Anthropogenic and environmental factors associated with high prevalence of *mcr-1* carriage in humans across China

Yingbo Shen^{1†}, Hongwei Zhou^{2†}, Jiao Xu³, Yongqiang Wang¹, Qijing Zhang⁴, Timothy R. Walsh⁵, Bing Shao¹, Congming Wu¹, Yanyan Hu², Lu Yang¹, Zhangqi Shen¹, Zuowei Wu⁴, Qiaoling Sun², Yanran Ou¹, Yueling Wang⁶, Shaolin Wang¹, Yongning Wu⁷, Chang Cai⁸, Juan Li⁹, Jianzhong Shen^{1,10*}, Rong Zhang^{2*}, Yang Wang^{1,10*}

¹Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China ²The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China

³Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China

⁴College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011-1134, USA ⁵Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, UHW Main Building, Heath Park Hospital, Cardiff CF14 4XN, UK

⁶Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China

⁷The Key Laboratory of Food Safety Risk Assessment, Ministry of Health and China National Center for Food Safety Risk Assessment, Beijing 100021, China

⁸Australia-China Joint Laboratory for Animal Health Big Data Analytics, School of Veterinary and Life Sciences, Murdoch University, Murdoch 6150, Australia

⁹State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China

¹⁰ Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100194, China

[†]These authors contributed equally to this work.

*Correspondence to:

Yang Wang, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100194, China, <u>wangyang@cau.edu.cn</u>

Rong Zhang, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China, <u>zhang-rong@zju.edu.cn</u>

Jianzhong Shen, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing 100194, China, <u>sjz@cau.edu.cn</u>

Supplementary Figure 1. Diagram of study design.

Supplementary Figure 2

Supplementary Figure 2. Minimum spanning trees of all sequenced MCRPEC by MLST type and gene allele profile. Each node within the tree represents a single ST. The size of the nodes is proportional to the number of isolates represented by said node. Selected nodes are labelled with corresponding ST and number of isolates (at least five).

Supplementary Figure 3. Minimum spanning trees of MCRPEC by MLST type and gene allele profile for the human isolates of this study and chicken isolates from China of other studies. Each node within the tree represents a single ST. The size of the nodes is proportional to the number of isolates represented by said node. Selected nodes are labelled with corresponding ST and number of isolates (at least five).

Supplementary Figure 4. Phylogenic tree of all *mcr-1*-carring *E. coli* from humans in this study and chicken MCRPEC from other studies. Each branch of isolates are denoted by four colours corresponding to four lineages. Red star and blue triangle represent the sixteen and eighty-eight isolates from other countries and chicken origin from China, respectively.

Supplementary Figure 5

Supplementary Figure 5. Diagram showing the possible transmission route of *mcr*-*1/mcr*-*1*-carrying isolates among animal, environment and humans.

Antimicrobials	Number of Resistance (resistance rate %) in different aquaculture conditions area				
	Low activity (n=71)	Medium activity (n=236)	High activity (n=467)	P value (X ²)	
Cefepime	14 (19.72%)	58 (24.58%)	68 (14.29%)	0.002**	
Amikacin	0 (0%)	4 (1.69%)	5 (1.07%)	-	
Piperacillin/Tazobactam	6 (8.45%)	9 (3.81%)	23 (4.93%)	0.309	
Ceftazidime	12 (16.90%)	44 (18.64%)	51 (10.92%)	0.018*	
Ticarcillin/Clavulanic acid	39 (54.93%)	147 (62.29%)	262 (56.10%)	0.705	
Ciprofloxacin	33 (46.48%)	106 (44.92%)	162 (34.69%)	0.011*	
Imipenem	1 (1.41%)	3 (1.27%)	6 (1.28%)	0.995	
Colistin	43 (60.56%)	174 (73.73%)	333 (71.31%)	0.099	
Cefoperazone/Sulbactam	4 (5.63%)	6 (2.54%)	8 (1.71%)	0.112	

Supplementary Table 4. Comparison of the MIC profiles of nine tested antimicrobials among the MCRPEC isolates of the different aquaculture conditional areas.

P*<0.05, *P*<0.01

isolate	Accession	species	collected time	country	source	ST
WI2	SAMEA19195918	E.coli	2016	France	clinical	1288
MDR_56	SAMN06344815	E.coli	2015.5	USA	clinical	117
3431F	SAMN06233851	E.coli	2014	Brazil	rectal swab	744
2016C-3936C1	SAMN061595501	E.coli	-	USA	clinical	2734
C153	SAMN06051286	E.coli	2016	Brazil	blood	410
O177:H21	SAMN05407982	E.coli	2015.4	Netherlands	faeces	359
204965	SAMN06163642	E.coli	2016.6.20	Austria	stool clinical	10
BJ10	SAMN04884976	E.coli	2015.2.21	China	clinical liver	156
	51111101001970				ascites	
HC891	SAMN06043562	E.coli	2016.4.11	Brazil	blood	156
MRSN346355	MRSN346355	E.coli	2016.7	USA	clinical	617
MCR1_NJ	SAMN05294116	E.coli	2014.8	USA	clinical	405
MRSN346595	MRSN346595	E.coli	2016.7	USA	clinical	617
MRSN346638	MRSN346638	E.coli	2016.7	USA	clinical	617
MRSN388634	MRSN388634	E.coli	2016.7	USA	clinical	101
STEC_575	SAMN04002628	E.coli	2013.9	Netherlands	stool clinical	21
TN1	SAMN04423147	E.coli	2013.11	Vietnam	feces clinical	1589

Supplementary Table 5. Information of worldwide mcr-1-positive E. coli isolates of human origin downloaded from NCBI.