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A

Model of transcription regulation

The binding site model

We use a model of transcription factors (TF) binding/unbinding to operator sites (OS) based on the

graph-based method introduced in [1] and implemented in [2]. Within this framework one considers

a finite, connected, labeled, directed graph [v, e], where the vertices v describe the promoter micro-

states corresponding to the number and arrangement of bound TF on the promoter OS array, and

the edges e are transitions between micro-states. The edge labels k are infinitesimal transition rates

for a Markov process.

For a gene whose promoter has N OS, the number of micro-states/vertices is 2N :

v = [v1, v2...v2N ]. (1)

Since we assume only one binding/unbinding event can take place at a time, not all vertices are

directly connected and the number of edges is Nedges = N2N [2].

We separate the edges e into two sets, corresponding to forward (binding) transitions (e+) and

backward (unbinding) transitions (e−):

e = [e+, e−] = [e+1, e+2, ...e+N2N−1 , e−1, e−2, ...e−N2N−1 ], (2)

with the corresponding edge labels describing the reaction rate constants of binding and un-

binding between the TF and the OS:

k = [k+, k−] = [k+1, k+2, ...k+N2N−1 , k−1, k−2, ...k−N2N−1 ]. (3)

An example of the labeled graph is shown in Figure A for N = 3.

The micro states of the gene are divided into active (when the gene is expressed) and inactive

(when the gene is not expressed) states. In this work, we assume that the gene is activated only

when the OS are bound by at least K TFs (corresponding to the ”K-or-nothing” case in [2], with

K ≤ N). During this active state window RNA polymerases can bind to the target promoter to

initiate transcription with a rate that is much faster than the rate of gene activation. Therefore,

the mean transcription rate and the mean expression values of a gene can be approximated by the

probability of the gene to be active 〈f(X)〉 = P (Pi≥K).



Figure A: The labeled graph for the general non-equilibrium binding site model of

transcription regulation for N = 3 OS. Each vertex v corresponds to a unique OS array state.

The edge labels describe the binding and unbinding reactions, assuming one reaction takes place

at a time.

The thermodynamic equilibrium model

One dimensional model

We assume that the N binding sites are identical, and thus all the micro-states v = [vi]i=1..N are

characterized only by the number of bound TF (Σvi). In this case the model is reduced to a one

dimensional model described by Pi – promoter states with i bound TF molecules:

P0
k1[TF ]−−−−⇀↽−−−−
k−1

P1
k2[TF ]−−−−⇀↽−−−−
k−2

P2...
kN [TF ]−−−−−⇀↽−−−−−
k−N

PN , (4)

where the TF-OS interactions are at thermodynamic equilibrium and the detailed balance is sat-

isfied. The binding and unbinding of Bcd molecules to the OS occurs with rate constants ki and

k−i. The maximum value of ki is dependent on τbind the time for a free OS to be bound by TF and

the number of free remaining operator [N − i+ 1]: ki ≤ [N − i+ 1]/τbind. [TF ] is the normalized

TF concentration, and is equal to 1 at the mid-boundary position X = 0.

Steady-state solution

The temporal evolution of the probability P (Pi) that the promoter is in state i in the one dimen-

sional model in Eq. 4 is given by:

∂tP (Pi) = ki[TF ]P (Pi−1) + k−(i+1)P (Pi+1)− (k−i + ki+1[TF ])P (Pi). (5)



The steady state solution is:

P (Pi, [TF ]) =

∏i
j=0Kj [TF ]i∑N

`=0

∏`
j=0Kj [TF ]`

, (6)

where Kj = kj/k−j are the equilibrium constants for each transition between two states, and

K0 = 1.

We introduce the effective equilibrium constant K̃i =
∏i
j=0Kj that is proportional to the

fraction of time the promoter spends in state Pi:

P (Pi, [TF ]) =
K̃i[TF ]i∑N
j=0 K̃j [TF ]j

. (7)

If the TF concentration gradient follows an exponential curve, we can express the TF concen-

tration [TF ] in terms of the nuclei’s position (Eq. 14) and Eq. 7 becomes:

P (Pi, X) =
K̃ie

iX∑N
j=0 K̃jejX

. (8)

Promoter searching time at the boundary position

We estimate the expected time for a binding event between a single binding site and a TF at the

mid-boundary position ([TF ] = 1).

Assuming that the TF can only search for OS by diffusing in the nucleus and that each collision

between TF and OS is one successful binding event [3], we estimate τbind = 1/(Dac) ∼ 4 s, using

D ∼ 7.4µm2/s – the diffusion coefficient of TF (measured through Bcd-eGFP using FRAP [4, 5]),

[c ∼ 11.2/µm3 [4] – the absolute TF concentration at the mid-boundary position and a ∼ 3nm [6]

– the size of one operator site for Bicoid.



B

Aligning the pattern boundary position

From the randomized kinetic parameter set k = [ki, k−i], we solve the probability of the gene

to be active at any position position X and find the mid-boundary position X0(k) such that

P (Pactive|k,X0(k)) = 0.5. The solution remains the same when we multiply both ki and k−i to a

factor of eX0(k):

P (Pactive|k,X) = P (Pactive|[ki, k−i], X) (9)

= P (Pactive|[kieX0((k)), k−ie
X0((k))], X) (10)

= P (Pactive|[ki, k−ieX0((k))], X −X0(k)). (11)

The whole pattern can be shifted so that the mid-boundary position is located at X0(k) = X = 0:

P (Pactive([ki, k−ie
X0(k)], 0) = P (Pactive|[ki, k−i], X0(k)) = 0.5. (12)

We obtain the new parameter set k′ = [ki, k−ie
X0(k)], which satisfies the model assumptions

X0(k′) = 0.



