SUPPLEMENTARY MATERIALS

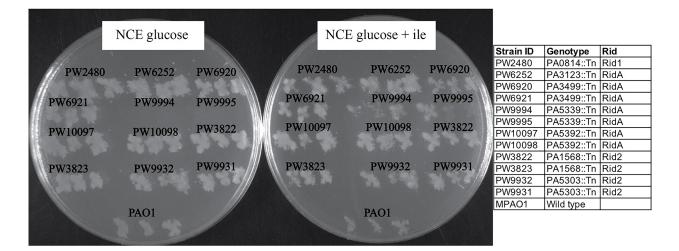
PA5339, a RidA homolog, is required for full growth in Pseudomonas aeruginosa

Jessica Irons, Kelsey M. Hodge-Hanson¹ and Diana M. Downs*

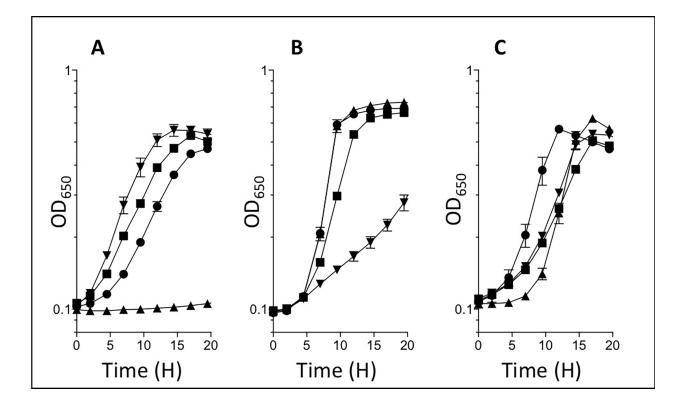
Department of Microbiology University of Georgia Athens, GA 30602-2605

*Correspondence: Dr. Diana Downs, Department of Microbiology, University of Georgia, Athens, GA, USA, <u>dmdowns@uga.edu</u>

¹Current address: Department of Microbiology & Immunology, Loyola University Chicago, Maywood, IL


RUNNING TITLE: 2-aminoacrylate stress in P. aeruginosa

KEYWORDS: RidA, PA5339, motility, biofilm, 2-aminoacrylate,


Primer Name	Gene to amplify	Plasmid	Sequence
PR863	PA5339	NA	CGAGTACCGCATGGAAGTCT
PR864	PA5339	NA	CCCATGATCTCGTTGACCTT
PR857	PA3123	NA	GCCATGAGCACCAACTACCT
PR858	PA3123	NA	GTCGATATGAGCCAGGGTTG
PR851	PA0814	NA	GCTGTTGGAACCGTATTCGT
PR852	PA0814	NA	CGACAGAGGACGAGGAAGTC
PR869	PA1568	NA	GTATAGAGGGTGCCGTCCAG
PR870	PA1568	NA	GCTGTTCATGATGGGACTGA
PR871	PA5303	NA	CTCATCATCACGATCTTCGC
PR872	PA5303	NA	CCAGCACACTAACGAGCGTA
PR923	Sequencing	pMQ72 F	CCGCCAAAACAGCC
PR924	Sequencing	pMQ72 R	ACCCGTTTTTTTGGGCT
Universal	Sequencing	pBAD F	ATGCCATAGCATTTTTATCC
Universal	Sequencing	pBAD R	GATTTAATCTGTATCAGG
PR1037	LT2 ridA	pMQ72-ridA F	ccaagcttgcatgcctgcaggtcgactctagaggat ccccTTAGCGACGAACAGCGA
PR1038	LT2 ridA	pMQ72-ridA R	tacccgtttttttgggctagcgaattcgagctcggtacc cCATTATGTGGTGCTGGCC
PR897	PA5339	pMQ72- <i>PAridA</i> F	TACCCGTTTTTTTGGGCTAGCGAATT CGAGCTCGGTACCCGATTTCAGCAA GGAGTTCCC
PR898	PA5339	pMQ72-PAridA R	CCAAGCTTGCATGCCTGCAGGTCGA CTCTAGAGGATCCCCTTACTCGAGG ACGACGATG
PR1033	PA3123	pMQ72-PA3123 F	ccaagcttgcatgcctgcaggtcgactctagaggat ccccCTCAGCCCTCGCCGACCCACG CC
PR1034	PA3123	pMQ72-PA3123 R	tacccgtttttttgggctagcgaattcgagctcggtacc cCGCAGTGCTACATGAATACGC
PR917	PA5083	pMQ72-dguB F	TACCCGTTTTTTTGGGCTAGCGAATT CGAGCTCGGTACCCCCCTCGACTG GAGCACTCC
PR918	PA5083	pMQ71-dguB R	CCAAGCTTGCATGCCTGCAGGTCGA CTCTAGAGGATCCCCtcaGCCCCTGG CCGC
PR978	pBAD24- PA5339 F	PA5339	NNGCTCTTCNTTCATGACCAAGACC GTTATCCAC
PR979	pBAD24- PA5339 R	PA5339	NNGCTCTTCNTTACTCGAGGACGAC GATGG
PR976	pBAD24- PA3123 F	PA3123	NNGCTCTTCNTTCATGAGCGATGAC ATCCAGCGTTA

