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Materials and Methods 

Human datasets 
Analysis of genome-wide mutation burden was performed on six independent 

datasets. The ideal dataset consists of high diversity, low-admixture, unrelated 
individuals from a single randomly mating population. We used three high quality 
European whole genome sequencing (WGS) datasets for this study - Genome of the 
Netherlands (GoNL)(15), Alzheimer’s Disease Neuroimaging Initiative (ADNI), and 
Dutch controls from Project MinE, a amyotrophic lateral sclerosis study. We also 
analyzed data from three non-European populations from the 1000 genomes Phase I 
project, one African population (YRI) and two East Asian populations (JPT, CHS)(18).  

The GoNL dataset (http://www.nlgenome.nl/) consists of phased whole genome-
sequences of 250 Dutch parent-child trios sequenced at ~13x average coverage. Sequence 
data from the parent generation was used for this study.  

The ADNI dataset (http://adni.loni.usc.edu/) consists of 808 whole genome-
sequences sequenced at ~30x average coverage. The ADNI was launched in 2003 as a 
public-private partnership, led by Principal Investigator Michael W. Weiner, MD 
(Department of Radiology, UCSF School of Medicine, San Francisco, CA, USA). The 
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD). The largest cohort has 
European ancestry but the dataset also includes samples of other ancestry. Only 
individuals of European ancestry were selected for this analysis.  

Project MinE (http://www.projectmine.com) consists of ~4500 samples from 
different ancestries, and includes 1806 samples of Dutch ancestry post quality control, 
with 617 controls and 1189 cases. The average coverage is ~40x for this dataset. Only 
Dutch controls were analyzed for this study.  

The 1000 Genomes Phase I Project (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/) 
provides sequence data for 1,092 individuals. We selected 3 different non-European 
populations for our analysis - 88 sub-Saharan Africans (YRI), 89 Japanese samples from 
Tokyo Japan (JPT), and 100 Southern Han Chinese samples (CHS). The Yoruba 
population is particularly suited to our analysis, as it has not gone through the out-of-
Africa bottleneck, and is therefore, high diversity. Moreover, African populations are 
undergoing the second demographic transition currently; therefore, selection due to pre-
reproductive mortality is not as relaxed in these populations as it is in industrialized 
European populations that already underwent the second demographic transition (28, 29). 
For the 1000 Genomes cohorts, only SNPs that were discovered using Exome sequencing 
were used for our analysis.  

For all analyses, ancestral alleles were distinguished from derived alleles based on 
EPO multiple-sequence alignments (available from the 1000 Genomes project). Only 
SNPs with high confidence on predicted ancestral alleles were analyzed. 
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Fly datasets  
Analysis of genome-wide mutation burden was also performed on two independent 

fly datasets. We analyzed whole-genome polymorphism data for two D. melanogaster 
populations – African flies from Phase 3 of the Drosophila Population Genomics Project 
(DPGP3)(16) and North American flies from Freeze 2.0 of the The Drosophila Genetic 
Reference Panel (DGRP)(19, 30).  Polymorphism sequence data for both datasets was 
obtained in the format of pseudochromosome assemblies from the Drosophila Genome 
Nexus website (http://johnpool.net/genomes.html)(16).  The same two-round mapping 
and SNP calling strategy was applied to both DPGP3 and DGRP datasets provided by the 
Drosophila Genome Nexus project (16).This makes variant calling methodology 
consistent between DGRP and DPGP3 datasets. However Drosophila Genome Nexus 
variant calls for the DGRP dataset (16) may differ from the SNPs available from The 
Drosophila Genetic Reference Panel website (http://dgrp2.gnets.ncsu.edu)(30). 

While DPGP3 dataset consists of haploid embryo genomes (16), DGRP provides 
genomic sequences of inbred lines (19). Residual tracts of heterozygosity present in the 
genomes of the DGRP dataset after 20 generations of full-sib mating are already masked 
in files with DGRP pseudochromosome assemblies available on the Drosophila Genome 
Nexus website. Each genome in the DGRP dataset has only one sequence for each 
chromosome arm restricting analysis to homozygous regions of the genome. Thus 
DPGP3 genomes are truly haploid, while DGRP genomes could be considered effectively 
haploid.  