C

Boundary steepness and the Hill coefficient

The boundary steepness is a feature that emerges only when looking at the mean transcription

readout value fP (X) of the hunchback gene along the AP axis (see Fig. 1 C and D of the main

text) [2, 7, 8, 6]. We assume that the mean expression of the hunchback gene is regulated by a

single transcription factor (i.e. Bcd), which has normalized concentration [TF], in terms of a Hill

function with coefficient H:

〈fP ([TF ])〉 =
[TF ]H

1 + [TF ]H
. (13)

In the case of Bcd-hb system the TF concentration decays exponentially along the embryo

length [9] and we can estimate the nuclei’s position X from the TF concentration:

X = ln([TF ]). (14)

X is reported in units of decay length λ of the TF gradient, which is ∼ 100µm or 20% of the

embryo length (EL) [9]. Eq. 13 becomes:

〈fP (X)〉 =
eH·X

1 + eH·X
. (15)

Figure B: Quantifying the pattern steepness.

Panel A: From the mean readout function fP (X), the Hill coefficient H can be obtained from

either the slope at the mid-boundary position corresponding to half-maximum readout of 〈fP (X)〉,
(H(X = 0)) or at the steepest point (Hmax) as in [2].

Panel B: Comparison between the two definitions of steepness H(X = 0) and Hmax for the equi-

librium regulatory model with N = 6 binding sites shows the two values are correlated. The data

points are taken from ∼ 50000 data points with randomized kinetic parameters.

We define the mid-boundary position, X = 0, as the position along the AP axis corresponding

to half-maximum of the mean readout function, 〈fP (X)〉 = 0.5. Note that the expression boundary

is not necessarily positioned at the middle of the embryo.

Hill coefficients are typically obtained either by fitting the mean expression function to a sigmoid

curve [6, 8, 7] or by comparing the maximum derivative of the mean readout function to that of



a sigmoid function [2]. Here, to easily compare different embryos to each other and to analytical

predictions, we calculate the Hill coefficient by comparing the slope of the mean readout function

at the mid-boundary position (X = 0) to the prediction of Eq. 15:

H = 4
(∂〈fP (X)〉

∂X

)
X=0

. (16)

To see if our definition using the derivative at the half-maximum expression position significantly

changes the numerical value of the steepness when calculated at the point of the maximum derivative

(Figure B Panel A), we compare the two values obtained at the steady state of the transcription

regulatory model defined in A for different sets of randomized kinetic parameters. The results

shown in Figure B Panel B for N = 6 show the two values of the steepness calculated at different

positions are tightly correlated, especially in the regime of high steepness. For the remainder of

this work, we work with the steepness defined at mid-boundary (H(X = 0)) and note that an

alternative definition would not change our conclusions.



D

Boundary steepness and promoter switching time for the equilib-

rium model

The boundary steepness

We consider the general “K-or-more case”, that is the promoter is active when at least K OS

are bound by TF, P (Pactive) =
∑N

i=K P (Pi). When K = N , we recover the “all-or-nothing” case,

P (Pactive) = P (PN ).

At the boundary position X = 0 and P (Pactive) = p (0 ≤ p ≤ 1), Eq. 7 simplifies to:

P (Pactive, X = 0) =

∑N
i=K K̃i∑N
j=0 K̃j

= p, (17)

which imposes a condition on the effective equilibrium constants:

N∑
i=K

K̃i =
p

1− p

K−1∑
k=0

K̃k = p
N∑
j=0

K̃j . (18)

The slope of the pattern at mid-boundary position is given by the derivative:

(∂P (Pactive)

∂X

)∣∣
X=0

=
N∑
i=K

(
∂

∂X

K̃ie
iX∑N

j=0 K̃jejX

)∣∣
X=0

(19)

=

∑N
i=K iK̃i∑N
j=0 K̃j

−
∑N

i=K K̃i
∑N

j=0 jK̃j

(
∑N

j=0 K̃j)2

=

∑N
i=K iK̃i∑N
j=0 K̃j

−
p
∑N

j=0 jK̃j∑N
j=0 K̃j

,

where in the last step we used Eq. 18.

For clarity, we set the ranges i = K..N , j = 0..N and k = 0..K− 1. Eq. 19 is then rewritten as:

(∂P (Pactive

)
∂X

)X=0 =

∑
iK̃i − p

∑
jK̃j∑

K̃j

(20)

=
(1− p)

∑
iK̃i − p

∑
kK̃k∑

K̃j

=
N(1− p)

∑
K̃i∑

K̃j

− (1− p)
∑

(N − i)K̃i + p
∑
kK̃k∑

K̃j

= Np(1− p)− (1− p)
∑

(N − i)K̃i + p
∑
kK̃k∑

K̃j

,



and the Hill coefficient (Eq. 16) is:

H = 4
∂P (Pactive)

∂X

= 4Np(1− p)− 4
(1− p)

∑
(N − i)K̃i + p

∑
kK̃k∑

K̃j

. (21)

At the boundary criteria p = 0.5 and:

H = N − 2

∑
(N − i)K̃i +

∑
kK̃k∑

K̃j

. (22)

In the “all-or-nothing” case (K = N),
∑N

j=0 K̃j = 2K̃N (Eq. 18), the first term in the nominator

disappears and Eq. 22 becomes

H = N −
∑N−1

k=0 kK̃k

K̃N

. (23)

Bounds for pattern steepness

Eq. 22 gives an upper bound of H ≈ N at the mid-boundary position, which occurs when∑N
i=K(N − i)K̃i +

∑K−1
k=0 kK̃k∑N

j=0 K̃j/2
<< N. (24)

When N is not too large (≤ 10), we can rewrite the upper bound condition in Eq. 24:

N∑
i=K

(N − i)K̃i +

K−1∑
k=0

kK̃k �
N∑
j=0

K̃j/2 (25)

which is equivalent to K̃l � K̃0 + K̃N for l = 1..N − 1 or K̃0 + K̃N ≈
∑N

j=0 K̃j .

