.		Testing	
was	performed	only	on	exons	and	introns	not	included	in	the	training	set.		The	standard	logistic	
function	was	used	to	compute	P(exon|sequence)	and	classification	was	performed	under	the	
rule	that	P	>	0.5	dictates	an	exon	prediction	and	P	<	0.5	dictates	an	intron	prediction.			

For	evaluation	of	prediction	of	minigene	splicing	outcomes,	spliced	read	counts	were	
obtained	from	Rosenberg	et	al.	(2015)	for	the	randomized	sequences	between	alternate	splice	
donor	sites	on	the	minigene.		Sequences	with	appreciable	numbers	of	read	counts	splicing	at	
locations	other	than	the	two	main	splice	sites,	SD1	and	SD2,	were	discarded.		Sequences	for	
which	count(SD1)	>	2count(SD2)	were	counted	as	negative	cases	of	exon	definition	(i.e.,	the	
exon	most	often	failed	to	extend	to	the	further	splice	site,	SD2),	and	sequences	for	which	
count(SD2)	>	2count(SD1)	were	counted	as	positive	cases	of	exon	definition	(i.e.,	the	exon	most	
often	succeded	at	extending	to	the	further	splice	site,	SD2).		The	logistic	model	trained	on	
human	annotations	was	tested	by	using	the	standard	logistic	function	as	above	to	classify	the	
randomized	sequences	as	positives	or	negatives;	these	predictions	were	evaluated	against	the	
known	classifications	based	on	spliced	read	counts	as	described	above.		True	positive	rate	and	
false	positive	rate	were	calculated	accordingly	to	produce	an	ROC	curve.	
	
S5.	Simulating	creation	and	destruction	of	splice	sites	
	
In	order	to	investigate	the	propensity	of	a	simple	mutation	process	to	create	or	destroy	splice	
sites,	a	previously-estimated	context-dependent	DNA	substitution	matrix	(Allen	et	al.,	2013)	
was	used	to	simulate	mutations	jointly	conditional	on	the	nucleotide	being	mutated	and	the	
two	immediately	flanking	nucleotides	(one	nt	5’	of	the	mutated	site	and	one	nt	3’	of	the	
mutated	site).		Simulations	were	performed	for	1,991	genes	on	human	chromosome	1,	with	
1,000	mutations	being	applied	per	gene;	each	mutation	was	reversed	prior	to	sampling	the	next	
mutation,	so	that	each	mutated	sequence	had	an	edit	distance	of	exactly	1	from	the	original	
genomic	sequence.			

Each	mutation	was	assessed	as	to	its	ability	to	create	or	destroy	a	splice	site.		For	
annotated	splice	sites,	if	a	mutation	changed	a	canonical	donor	(GT,	GC,	or	AT)	or	acceptor	(AG	
or	AC)	splice	consensus	to	a	non-consensus,	the	site	was	counted	as	disrupted.		In	addition,	if	a	
mutation	did	not	change	the	consensus	but	did	modify	a	flanking	position	such	that	the	splice-
site	score	dropped	below	the	threshold	of	the	logistic	sensor	(chosen	to	admit	99%	of	training	
splice	sites),	it	was	also	counted	as	disruption	of	the	splice	site.			

For	mutations	that	did	not	disrupt	a	splice	site,	three	criteria	levels	were	applied	to	
determine	whether	the	mutation	could	create	a	de	novo	splice	site.		For	the	least	stringent	
level,	if	the	mutation	changed	a	non-consensus	2	bp	sequence	to	any	consensus	sequence	for	
either	donor	or	acceptor	splice	sites,	the	mutation	was	counted	as	creating	a	de	novo	splice	
site.		For	the	second	stringency	level,	if	a	non-consensus	2	bp	sequence	was	changed	to	a	



consensus	sequence,	the	corresponding	logistic	signal	sensor	was	applied	to	a	window	
(Supplementary	Methods	section	S2)	containing	the	consensus	and	the	logistic	sensor	was	used	
to	classify	the	sequence	as	a	splice	site	or	a	non-splice	site.		Only	sites	in	which	both	a	non-
consensus	2	bp	sequence	was	transformed	by	the	mutation	into	a	consensus	sequence	and	the	
logistic	sensor	classified	the	window	as	a	splice	site	were	counted	as	creation	events.		For	the	
most	stringent	level,	a	mutation	was	required	to	create	a	2	bp	splice	site	consensus,	be	
classified	by	the	signal	sensor	as	a	splice	site,	and	occur	in	a	favorable	exon	definition	context	to	
be	counted	as	a	de	novo	splice	site.		Exon	definition	potential	was	measured	using	the	logistic	
content	sensors.		For	de	novo	splice	sites	occurring	in	annotated	introns,	the	intervening	
sequence	between	the	de	novo	splice	site	and	the	exon	it	would	extend	was	evaluated	using	
the	exon	content	sensor.		For	de	novo	splice	sites	occurring	in	annotated	exons,	the	propensity	
to	shorten	the	exon	was	measured	by	applying	the	intronic	content	sensor	to	the	sequence	that	
would	become	intronic.		Thresholds	for	signal	and	content	sensors	were	selected	so	as	to	admit	
99%	of	training	sequences.		Three	simulations	were	performed	using	the	same	random	number	
seed,	one	simulation	per	stringency	level.	
	
S6.	Integration	of	SGRF	into	ACE+	
	
Our	previously-described	software,	ACE	(Majoros	et	al.,	2017),	interprets	proposed	splicing	
changes	in	terms	of	their	effects	on	encoded	proteins,	enabling	prediction	of	loss	of	function	via	
nonsense-mediated	decay	(NMD),	nonstop	decay,	loss	of	coding	potential,	and	protein	
modification	or	truncation.		Incorporating	the	SGRF	into	the	ACE	framework	enables	putative	
splicing	changes	predicted	by	the	SGRF	to	be	evaluated	in	terms	of	their	likely	effect	on	gene	
function,	and	provides	a	means	of	ranking	ACE	predictions	based	on	their	probability	under	the	
SGRF.		We	named	the	resulting	software	ACE+	(Supplementary	Fig.	S7).		ACE+	constructs	
personal	genomes	from	a	phased	VCF	file	containing	SNPs,	multinucleotide	variants,	short	
insertions	or	deletions	(indels),	and	short	copy-number	variants	(CNVs).	It	then	projects	
reference	annotations	onto	the	alternate	sequence	using	a	coordinate	transformation	and	
applies	the	SGRF	to	predict	splicing	changes.	Finally,	ACE+	interprets	the	resulting	changes	in	
terms	of	the	potential	for	loss	of	function	of	the	final	gene	product.		Variants	within	each	gene	
are	then	re-interpreted	as	to	their	likely	effect,	based	on	changes	in	the	annotation	predicted	
by	the	SGRF.	For	example,	coding	variants	may	become	noncoding	variants	and	vice-versa.		
Outputs	are	provided	in	a	highly-structured	format	called	Essex	(Majoros	et	al.,	2017).	An	API	
for	parsing	the	structured	output	and	extracting	arbitrary	features	is	provided	in	perl,	python,	
and	C++.	
	