Genomes belonging to DPGP3 and DGRP datasets have different fractions of bases 
masked due to true heterozygosity, missing data, pseudoheterozygosity or other technical 
artifacts (16). On average DGRP genomes have 22.57 % of the bases masked (with the 
median being equal to 16.11%), while DPGP3 genomes have only 6.91 % of the bases 
masked  (the median = 6.87%)(Data file S1). 

For D. melanogaster, the DPGP3 population has low levels of admixture and less 
variation in genomic coverage between samples as compared to the DGRP dataset. 
Another strong point of the DPGP3 dataset is high level of genetic diversity that in 
contrast to North-American DGRP population has not been affected by out-of-Africa 
bottleneck (31).  
 
 
Human data analysis 
Sample quality control 

  Outliers were detected and removed based on inbreeding coefficient, ethnicity 
using principal component analysis (PCA), contamination, and relatedness. Total 
numbers of singletons and SNPs were computed to detect and remove outliers that were 
more than 3 standard deviations from the genome wide mean for the dataset (direction of 
results was not affected by outlier removal). The number of samples removed in each 
filtering step for all 6 datasets is listed in Table S9. 

The GoNL Consortium sequenced 500 unrelated individuals from 250 trios. The 
consortium removed two samples after quality control due to contamination. We further 
detected outlier samples based on number of singletons per genome. Only 3 individuals 
were flagged as outliers. 495 samples were retained for further population genetic 
analysis. 
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The ADNI study sequenced 808 individuals. Plink was used to run identity-by-
descent analysis and 5 related pairs were detected (Pi_hat > 0.4). One sample for each 
related pair was chosen randomly and removed. The remaining 803 individuals consisted 
of both samples with self-reported European and non-European ancestry (2 
Indian/Alaskan, 10 Asian, 27 African, 9 multi-ethnic, 2 unknown, 2 Hawaiian, and 751 
European). We performed principal component analysis on the 803 unrelated individuals 
using EIGENSTRAT (32) to detect outliers (non-European samples). After outlier 
removal (5 outlier removal iterations on 10 principal components, with outliers defined as 
outside 6 standard deviations), we retained 744 of the 751 European samples for further 
analysis. Finally, we detected and removed outliers based on the numbers of singletons 
and SNPs per genome. Thirty individuals were flagged as outliers and removed. 714 
samples were retained for further population genetic analysis. 

Project MinE includes 1806 Dutch samples post quality control, with 617 controls 
and 1189 cases. We further removed 8 related samples (twins) from the controls. Finally, 
we detected 4 outliers by genome-wide singletons, and 4 additional outliers by genome-
wide SNPs. We retained 601 samples for further population genetic analysis.  

The 1000 genomes project has an unexpectedly high level of inbreeding and 
relatedness (33). We chose proposed subsets of unrelated and outbred individuals using 
Fsuite (33) for our analysis. 
 
Variant quality control  

Single nucleotide polymorphisms (SNPs) residing within protein-coding genes were 
the only type of genetic variation considered for the analysis of the human datasets. All 
SNPs were called against the GRCh37 human reference assembly. Only bi-allelic SNPs 
were analyzed. We used various quality control measures to remove putative false 
positives before performing population genetic analyses (Table S8). For all six datasets, 
only SNPs with no missing data were analyzed, and SNPs out of Hardy-Weinberg 
equilibrium (P-value < 10-6) were removed. Genetic variation in all human datasets 
except Project MinE was called using the Broad Institute’s GATK pipeline (34)(35). We 
only considered SNPs that passed GATK’s Variant Quality Score Recalibration (VQSR) 
filter for further analysis.  

In the GoNL dataset, the average sequencing coverage is ~13x. To remove poorly 
sequenced genomic regions from consideration, all SNPs with less than half or greater 
than twice the mean coverage were flagged as the inaccessible genome (15) and removed 
from further analysis.  

In the ADNI dataset, the average sequencing coverage is ~30x. For this dataset, as 
suggested by the GATK group, we removed poorly sequenced genomic regions by 
treating all genotypes with low quality (GQ < 20) as missing.  

To obtain access to genetic variation in African and other non-European 
populations, we downloaded release 3 of the 1000 genomes Phase 1 project. No 
additional filtering on coverage or genotype quality was performed on SNPs in the 1000 
genomes populations, as the VCF files do not provide any sequencing depth or quality 
information.  