Maximum sharpness (H = N) is achieved when K̃0 ≈ K̃N ≈ 0.5
∑N

i=0 K̃i – the system spends

most of the time in the fully free (P0) or fully bound states (PN ). In this limit, we have P (P0) +

P (PN ) ≈ 1, and thus P (Pactive) ≈ P (PN ) regardless of the value of K.

To find the lower bound on H, we consider the difference between H and N from Eq. 22:

N −H =

∑N
i=K(N − i)K̃i +

∑K−1
k=0 kK̃k∑N

j=0 K̃j/2
(26)

=

∑N
i=K(N −K)K̃i −

∑N
i=K(i−K)K̃i∑N

i=K K̃i

+

∑K−1
k=0 (K − 1)K̃k −

∑K−1
k=0 (K − 1− k)K̃k∑K−1

k=0 K̃k

= N −K −
∑N

i=K(i−K)K̃i∑N
i=K K̃i

+K − 1−
∑K−1

k=0 (K − 1− k)K̃k∑K−1
k=0 K̃k

,

≤ N − 1

Thus H ≥ 1. H = 1 when the sum in Eq. 25 are negligible compared to 1, which happens when

K̃K � K̃K+1..N and K̃K−1 � K̃0..K−2. With these conditions, the promoter spends most of the

time in PK−1 and PK .



Promoter activity time

τactive is the mean duration the promoter is in the active state and the system is at steady state,

τactive ∼ P (Pactive). We can relate τactive to the average time τN the promoter spends in the PN
state where all the operator sites are occupied by TF:

τactive = τN
P (Pactive)

P (PN )
(27)

=
1

k−N

∑N
i=K K̃i

K̃N

=
KN

kN

∑N
i=K K̃i

K̃N

=
1

kN

K̃N

K̃N−1

∑N
i=K K̃i

K̃N

= τbind

∑N
j=0 K̃j

2K̃N−1

,

where τbind = 1/kN is the expected time for a binding event between the remaining free OS of

PN−1 and a TF at the mid-boundary position ([TF ] = 1) (as defined in A).

Eq. 27 allows us to connect the Hill coefficient in Eq. 23 to τactive. For K = N (the “all-or-

nothing” case), using Eq. 27, Eq. 23 becomes:

H = N −
∑N−1

k=0 kK̃k∑N
j=0 K̃j/2

(28)

= N −
(N − 1)K̃N−1 +

∑N−2
k=0 kK̃k∑N

j=0 K̃j/2

= N − (N − 1)τbind

τactive
−
∑N−2

k=0 kK̃k∑N
j=0 K̃j/2

≤ N − (N − 1)τbind

τactive
,

or

τactive ≥ τbind
N − 1

N −H
. (29)

This leads to the bound on the Hill coefficient presented in the main text:

H ≤ N − (N − 1)
τbind

τactive
. (30)

Given the estimate τbind ≈ 4s (Section A), H ∼ N for τactive � 4 s or k−N � 0.25 s−1.

For K < N (the “K-or-more” case), Eq. 22 becomes:

H = N −
K̃N−1 +

∑N−2
m=K(N −m)K̃m +

∑K−1
k=0 kK̃k∑N

j=0 K̃j/2
(31)

= N − τbind

τactive
−
∑N−2

m=K(N −m)K̃m +
∑K−1

k=0 kK̃k∑N
j=0 K̃j/2

≤ N − τbind

τactive
,



or

τactive ≥ τbind
1

N −H
. (32)

The equality in Eq. 28 and Eq. 31 occurs when K̃1..N−2 �
∑N

j=0 K̃j – the system spends most of

the time in the P0, PN−1 and PN states.



Figure C: Example of the pattern formation following mitosis. The mean promoter activity

pattern µP (T,X) as a function of the position in the embryo the end of an interphase of duration

T (solid colored lines), for interphases of varying duration. The dashed line shows the steady-state

expression pattern.

E

Calculating the mean promoter activity and readout error

In this section we obtain analytical solutions for the time dependent mean promoter activity

(µP (T, 0)) and readout error (CVP (T )). Those results are expressed in terms of the exponen-

tial of the transition rate matrix U of size N2N for the non-equilibrium model and size N + 1 for

the equilibrium model, defined in Eq. 5. We discuss in what cases the matrix exponentiation can

be done analytically or must be done numerically.

The steady state solution for the promoter activity probability vector is given by Ux = 0 and

the normalization condition
∑
x = 1. In the equilibrium model, the steady state solution x is given

by Eq. 8.

Mean promoter activity out of steady state

We define x0 as the promoter state probability at the beginning of the interphase (
∑
x0 = 1). The

mean promoter activity level at time T is given by:

µP (T ) = αTeU ·Tx0 (33)

where α is a vector of the promoter active states. The ith element of α takes values of either 1 or

0, indicating the ith promoter state is active or inactive respectively.

The readout error

After the interphase of duration T , we obtain a readout fP (T ) which is the average of the promoter

activity trace n(t) over time T :

fP (T ) =
1

T

∫ T

0
n(t)dt. (34)



At steady state (x0 = x), the probability of the gene to be active is a projection of the steady state

probability onto the state of the system:

〈fP 〉 = αT × x. (35)

Let us define xfire in which xfire(i) = α(i)x(i). The second moment of fP (T ) can be found via the

autocorrelation function:

〈f2
P (T )〉 =

1

T 2

∫ T

0
du

∫ T

0
dv αTeU |u−v|xfire (36)

=
2

T 2

∫ T

0
du

∫ u

0
dv αTeU(u−v)xfire

=
2αT

T 2

∫ T

0
ds

∫ T

s
du eUsxfire

=
2αT

T 2

[ ∫ T

0
ds(T − s)eUs

]
xfire.