PR977	pBAD24- PA3123 R	PA3123	NNGCTCTTCNTTAGCCCTCGCCGAC CCA
PR503	pBAD24- PA0814 F	PA0814	NNGCTCTTCNTTCATGCAGACATCC CCCGCTCCG
PR504	pBAD24- PA0814 R	PA0814	NNGCTCTTCNTTATCATGGCCGCAC CGCCGC
PR1020	pBAD24- PA1568 F	PA1568	NNGCTCTTCNTTCATGCATATCGAA CGTTTCGAAGT
PR1021	pBAD24- PA1568 R	PA1568	NNGCTCTTCNTTATCACTGCGGGCG GGC
PR1022	pBAD24- PA5303 F	PA5303	NNGCTCTTCNTTCATGCCCATCCAG CGCCAG
PR1023	pBAD24- PA5303 R	PA5303	NNGCTCTTCNTTATCAGGGCAGCGC AGCGAC
PR729	pBAD-PA5083 F	PA5083	NNGCTCTTCNTTCATGGAACCGACC CGTATCG
PR730	pBAD-PA5083 R	PA5083	NNGCTCTTCNTTATCAGCCCCTGGC CGCCAC

Table S1: List of primers used in this study

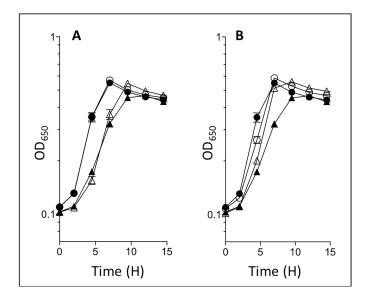
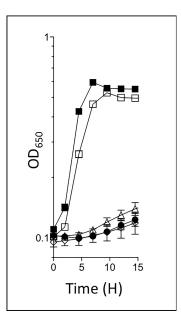
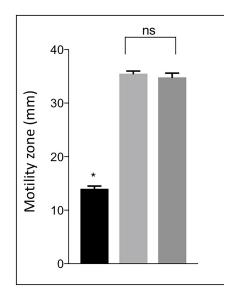


Figure S1: Only PA5339::Tn mutants have a growth defect under conditions tested. Mutants were streaked from frozen glycerol stocks to LB agar. Single colonies were patched in triplicate to LB agar and incubated four hours at 37°C. The LB agar plate was replica printed to NCE/glucose (11 mM) and NCE/glucose/isoleucine (0.3 mM). Only PW9994 and PW9995 (PA5339:Tn) strains had a growth defect on NCE/glucose, which was corrected with the addition of isoleucine.


Figure S2: Sensitivity to serine differs among organisms lacking RidA. All organisms were grown in 20 mM glycerol +/- the addition of 3 mM serine and 0.2% arabinose (to induce *ilvA219* in *E. coli* chromosomal construct). The addition of 3 mM serine caused varying growth defects, suggesting 2AA sensitivity (from serine) differs in each organism. Historically, in minimal medium, 5 mM serine has been used to cause a growth defect in *S. enterica ridA* and *E. coli ilvA219* $\Delta ridA \Delta tdcF$ mutants (1). These data show, in minimal medium with glycerol, 3 mM serine completely inhibits growth of a *P. aeruginosa* _{PA}ridA:Tn mutant (A), partially inhibits growth of the *S. enterica ridA*::MudJ mutant (B), and does not inhibit growth of the *E. coli ilvA219* $\Delta tdcF$ mutant (C).

- A) *P. aeruginosa* _{PA}ridA:Tn mutants: circles--DM15943 (pEmpty vector) glycerol only, squares--DM15944 (pPA5339) glycerol only, triangles--DM15943 glycerol/serine, inverted triangles--DM15944 glycerol/serine
- B) *S. enterica:* circle--wildtype in glycerol, squares--*ridA*::MudJ in glycerol, triangles--wildtype in glycerol/serine, inverted triangles--*ridA*::MudJ in glycerol/serine.
- C) *E. coli*: circles--DM14931 (ilvA219) in glycerol, squares—DM15055 (*ilvA219* $\Delta ridA \Delta tdcF$), triangles-- DM14931 in glycerol/serine, inverted triangles—DM15055 in glycerol/serine.


Figure S3: Growth of a *PAridA*::Tn mutant is improved by threonine but not glycine.

A) Growth in minimal medium with 11 mM glucose (closed symbols), PAO1/WT (circles), PW9994 $_{PA}ridA$::Tn mutant (triangles), and with exogenous 1 mM glycine (open symbols). C) Growth in minimal medium with 11 mM glucose (closed symbols), PAO1/WT (circles), PW9994 $_{PA}ridA$::Tn mutant (triangles), and with exogenous 1 mM threonine (open symbols). The error bars represent standard errors of the mean from three biological replicates.

Figure S4: Growth of a *PAridA*::Tn mutant is restored by *SEridA* or *PAridA* in trans.

Expression of *_{SE}ridA* or *_{PA}ridA* in trans, DM16328 (squares) or DM15944 (open square), respectively, supported growth of the *_{PA}ridA*::Tn mutant in minimal medium with 11 mM glucose and 5 mM serine. The empty vector control in DM15943 (circles), or expression of Rid family members, PA5083 in DM16443 (open diamonds), or PA3123 in DM16327 (open triangles) did not support growth of the *_{PA}ridA*::Tn mutant. The error bars represent standard errors of the mean from three biological replicates.

Figure S5: Motility of PAO1 and the complemented *PAridA*::Tn mutant are similar.

Diameter of motility was measured after 24 hours in minimal NCE glucose medium. There is a significant difference in motility diameter of DM15943 (black bar) as compared to DM15944 or PAO1. There is no significant difference between the motility of DM15944 ($_{PA}ridA$::Tn/ $_{PA}ridA$) and PAO1. Significance was determined by Students test and a P values <0.005.

Literature Cited.

1. Borchert AJ, Downs DM. 2017. The Response to 2-Aminoacrylate Differs in Escherichia coli and Salmonella enterica, despite Shared Metabolic Components. J Bacteriol 199.