In the MinE dataset, the average sequencing coverage is ~40x. Genetic variation in 
the MinE dataset was called using Illumina’s Isaac pipeline (36), which generates 
sample-level gVCF files. These files were merged using Illumina’s agg tool to obtain 
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genetic variation across all samples. For each SNP, agg returns a PF variable describing 
the proportion of samples with a “PASS” variant at that genomic position. Sequencing 
depth (DP) and PF were binned by Ti/Tv and het/hom-non-ref ratio to determine quality 
control thresholds to eliminate putative false positives. SNPs that were “PASS” variants 
in only a small proportion of samples (PF < 0.6) or were in inaccessible parts of the 
genome (DP < 10x per sample or DP > 40x per sample) were removed from further 
analysis. We also removed all sites with QUAL < 30 and treated all genotypes with GQ < 
10 as missing.  
 
Variant annotation 

Functional consequences of genetic variants were annotated using Ensembl Variant 
Effect Predictor version 82. One transcript was chosen per variant using an ordered set of 
criteria (canonical status of transcript, APRIS isoform annotation, transcript support 
level, biotype of transcript with protein coding preferred, CCDS status of transcript, 
variant consequence rank in order of severity from more severe to less severe, and 
transcript or feature length with longer preferred). Alleles were classified as synonymous, 
missense (nonsynonymous), nonsense (stop gain mutations resulting in a premature stop 
codon leading to a shortened transcript, and stop loss mutations where at least one base of 
the terminator stop codon is changed resulting in an elongated transcript), and splice-
disrupting (splice acceptor mutations that change the 2 base region at the 3’ end of an 
intron and splice donor mutations that change the 2 base region at 5’ end of an intron). 
Loss-of-Function (LoF) alleles were defined as the joint set of nonsense and splice-
disrupting alleles. Any synonymous allele that is also within the splice site region (within 
1-3 bases of the exon or 3-8 bases of the intron) was removed from further analysis. Any 
transcripts marked for nonsense-mediated decay were also removed from further 
analysis.  

Mutation burden for each human was calculated as the number of derived alleles in 
the genome of a given human for each functional type of mutations. We calculated the 
mutation burden for singletons (Table 1) and for different derived allele frequency cutoffs 
(Table S2). 

 
Gene filters 

To focus our analysis only on truly deleterious protein-damaging mutations we 
discarded pseudogenes and genes belonging to taste receptor and olfactory receptor 
families, as it is likely that protein-damaging mutations in these rapidly evolving non-
essential genes will have only minor fitness effects. For this filtering step, we 
downloaded a list of genic positions and descriptions for the GRCh37 human reference 
assembly from Ensembl Biomart.  

To remove confounding effects of known long-range LD, we also removed the 
MHC region on chromosome 6 (28Mbp – 35Mbp), inversion on chromosome 8 (6 Mbps 
– 15 Mbps) and long LD stretch on chromosome 17 (40 Mbps – 45 Mbps) from all 
analyses.  

The number of SNPs and singletons left after above-mentioned filtering steps are 
shown in Table S8. 
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Analysis of the crucial genome 
We used genic selection coefficients estimated using Exome sequencing data 

from 60,706 individuals to determine a set of genes with crucial functions (37). Briefly, 
selection coefficients against heterozygous loss of gene function were estimated using 
rare protein truncating variants (PTVs), and Bayesian estimates were obtained for 
individual genes. Genes found under strongest selection were shown to be enriched in 
embryonic lethal mouse knockouts, putatively cell-essential genes inferred from human 
tumor cells, Mendelian disease genes, and regulators of transcription (37). We used this 
set of 1599 crucial genes with heterozygous selection coefficients exceeding 0.2 for our 
crucial genome analysis (Fig. 2b, Fig. S8, Table S22).  
 When only their crucial genome was considered, humans (Figs. 2B, S8) showed 
an underdispersion in their missense mutation burden. In contrast, synonymous alleles 
remained overdispersed, though to a lesser degree. This is likely because overdispersion 
scales not only with selection strength, but also with the number of alleles. The effect of 
confounders increases variance proportionally to the number of alleles, as every pair of 
alleles contributes to the excess positive LD (the excess variance is a sum of pairwise 
LDs, see pg. 14 of supplement for further details). 

Given that synonymous alleles are equal or fewer in number than missense alleles 
in human genes, we cannot explicitly obtain P-values by resampling. However, analysis 
in synonymous alleles at the same allele frequency does not show a signal of negative 
LD, but rather a signal of weak positive LD as discussed above. We also obtained P-
values for σ2/VA by permuting functional consequences across variants (Table S22). 
 