We diagonalize the matrix U = V DV −1, where V is the eigenvector matrix and D a diagonal

matrix of eigenvalues [λ1, λ2, ...λM ]. Eq. 36 becomes

〈f2
P (T )〉 =

2αT

T 2
V · diag

[
L1, L2, ...LM

]
· V −1xfire (37)

with

Li =

∫ T

0
ds(T − s)eλis. (38)

Performing the integration, for λi = 0:

Li =

∫ T

0
ds(T − s) = T 2 − T 2/2 = T 2/2, (39)

and for λi 6= 0:

Li =

∫ T

0
ds · T · eλis −

∫ T

0
ds · s · eλis (40)

=

∫ T

0
ds · Teλis − 1/λi

(
s · eλis

∣∣T
0

+

∫ T

0
ds · T · eλis

)
= T/λi(e

λiT − 1)− T/λieλiT + 1/λ2
i (e

λiT − 1)

= 1/λ2
i (e

λiT − 1)− T/λi.

The readout error CVP (T ) is calculated as:

CVP (T ) =
δfP (T )

〈fP 〉
=

√
〈f2
P (T )〉 − 〈fP 〉2
〈fP 〉2

(41)

In the special case whenH approaches its maximum value, τactive is infinitely long, all eigenvalues

λi become zero and Li = T 2/2 for all i. In this limiting case:

〈f2
P (T )〉 =

2αT

T 2
V · T 2/2 · V −1x (42)

= αTx

= 〈fP 〉



Figure D: The readout error of [TF] readout at steady-state. The smallest values of CVP
as a function of interphase duration T , plotted for varying pattern sharpness H.

Applying Eq. 42 to Eq. 41, the readout error at the mid-boundary position is therefore:

CVP (T ) =

√
〈fP 〉 − 〈fP 〉2
〈fP 〉2

= 1 (43)

Specific case with 2 binding sites

In the specific case N = 2:

P0
k1[TF ]−−−−⇀↽−−−−
k−1

P1
k2[TF ]−−−−⇀↽−−−−
k−2

P2 (44)

the matrix U is:

U =

−k1 k−1 0

k1 −k2 − k−1 k−2

0 k2 −k−2

 , (45)

where we have set [TF ] = 1 at the mid-boundary position. The matrix is of size 3× 3 and can be

diagonalized analytically in the general case. We define the following auxiliary variables:

r = k1k2 + k−1k2 + k−1k−2

w = k1 + k2 + k−1 + k−2

v = k−2 − k1 − k2 − k−1

x = k2 + k−2 − k1 − k−1

d =
√

(k1 + k2 + k−1 + k−2)2 − 4(k1k2 + k1k−2 + k−1k−2)

(46)

and for the all-or-nothing case:

α =

( 0

0

1

)
, (47)

the steady state probability is:

〈fP 〉 = αTx = αT

( k−1k−2/r

k−2k1/r

k1k2/r

)
= k1k2/r, (48)



and the mean squared of the readout error is:

〈f2
P (T )〉 =

2k1k2

T 2r
× (49)[

T 2

2r

(
k2k−2 +

v2 − d2

4

)
+
( 2T

w − d
− 4

(w − d)2

(
1 + e−(w−d)T/2

)) k−2(x− d)

2r − 2w(w − d) + 3(w − d)2/2

)
+
( 2T

w + d
− 4

(w + d)2

(
1 + e−(w+d)T/2

) k−2(x+ d)

2r − 2w(w + d) + 3(w + d)2/2

]

The analytically calculated readout relative error CVP (T ) =
√
〈f2
P (T )〉/〈fP 〉2 − 1 agrees with

the numerical calculation for the N = 2 equilibrium model (Figure E).

Figure E: The analytical and numerical calculation of the relative error CVP (T ) for

the equilibrium model with N = 2 . Small discrepancies result from numerically finding the

half-maximum expression point, which due to numerical precision is not exactly at 〈fP 〉 = 0.5.

Figure F: The unbinding rate constants k−i yielding the highest readout error CVP in

nuclear cycle 12 of the equilibrium model with N = 6. The optimal binding rate constants

ki are at their highest possible values (N − i+ 1)/τbind.



F

Positional resolution

Calculation of positional resolution

For each set of parameters k, integration window T and nuclei distance ∆W , we generate 500

realizations of promoter activity at location −∆W/2 and +∆W/2. From each realization, we

extract an individual gene readout f−i = fP (−∆W/2) and f+i = fP (+∆W/2), with i = 1...500.

The distribution of the readout values at the two positions, F+ and F−, can be approximated

marginally by the sample distribution of f+i and f+j (Figure G Panel A).

Figure G: Finding the positional resolution.

Panel A: The distribution of readout F+ and F− from two nuclei positioned at a distance of ∆W

on opposite sides of the expression boundary.

Panel B: The coefficient β = P (D ≤ 0) is the risk of a nucleus wrongly predicting its position.

Panel C: ∆X is set as the smallest ∆W yielding a tolerable risk (β ≤ 5%).