Analysis of simple insertions and deletions 

 A set of high quality simple insertions and deletions (indels) were generated as 
part of the GoNL structural variants (SV) dataset (38). Briefly, 250 parent-offspring 
families (769 individuals) from the Dutch population were used to generate a high-quality 
SV-integrated, haplotype-resolved reference panel, using 12 different variant detection 
tools representing 4 algorithmic approaches (gapped alignment and split-read mapping, 
discordant read pair, read depth and de novo genome assembly). The results from the 
different detection tools were combined into a consensus set containing 9 different forms 
of SVs and indels. The GoNL study further selected a representative set of variant 
candidates for validation using PCR amplification of breakpoint junctions, and 
subsequent sequencing of the PCR products via Sanger or MiSeq sequencing (98% 
confirmation rate for simple indels was observed)(38).  

We obtained access to resulting genotype calls for 646,011 short insertions (1–
20 bp) and 1,093,289 short deletions (1–20 bp). Before performing population genetic 
analyses, we further removed variants out of Hardy-Weinberg equilibrium (p < 10-3), and 
only kept bi-allelic variants with a low proportion of missing data (only variants with 
greater than 99% genotypes present were retained). Functional consequences of simple 
indels were annotated using Ensembl Variant Effect Predictor version 82. Analogously to 
SNPs, we removed known genomic regions with long-range LD for this analysis as well, 
and attempted to focus our analysis only on truly deleterious protein-damaging indels by 
discarding pseudogenes and genes belonging to taste receptor and olfactory receptor 
families. We report results for the joint mutation burden category of LoF SNPs and 
frameshift indels (Table S19). P-values were computed by resampling coding 
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synonymous SNPs and intronic indels at matching allele frequency as LoF SNPs and 
frameshift indels respectively.  
 
 
Fly data analysis  
Reference genome and annotation data 

D. melanogaster reference genome sequence and annotation data were 
downloaded from the UCSC Genome Browser site (https://genome.ucsc.edu)(39). We 
used dm3 version of D. melanogaster genome assembly from the UCSC database 
corresponding to BDGP release 5 of D. melanogaster genome reference sequence.  Our 
analysis is based on FlyBase v. 5.12 protein-coding gene annotations for D. melanogaster 
genome (40).  Only canonical isoforms of the genes were considered in the analysis. 
Genes residing outside of 5 D. melanogaster euchromatic chromosome arms (2L, 2R, 3L, 
3R and X) were not taken into consideration. 
 
Gene filtering 
Annotation errors 

To focus our analysis only on truly deleterious protein-damaging mutations we 
discarded gene models with putative annotation errors. A total of 48 gene models were 
excluded after this step. 

Genes were excluded from further analysis if any of the following conditions were 
true: 

1) If the CDS carried a premature termination codon in the reference genome 
assembly. 

2) If the CDS was lacking canonical termination stop codon. 
3) If the CDS length was not a multiple of three. 

Chemoreceptor genes 
We additionally excluded from all analyses sequences belonging to chemoreceptor 

gene and odorant-binding protein gene families due to the fact that these genes have 
previously been shown to undergo frequent pseudogenization (41, 42) and are enriched 
for nonsense alleles (30, 43). These two large gene families include multiple rapidly 
evolving paralogs that are frequently lost in the course of evolution (44). 

Thus it is likely that protein-damaging mutations in these rapidly evolving non-
essential genes will have only minor fitness effects. Lists of genes constituting families of 
chemoreceptors and odorant-binding proteins were downloaded from FlyBase 
(http://flybase.org). There were a total of 121 and 52 genes belonging to D. melanogaster 
chemoreceptor and odorant binding protein gene families respectively.  flyBaseToCG.txt 
table available on the UCSC site was used to map CGID gene symbols to transcript IDs. 
Additional 164 gene models were removed after this step. 
Inversions 

Polymorphic inversions have been previously shown to account for the majority of 
population structure in fly populations (30, 45). Assuming that population structure is 
expected to lead to overdispersion in mutation burden we separately analyzed SNPs 
residing in inversion-free regions of D. melanogaster genome. For this purpose we 
retrieved genomic coordinates of the inversions known to segregate in fly populations 
from published studies (30, 45) and obtained a list of genes that do not overlap with 
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known inversions. The original number of FlyBase canonical gene models and the 
numbers of gene models left after above-mentioned filtering steps are shown in Table 
S10. 
 
Sample quality control 

For both fly datasets we detected outlier samples with extremely large or small 
numbers of SNPs or extremely large or small numbers of genomic bases masked to N.  A 
sample was flagged as an outlier if the number of SNPs or the number of masked 
genomic bases in a sample was more than 3 standard deviations away from its 
corresponding dataset mean. We identified 7 and 6 outliers in the DGRP and DPGP3 
datasets respectively and excluded them from further analysis. 

Sample ZI382 belonging to the DPGP3 dataset was removed from consideration due 
to chromosome X missing from the assembly. We additionally removed from the analysis 
all samples from the DGRP dataset that had > 20% of the genomic sequence masked. 
After these steps there were 191 out of 197 flies left in the DPGP3 dataset and 125 out of 
205 flies left in the DGRP dataset.  The samples retained for the analysis are listed in 
Data File S1. 
 
Minor variant identification, variant annotation and quality control 

Single nucleotide polymorphisms residing within protein-coding genes were the 
only type of genetic variation considered for the analysis of the fly datasets. Specifically 
we analyzed SNPs falling within protein coding regions of the genes and splice site 
SNPs. A consensus sequence for the coding portion of each gene was constructed 
separately for two populations by picking the nucleotide that occurs most frequently at 
each position. After that we scanned resulting consensus CDS sequences in a codon-wise 
manner and discarded from the analysis codons containing ambiguous nucleotides (N) in 
the consensus. Analogously we constructed consensus sequences for each splice site of 
each gene.  Only splice sites with canonical dinucleotides (GT for donor and AG for 
acceptor sites) in the consensus and in the reference D. melanogaster genome were 
retained for further analysis. 

We searched for segregating sites in each dataset independently and calculated allele 
frequencies for all available alleles at each site. We excluded from the analysis SNPs in 
codons carrying more than one SNP at least in one fly as the effects of such SNPs could 
not be evaluated independently and such cases are likely to be enriched with double 
mutations (Table S11).  Analogously splice sites carrying more than one SNP at least in 
one fly were removed from the dataset (Table S12). SNPs were classified as 
synonymous, missense (nonsynonymous), nonsense (stop gain mutations resulting in a 
premature stop codon leading to a shortened transcript) or splice-disrupting according to 
Flybase annotation of D. melanogaster genome with respect to the major (consensus) 
variant. Stop loss mutations were not included in nonsense alleles for fly genomes as they 
are not expected to be under strong negative selection (43). All mutations falling in splice 
sites were labeled as splice-disrupting except for the SNPs in donor splice sites resulting 
in a weak variant of donor site (GT-> GC). Loss-of-Function (LoF) alleles were defined 
as the joint set of nonsense and splice-disrupting alleles. 

Mutation burden for each fly was calculated as the number of minor alleles in the 
genome of a given fly for each functional type of mutations. We calculated the mutation 
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burden for all minor alleles (with minor allele frequency < 50%) and for different minor 
allele frequency cutoffs. Missing genotypes are expected to inflate variance of the 
mutation burden, thus only sites without missing data were included in the calculation of 
the mutation burden in the DPGP3 dataset. We used all available segregating sites when 
calculating the mutation burden in the DGRP dataset as only 11% of the segregating 
codon sites and 13% of the segregating splice sites were left after exclusion of the sites 
with missing genotypes due to a large fraction of the genomic bases masked from 
individual DGRP genomes (Table S11, Table S12). 

Due to high levels of polymorphism in the DPGP3 population a significant fraction 
of codons have more than 2 alleles (8% of the variable codons are multi-allelic in the 
DPGP3 dataset). To account for the effects of presence of multi-allelic sites on our results 
we computed mutational burden for each functional class of alleles (nonsense, 
nonsynonymous, synonymous) after discarding codons with more than one minor allele 
belonging to a given functional class (Table S13). Analogously multi-allelic splice sites 
were also removed at this step (Table S13). The direction of the effect remained 
unchanged after exclusion of multi-allelic sites. 
 