The difference in the activity of two nuclei on opposite sides of the mid-boundary position is:

D = F+ − F−. (50)

When D takes a non-negative value, we have a false negative result suggesting the anterior nucleus

is not the anterior region. The probability β of getting such false negative samples is:

β = P (D ≤ 0) = P (F+ ≤ F−). (51)

The value of β for each ∆W can be calculated numerically via the approximated distribution of

F+ and F−. One observes that β decreases with increasing nuclei distance ∆W (Figure G Panel

B). We set the risk tolerance level β ≤ 5% to conclude whether the nuclei distance (∆W ) is large

enough for any two nuclei to have different readout values. We define the positional resolution as

such a value of ∆W that (Figure G Panel B):

∆X = min (∆W |β ≤ 0.05) . (52)



In practice, to determine the value of ∆X for each parameter set k, we increase ∆W from 0×λ
to 4× λ with an increment of 0.01× λ (λ is the TF gradient’s decaying length, which is ∼ 100µm
or ∼ 20%EL), which corresponds to 0% to 80% of the embryo length. For each value of ∆W ,

the distribution of D and the value of β are computed from stochastic simulations of F+ and F−
[10, 11]. As β also monotonically decreases with ∆W , ∆X is set as the first value of ∆W that

gives β ≤ 0.05 (Figure G Panel C).

When the nuclei readout is the average of M identical and independent identical single gene

readouts (F+(j) and F−(j), for j = 1..M), the difference in the averaged readout at the two

locations −∆W/2 and +∆W/2 is:

DM =
1

M

M∑
j=1

(F+(j)− F−(j)), (53)

and β is calculated as β = P (DM ≤ 0).

As M increases, it is expected that the difference in the averaged readout DM at specific nuclei

distance ∆W has reduced variance while maintaining the same mean level. This leads to a smaller

risk level β and consequently smaller values of ∆X when compared with M = 1 case (Figure H).

Correlation between readout error and positional resolution

The correlation between the readout error and positional resolution given the same degree of pattern

steepness is demonstrated in the N = 6 equilibrium model. We first find the randomized kinetic

parameter sets that yield the Hill coefficient H = 4. The transcription readout error CVP given

T = 400s varies between 0.12 and 1. Among these sets, we select 20 parameter sets yielding CVP
linearly spaced between 0.12 and 1 and calculate the positional resolution for each of the parameter

set. The positional resolution (∆X) as a function of readout error CVP is shown in Figure I.

Positional resolution for a binomial readout

When the nuclear cycle is very short or when the promoter dynamics is very slow,the positional

readout value any given position X depends only on the promoter activity state at the beginning

of the nuclear cycle. At steady state, this activity state follows a Bernoulli distribution (CVP = 1

as in Fig. 2 of the main manuscript) with a mean value 〈fP (X)〉. We assume that the readout

pattern can be well fitted with a sigmoid curve with a Hill coefficient H:

〈fP (X)〉 =
eHX

1 + eHX
. (54)

For the case M = 1 (single gene readout), at the anterior position ∆W/2, the readout F+ has

a chance fP (∆W/2) to be 1. Similarly, at the opposite position −∆W/2, the readout F− has a

chance 1 − fP (∆W/2) to be 1. Thus, the probability that two opposite nuclei falsely determine

their position from their readout value is:

β = P (F+ ≤ F−) = 1− P (F+ > F−) (55)

= 1− P (F+ = 1, F− = 0)

= 1− fP (∆W/2)2.



Figure H: Positional resolution with varying single gene copy number per nuclei M in

the equilibrium model. Results for the “all-or-nothing” model with N = 6 binding sites and M

equal 2 (A-B), 4 (C-D) and 10 (E-F).

(A,C,E) Positional resolution calculated from the equilibrium binding site model for varying bound-

ary steepness H.

(B,D,F) The optimal Hill coefficients H∗ that gives the minimal positional resolution (dashed blue

line), the confidence interval CI(H∗) with 2 %EL tolerance (solid blue lines) and the lowest value

of the positional resolution ∆Xmin (orange dashed line), for varying T . The theoretical results are

compared to the empirical Hill coefficient Hdata (blue crosses) and positional resolution ∆Xdata

(orange crosses) extracted from MS2-MCP live imaging data.

When we increase ∆W from 0 until β reaches 5%, we find the positional resolution ∆X = ∆W .

Therefore:

1− fP (∆X/2)2 = 0.05, (56)



Figure I: The correlation between the readout error (CVP ) and positional resolution

(∆X). Demonstrated with N = 6 and H = 4 and T = 400s. The kinetic parameters are selected

so as to generate the same Hill coefficient H = 4 and readout error CVP linearly spaced between

its bound 0.12 and 1.

or

fP (∆X/2) =
√

1− 0.05 (57)

=
eH∆X/2

1 + eH∆X/2

= 1− 1

1 + eH∆X/2
,

which gives

∆X =
2

H
ln(

1

1−
√

0.95
− 1) ≈ 7.3

H
. (58)

and the value of ∆X in %EL unit is:

∆X ≈ 7.3

H
∗ 20%EL =

146%EL

H
(59)

In the case M > 1, the positional readout follows a scaled binomial distribution:

F+ ∼
1

M
B(M,fP (∆W/2)), (60)

F− ∼
1

M
B(M,fP (−∆W/2)),

and the value of ∆X is calculated numerically by solving β = P (F+ ≤ F−) = 0.05.

Positional resolution

To calculate the positional resolution of the hb pattern in live fly embryos, for each position along

the embryo AP axis, we collect the readout of all nuclei in this position (with a bin width of 5%

of the embryo length). We then find the distribution of the difference P (F+ − F−) at position

+∆W/2 and −∆W/2 from the pattern’s boundary, with ∆W increasing from 0 %EL. Assuming

that this difference follows a normal distribution, we calculate the risk β and its confidence interval

(p-value=0.05) (Figure J). By inspecting when the risk value is tolerable (≤ 5 %), we find ∆X ∼
14%EL (confidence interval from 11% EL to 20% EL) in nuclear cycle 12 and ∆X ∼ 12% EL

(confidence interval from 8% EL to 18% EL) in nuclear cycle 13.