Analysis of the essential genome 

The list of essential D. melanogaster genes was downloaded from the DEG 
database (http://tubic.tju.edu.cn/deg/)(46). There are 339 genes listed as essential in D. 
melanogaster in the DEG database. We were able to unambiguosly map 267 genes out of 
this list to the genes from the filtered list we used in the analysis. We calculated σ2/VA for 
the number of missense and synonymous alleles residing within the essential genes in 
both D. melanogaster datasets. All missense and synonymous alleles with minor allele 
frequency up to 50% were considered for this analysis. Low numbers of LoF alleles in 
the essential genes do not allow separate analysis of this type of variant (there are 6 and 3 
LoF alleles in the essential genes in the DPGP3 and DGRP datasets respectively). 
Missense alleles residing within the essential genes show underdispersion in the DPGP3 
dataset (σ2/VA = 0.947, Fig. S9A) but not in the DGRP dataset (σ2/VA = 2.729). 

To assess the significance of the underdispersion signal for the missense alleles 
from essential genes in the DPGP3 dataset we resampled synonymous and missense 
alleles at the population frequencies matching the frequency distribution of the missense 
alleles residing within the essential genes and calculated σ2/VA in the resampled datasets. 
In addition we separately resampled synonymous alleles residing within the essential 
genes. Missense alleles residing in the essential genes are significantly 
underdispersed compared to the resampled distributions of synonymous alleles randomly 
picked in the genome (p = 0.002) as well as compared to the resampled distributions of 
synonymous alleles randomly picked from the essential genes (p < 10-3). 
In addition, only 20.9% of the resampled missense datasets show σ2/VA less than or equal 
to the corresponding ratio for the missense alleles residing within the essential genes (Fig. 
S9B). 
            We realized that the resampled sets of synonymous alleles picked from the 
essential genes show overdispersion as compared to the resampled sets of synonymous 
alleles with the matching population frequencies picked from the random genomic 
locations (Fig. S9B). As long as there are only 267 essential genes in the dataset the 
average physical distance between SNPs restricted to the essential genes is expected to be 
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much smaller as compared to SNPs chosen from random genomic positions as many 
variants fall into the same genes, and this in turn is supposed to lead to stronger LD 
between such SNPs and overdispersion in the mutation burden for such alleles. To 
control for the effects of physical linkage between SNPs from the essential genes we 
generated 1000 random sets of synonymous and missense SNPs restricting the maximum 
number of genes in each set to 400. Indeed, the distribution of σ2/VA in the resampled 
synonymous datasets obtained this way is much closer to the corresponding distribution 
in the resampled datasets of the synonymous alleles restricted to the essential genes (Fig. 
S9C). The extent of underdispersion for missense alleles from the essential genes in the 
DPGP3 population is even more pronounced when compared to the resampled datasets of 
synonymous (p < 10-3) and missense (p = 0.076) alleles if the gene number is controlled 
for (Fig. S9C). 
 
dN/dS analysis 

We obtained dN/dS values for D. melanogaster genes possessing only a single 
ortholog in the melanogaster subgroup from the published study (47) available at 
ftp://ftp.flybase.net/genomes/12_species_analysis/clark_eisen/paml. This dataset 
contained dN/dS values for 8510 genes, 7888 out of these genes could be unambiguously 
mapped to the genes from the filtered list we used in our study. Single dN/dS ratio 
estimates for each gene from model M0 were used in the subsequent analyses. Genes 
with total tree length for dS > 4 or values of dN/dS > 0.7 were excluded from further 
consideration leaving a total of 7836 genes. 

Remaining genes were subdivided into five equal-sized bins according to the 
dN/dS ratio where bin 1 contains the most slowly evolving genes and bin 5 contains the 
most rapidly evolving genes. The median values of dN/dS for the bins 1-5 are as follows: 
0.018, 0.041, 0.063, 0.097, and 0.184. σ2/VA for the number of common LoF, missense 
and synonymous alleles was computed separately for each bin (Table S20). Missense 
alleles residing within the most slowly evolving genes (dN/dS bin 1) show 
underdispersion (σ2/VA = 0.98) in the DPGP3 dataset, which is in line with the 
underdispersion of the missense alleles in the essential D. melanogaster genes in this 
dataset. LoF alleles residing within relatively slowly evolving genes are underdispersed 
in both fly datasets (dN/dS bins 1-3 in the DPGP3 dataset and dN/dS bins 1-2 in the 
DGRP dataset). 