Figure J: The risk factor value β as a function of ∆W for the hb proximal promoter

(solid line), plotted with the confidence interval (shaded) with p-value=0.05. The dashed black

line indicates the tolerable risk β = 0.05. Panel A: Nuclear cycle 12 (8 embryos). Panel B: Nuclear

cycle 13 (4 embryos).



G

Analysis of the non-equilibrium model

The steady state of the non-equilibrium models can be a limit-cycle instead of simple fix points.

Therefore, to assess whether the system has reached steady state we consider both the probability of

the promoter to be active µP (T, 0) like we did in steady state and the derivative of this probability

over time:

µSS = |µP (T, 0)− 0.5|+ |∂µP (T, 0)

∂T
|. (61)

If the system has reached steady state at time T , at the mid-embryo position, we expect µP (T, 0)

to be equal 0.5 and its derivative term to be 0, and thus µSS ≈ 0. If µSS > 0 the system has not

yet reached steady state.

Full non-equilibrium model with N = 3 binding sites

We first investigate the “all-or-nothing” non-equilibrium model with 3 OS (N = 3). Figure K

shows that the model is able to achieve a higher steepness (H ≤ 2N − 1 = 5) than that with the

equilibrium model (H ≤ N = 3), as described in [2]. Similarly to the equilibrium model we observe

a tradeoff between the pattern steepness H, readout error and pattern formation time. In the case

of the steepest pattern (H = 5), the pattern is not yet formed (µSS = 0.5) and the noise is at its

highest value (CVP = 1).

Figure K: Readout error of a pure non-equilibrium model for N = 3.

Panel A: The lower bounds for µSS from the non-equilibrium model (grey solid line), for varying

values of T , computed from 3× 105 data points. Also shown are the bounds for equilibrium model

(colored dashed lines).

Panel B: The lower bounds for readout error CVP (T ) for the non-equilibrium model (grey solid

lines) for varying value of T computed from 3 × 105 data points. Also shown are the bounds for

the equilibrium model (colored dashed lines).

Hybrid non-equilibrium model with N = 3 binding sites

We expand the non-equilibrium model to N = 6. However, we do not use a full model (as in

Figure A) due to the very large numbers of micro-states (26 = 64) and possible transitions (6 ·26 =



396), which makes numerical optimization of the parameters numerically costly. Instead, we opt to

use a hybrid model with 2 OS arrays. The first array contains 3 identical OS, the interactions of

which with the TF are at equilibrium (as in Eq. 4). The second array contains 3 OS, the interactions

of which with the TF are out of equilibrium (as in Figure A). To include cooperativity between

the binding sites and decrease the computational time of the numerical parameter optimization we

further assume the dynamics of the two arrays are not independent: TF can only interact with

the first OS array when the second OS array is completely free, and TF can only interact with the

second OS array when the first array is fully bound.

Figure L: Readout error of the hybrid non-equilibrium model with N = 6, three equi-

librium and three non-equilibrium OS.

Panel A: The lower bounds for µSS for a hybrid non-equilibrium model (grey solid lines) for varying

values of T computed from 106 data points.

Panel B: The lower bounds for the readout error CVP (T ) for a hybrid non-equilibrium model (grey

solid lines), for varying values of T computed from 3× 105 data points.

The hybrid model is able to achieve a steepness of 8 (Figure L), as expected from equilibrated

activity of 3 OS and non-equilibrated activity of 3 OS. The tradeoff between the pattern steepness

H and the readout error and pattern formation time still holds. Note that the hybrid model is not

nested in the equilibrium model.

The positional resolution for the hybrid model with varying nuclear cycle is shown in Figure M

and the optimal steepness with varying interphase duration T is plotted in Fig. 4C of the main

text.

Analysis of the “K-or-more” case

The results concerning the “K-or-more” case is shown in Figure N, from which qualitatively similar

observations as in the “all-or-nothing” case can be drawn.



Figure M: Positional resolution in the N = 6 hybrid non-equilibrium model. The results

are shown for the “all-or-nothing” case with N = 6, M = 1. Positional resolution calculated for a

hybrid non-equilibrium binding site model for varying boundary steepness H.

Figure N: The “K-or-more” case is qualitatively similar to the “all or nothing” case.

The results are shown with N = 6 binding sites and an interphase duration of T = 500 s. K = 6

corresponds to the “all or nothing” case. Each curve is computed from ∼ 20000 data points.

Panel A: The lower bound for the mean promoter activity level at the boundary position µP (T, 0),

for different K values (solid colored lines), as a function of pattern sharpness H. The µ = 0.5 line

(dashed line) indicates the steady-state value.

Panel B: The lower bound for readout error CVP (T ) for different K values (solid colored lines) as

a function of pattern sharpness H. Also shown is the upper bound for the noise, CV = 1.



Figure O: Positional resolution in the “K-or-more” case, with varying K. The results are

shown with N = 6 binding sites and K equal 5 (A-B), 4 (C-D), 3 (E-F). M = 1.

(A,C,E) Positional resolution calculated from the equilibrium binding site model for varying bound-

ary steepness H.

(B,D,F) The optimal Hill coefficients H∗ that gives the lowest value of the positional resolution

(dashed blue line), the confidence interval CI(H∗) with 2 %EL tolerance (solid blue lines) and the

lowest value of the positional resolution ∆Xmin (orange dashed line), for varying T . The theoretical

results are compared to the empirical Hill coefficient Hdata (blue crosses) and positional resolution

∆Xdata (orange crosses) extracted from MS2-MCP live imaging data.



H

Transcription pattern formed by two transcription factor gradients

We investigate the transcription pattern formation under the independent regulation of two tran-

scription factor gradients: an anterior activator TF (modeled as above) and a repressor TF’, which

is concentrated at either the posterior (e.g. Cad protein) or mid-embryo (Cic protein).

The transcription factors regulate the target gene via interactions with the activator binding site

array A and repressor binding site array B, each with N and L identical binding sites respectively:

A0
k1[TF ]−−−−⇀↽−−−−
k−1

A1
k2[TF ]−−−−⇀↽−−−−
k−2

A2...
kN [TF ]−−−−−⇀↽−−−−−
k−N

AN , (62)

B0

k′1[TF ′]
−−−−−⇀↽−−−−−

k′−1

B1

k′2[TF ′]
−−−−−⇀↽−−−−−

k′−2

B2...
k′L[TF ′]
−−−−−⇀↽−−−−−

k′−L

BL. (63)

We call α and γ the vectors indicating which states are ON (the ith elements of α and γ

respectively indicate whether Ai or Bi is an active or an inactive state). We consider the ”all-

or-nothing” model for the activator (α = [00...1]T ) and a ”zero-or-nothing” model for repressor

(γ = [10...0]T ).

In each nuclear cycle of duration T , A and B produce time traces a(t) and b(t). The mean

activity levels A(T ) and B(T ) are:

A(T ) =
1

T

∫ T

t=0
αᵀa(t)dt (64)

B(T ) =
1

T

∫ T

t=0
γᵀb(t)dt.

We consider the promoter to be active when both the binding arrays are active:

Pactive = αᵀa(t)γᵀb(t). (65)

The promoter readout is given by:

fP (T ) =
1

T

∫ T

t=0
αᵀa(t)γᵀb(t)dt. (66)

At a given position, the two arrays have rate matrices Ua and Ub respectively. We call xa and

xb the steady state solution of Uax = 0 and Ubx = 0 respectively.

Scenario 1: posterior repressor

In the first scenario, the repressor has an exponentially decay gradient from the posterior, mirroring

the anterior gradient:

[TF ′] = e−X . (67)

We select N = 6, L = 6.



The pattern steepness

The mean promoter readout is given by:

〈fP (T )〉 =
1

T

∫ T

t=0
〈αᵀa(t)γᵀb(t)〉dt. (68)

Given that a(t) and b(t) are independent and assuming the system is at steady-state, we have:

〈fP (T )〉 =
1

T

∫ T

t=0
〈αᵀa(t)〉〈γᵀb(t)〉dt (69)

= 〈A(T )〉〈B(T )〉,

and at the promoter activity boundary (X = 0,〈P (T )〉 = 0.5) the steepness of the promoter

activity pattern is:

HP = 4(
∂〈fP (T )〉
∂X

)X0 (70)

= 4(
∂(〈A(T )〉〈B(T )〉)

∂X
)X0

= 4〈B(T )〉(∂〈A(T )〉
∂X

)X0 + 4〈A(T )〉(∂〈B(T )〉
∂X

)X0

= 〈B(T )〉HA + 〈A(T )〉HB.

Given Eq. 70, we have:

HP ≤ 4N〈B(T )〉〈A(T )〉(1− 〈A(T )〉) + 4L〈A(T )〉〈B(T )〉(1− 〈B(T )〉) (71)

= 4〈P (T )〉(N + L−N〈A(T )〉 − L〈B(T )〉)
= 2(N + L−N〈A(T )〉 − L〈B(T )〉)

In the case N = L, we have the upper bound for HP :

HP ≤ 4N − 2N(〈A(T )〉+ 〈B(T )〉) (72)

≤ 4N − 4N
√
〈A(T )〉〈B(T )〉

= 4N(1− 1√
2

) ≈ 1.17N.

The equality in Eq. 72 occurs when 〈A(T )〉 = 〈B(T )〉 = 1√
2
. From Eq. 72, we found that having

two independent binding site arrays does not yield significant higher pattern steepness than that

achievable with a single array.

Mean promoter activity out-of-steady-state

We call a0 and b0 the initial state of the OS arrays A and B. At the end of the interphase of

duration T , the mean probability that the promoter is active is:

〈fP (T )〉 = 〈αᵀa(T )〉〈γᵀb(T )〉 (73)

= (αᵀeUaTa0)(γᵀeUbT b0).

The upper bound for the mean promoter activity level at the end of each nuclear cycle interphase

is shown in Figure P Panel A for N = L = 6.



The readout error

Assuming the system is at steady state, the mean square of the readout:

〈(fP (T ))2〉 = 1/T 2

∫ T

u=0
du

∫ T

s=0
ds〈p(u)p(s)〉 (74)

= 1/T 2

∫ T

u=0
du

∫ T

s=0
ds〈αᵀa(u)αᵀa(s)〉〈γᵀb(u)γᵀb(s)〉

= 2/T 2

∫ T

s=0
ds(T − s)αᵀeUa|u−s| (xa.α) γᵀeUb|u−s| (xb.γ) .

is calculated numerically given the transition matrices Ua and Ub and used to calculate the promoter

activity readout relative error (the . here corresponds to term by term multiplication of the vectors

coordinates).

The lower bound for promoter activity readout error after each nuclear cycle is shown in Figure P

Panel B for N = L = 6.

When H approaches its maximal value and τactive goes to infinity, the integrated activity of each

transcription factor becomes binomial. If p is the probability of the activator binding array being

full bound and and q the probability of the repressor binding array being free, we have 〈fP (T )〉 = pq

and CVP (T ) = (1− pq)/pq. If pq = 1/2 we recover CVP (T ) = 1. Consistently, the limit of Eq. 74

when all non-zero eigenvalues of Ua and Ub go to −∞ yields the same result.

Figure P: The trade-off between pattern steepness (H), pattern formation time and

readout error in the case of transcription regulation by two transcription factors.

Results for N = L = 6. M = 1. Each curve is computed from > 20000 data points.

Panel A: The lower bounds for the mean promoter activity level at the boundary position µSS for

varying nuclear cycles.