More generally σ2/VA for the number of LoF and missense alleles tends to 
increase with the relaxation of selective constraint on a gene in both fly datasets while 
synonymous alleles show no such tendency (Table S20). However this trend could be 
attributed not only to epistatic interactions between deleterious alleles but also to the 
increase in the mean number of the deleterious alleles occurring with the increasing 
dN/dS ratio. 
  To explicitly control for the mean number of alleles as well as for allele 
frequencies we resampled missense alleles in dN/dS bins 2,3,4,5 and synonymous alleles 
in dN/dS bins 1,2,3,4,5 at the population frequencies matching the frequency distribution 
of the missense alleles in the most conserved dN/dS bin 1 (Fig. S18). We calculated 
median values and 95% confidence intervals for σ2/VA in 1000 resamplings for each bin 
of dN/dS. This analysis was performed separately for resampled synonymous and 
missense alleles. 
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After controlling for the allele frequencies, σ2/VA for the number of missense 
alleles shows an obvious decrease with the increase in the strength of purifying selection 
in both fly datasets while no similar trend was observed for synonymous alleles (Fig. 
S18). The dependency of the variance of the number of missense alleles on the degree of 
a gene’s evolutionary constraint in the absence of such dependency for synonymous 
alleles points to selective forces as the main drivers of the signal. 
 
 
Computing variance-based estimator of net LD 

For each individual in a population of size 𝑁𝑁, 𝑋𝑖 is a discrete random variable that 
represents the number of derived alleles present at locus 𝑟𝑟 and can take values 0, 1 or 2. 
The mutation burden for individual 𝑘 with 𝐿 polymorphic loci is defined as, 

𝐵𝐵𝑘 = �𝑋𝑖

𝐿

𝑖=1

 

 Under multiplicative selection, the variance of the mutations burden 𝜎2 is equal to 
the additive variance 𝑉𝐴 computed as ∑ 2𝑝𝑖𝑖 (1 − 𝑝𝑖) for all loci 𝑟𝑟 with mutant allele 
frequency 𝑝𝑖 in the genome (10). Note that 𝑉𝐴 is also mathematically equivalent to the 
genome-wide nucleotide diversity π (48). For the mutation burden distribution,  
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For a diploid population, 
 

𝑁𝑁𝐵𝐵𝑏𝑏 𝐿𝐷 =  𝜎2 − 𝑉𝐴 = 𝑉𝐴𝑅 ��𝑋𝑖
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In the case of independent loci, or when negative disequilibrium exactly cancels out 
positive disequilibrium in a population, 
 

𝑉𝐴𝑅 ��𝑋𝑖

𝐿

𝑖=1

� = � 𝑉𝐴𝑅(𝑋𝑖
𝐿

𝑖=1
) 

 
𝑁𝑁𝐵𝐵𝑏𝑏 𝐿𝐷 =  𝜎2 − 𝑉𝐴 = 2�𝐶𝐶𝑂𝑉(𝑋𝑖,

𝑖,𝑗

𝑋𝑗) = 4�𝐷𝑖,𝑗
𝑖,𝑗

=  0 

14 
 



 
 

 
Genome-wide net LD for each dataset was computed using scripts written in the 

R programming language. Variance estimations were computed on 𝑋𝑖 matrices using the 
matrixStats CRAN package. Net LD is normalized in two ways: per pair of derived 
alleles (divided by the square of the mean mutation burden 𝜇) and per pair of loci (Table 
1). This allows for comparison between different functional classes of variants (mutation 
burden for synonymous and missense alleles has higher 𝜇 than mutation burden for LoF 
alleles).  

For our primary human (GoNL, ADNI, MinE) and fly (DPGP3) datasets, the 
distribution of rare LoF alleles is underdispersed (Table 1); nonsense alleles in the MinE 
dataset, if considered separately, are the exception, although underdispersion was also 
observed for stop gain alleles in this dataset at a slightly higher allele frequency threshold 
(Table S2).  

One-sided P-values for σ2/VA were obtained by permuting functional 
consequences across variants (1000 permutations) for each human dataset (Table S1). A 
joint P-value for all human datasets was computed by meta-analysis using Stouffer’s 
method weighted by each dataset’s sample size (49).  