Panel B: The lower bounds for readout error CVP (T ) for varying nuclear cycles. Also plotted is

the dashed line CV = 1.

Scenario 2: mid-embryo repressor

In the second scenario, the repressor is concentrated at the boundary position. The repressor

gradient is modelled as a Gaussian curve with standard deviation σ = 1.25 (equivalent to 25 %EL).

[TF ′] = e
X2

σ2 . (75)



Figure Q: Positional resolution in the case of transcription regulation by two mirror

transcription factor gradients. The results are shown for N = 6, L = 6.

Panel A: Positional resolution calculated from the equilibrium binding site model with randomized

kinetic parameters that give different values of the expression profile steepness H for M = 1. The

colored lines show the results for parameters that give the smallest readout error CVP from a set

of randomized parameters for the steady-state window T in nc 11-14.

Panel B: The range of optimal Hill coefficients H∗ (dashed blue line) that yield the lowest value of

the positional resolution (obtained from panel A) as a function of the steady-state readout duration

T . The error bars correspond to 95% confidence intervals.

TF can interact with the promoter via L = 1 binding site, corresponding to the number of

known Cic binding sites found on hb promoter [12]. For simplicity, we consider k′1 = k′−1 = 1.

At the boundary position, given the local flat repressor concentration, the pattern steepness is

dependent on the regulation function of only the activator:

∂〈fP (T )〉
∂X

=
∂〈A(T )〉〈B(T )〉

∂X
=
∂〈A(T )〉
∂X

= HA ≤ N (76)

We plot the positional resolution of the readout in Figure R. The kinetic parameters ki and k−i
are selected so as to minimize the readout error from 6 activator binding sites for varying pattern

steepness.



Figure R: Positional resolution in the case of transcription regulation by an anterior

activator and a mid-embryo repressor. The results are shown for N = 6, L = 1.

Panel A: Positional resolution calculated from the equilibrium binding site model with randomized

kinetic parameters that give different values of the expression profile steepness H for M = 1. The

colored lines show the results for parameters that give the smallest readout error CVP from a set

of randomized parameters for the steady-state window T in nc 11-14.

Panel B: The range of optimal Hill coefficients H∗ (dashed blue line) that yield the lowest value of

the positional resolution (obtained from panel A) as a function of the steady-state readout duration

T . The error bars correspond to 95% confidence intervals.

Figure S: Optimal positional resolution with different values of τbind. Panel A τbind = 0.4s.

Panel B: τbind = 40s. The optimal positional resolution and Hill coefficient are calculated for the

hybrid non-equilibrium model N = 6, M = 1 in the “all-or-nothing” case.



I

Expression pattern of proximal hb promoter in live Drosophila em-

bryos

We observe the transcription dynamics of a 700bp hb P2 minimal promoter using the RNA-tagging

MS2-MCP system [13, 14]. Here, the nascent RNAs in each transcription loci are visualized as

bright spots under the confocal microscope, due to the co-localization of fluorescent tagged MS2-

GFP molecules [15]. The data for the analysis can be obtained in Lucas et al., 2013 [16].

The pattern steepness

From each nucleus, we obtain a single gene readout fP – the total spot intensity observed during

the interphase. We fit the readout values along the AP axis with a sigmoid curve using least-mean-

square and infer the Hill coefficient (Figure T). The inferred Hill coefficients in nuclear cycle 12 is

from 6.9, with the confidence interval from 5.80 to 8.64 (p-value=0.05). In nuclear cycle 13, the

Hill coefficient is 7.1,with the confidence interval from 6.20 to 8.32 (p-value=0.05).

Figure T: The transcription readout pattern by hb proximal promoter along AP axis.

normalized fluorescence (blue crosses), the mean readout 〈fP 〉 (dashed black line), the fitted Hill

function (dashed red line) and fP = 0.5 (solid yellow line) as a function of nuclei position. The

normalized fluorescence and mean expression curves are normalized by the fitted Hill function’s

maximum value. Panel A: Nuclear cycle 12 (8 embryos). Panel B: Nuclear cycle 13 (4 embryos).

Transcription readout error

From the fitted sigmoid curve, we identify the hb pattern boundary position at ∼ −5% EL from

the middle of the embryo for both nc 12 and nc 13. The readout distributions around the boundary

(within ±2.5% EL) are shown in Figure U. From the distributions, we calculate readout errors CVP
to be ∼ 0.82 in nc 12 and ∼ 0.69 in nc 13.



Figure U: Distributions of hb transcription readout at mid-boundary position in nuclear

cycle 12 (Panel A, from 8 embryos) and nuclear cycle 13 (Panel B, from 4 embryos).

τbind to achieve experimentally observed pattern steepness and po-

sitional resolution

We vary the TF searching time for a single binding site τbind so as to fix the pattern steepness to

the experimentally measured Hdata = 7 and find the minimal value of the positional resolution ∆X

given this constraint. ∆X as a function of τbind in each cycle is shown in Figure V. From Figure

V, we find that values close to the experimentally observed positional resolution (∆Xdata ∼ 14%

EL in nc 12 and ∆Xdata ∼ 12% EL in nc 13) and pattern steepness (Hdata = 7) can be achieved

simultaneously with small τbind (τbind ∼ 1.2s in nc12 and τbind ∼ 0.12s in nc13).

Figure V: Positional resolution ∆X of the hybrid non-equilibrium model as a function of

TF searching time for a binding site τbind for nc 12 (Panel A) and nc 13 (Panel B). The

kinetic parameters are selected to achieve the experimentally observed Hill coefficient Hdata = 7.

Also shown are the observed positional resolution ∆Xdata in nc 12 (dashed green line in A) and nc

13 (dashed green line in B) and the 95% confidence intervals (shaded stripe in Panel A and B).
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