One-sided P-values for σ2/VA of LoF alleles in both human and fruit fly datasets 
were also obtained by resampling synonymous alleles at matched allele frequency in each 
dataset (Fig. 3). For each LoF allele, a matching synonymous allele at the same allele 
frequency was picked to generate a set of synonymous alleles with the same 𝜇 as the LoF 
alleles in the dataset. σ2/VA was computed on the set of resampled synonymous alleles. 
This process was repeated 1000 times to generate an empirical null distribution for σ2/VA 
for each dataset. A joint P-value for all human datasets and all fly datasets respectively 
was computed by meta-analysis using Stouffer’s method weighted by each dataset’s 
sample size (49). Analogously we also resampled nonsynonymous alleles at matched 
allele frequencies as LoF alleles for each dataset and obtained a σ2/VA distribution for the 
sets of resampled nonsynonymous alleles (Fig. 3). 

If the p-value for a variant type in a dataset was less than 0.001 by permutation or 
resampling, we used p = 0.001 as its value for the meta-analysis. 

By meta-analysis, the underdispersion signal in rare LoF alleles is more significant 
in flies compared to humans (Fig. 3) which may be due to weaker recombination in flies 
compared to humans (50, 51). Recombination opposes the reduction in genetic variance 
caused by negative LD. Also, human populations have recently experienced relaxed 
selection (28, 29). Without selection, recombination would rapidly destroy linkage 
disequilibrium between deleterious alleles.  

Furthermore, through regression analysis and resampling experiments, we showed 
that the underdispersion signal persists after correcting for potential confounders of 
population structure and batch processing (Table S5), variable coverage across the 
genome (Table S18), and that it is not driven by a small set of outliers (Table S17).  
 
 
Computing 𝐷𝑖,𝑗 based estimator of net LD 

In the GoNL dataset, Plink was used to compute pairwise correlation coefficient 𝐵𝐵2 
between all pairs of loci for each functionally annotated class of variants. The 𝐵𝐵𝑖,𝑗2 values 
for each pair of SNPs 𝑟𝑟 and 𝑗 were used to compute 𝐷𝑖,𝑗 values using the formula, 
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𝐵𝐵𝑖,𝑗2 =
𝐷𝑖,𝑗2

𝑝𝐴𝑝𝑎𝑝𝐵𝑝𝑏
 

 
where 𝑝𝐴 and 𝑝𝑎 are the major and minor allele frequencies respectively at 

polymorphic locus 𝑟𝑟 and 𝑝𝐵 and 𝑝𝑏 are the major and minor allele frequencies 
respectively at polymorphic locus 𝑗. 

We summed 𝐷𝑖,𝑗 values for each intra-chromosomal pair of SNPs and each inter-
chromosomal pair of SNPs to partition net LD by linkage (Table S6). We also summed 
𝐷𝑖,𝑗 values by chromosome for every intra-chromosomal pair of SNPs on that 
chromosome (Table S7). Finally, we plotted net LD binned by physical distance between 
pairs of SNPs (Fig. S6, Fig. S7).  

 
 

Identifying positive disequilibria sources in rare mutation burden 
Even for a set of independent alleles, overdispersion in the mutation burden is 

observed if genome-wide positive LD is present due to population structure, which can 
also be seen as deviations from Hardy-Weinberg equilibrium (Wahlund effect) for the 
entire genome (17, 52). Overdispersion may also be caused by DNA samples sequenced 
or processed in different batches, which can introduce heterogeneity with a clustering 
effect similar to that of geographic structure. 

We computed Pearson’s r in rare mutation burden between spouses in the GoNL 
dataset (r = 0.31). We removed all samples that were not in a spousal pair (5 samples) for 
this analysis. Rare mutation burden was computed using coding synonymous singletons. 
All remaining GoNL samples were divided into 3 broad geographic regions (north, 
central, south)(15) and average rare mutation burden (𝜇) was computed for each 
subpopulation (Fig. S3, 𝜇𝑛𝑜𝑟𝑡ℎ = 26.88, 𝜇𝑐𝑒𝑛𝑡𝑟𝑎𝑙 = 31.98, 𝜇𝑠𝑜𝑢𝑡ℎ = 33.74). We 
observed that rare mutation burden for synonymous alleles decreases in a south-to-north 
gradient. This is consistent with the pattern observed for common variants in the GoNL 
dataset, which can be explained by sequential bottlenecks as the population moved 
northwards (15). We also observed a positive correlation between rare mutation burden 
and the first principal component (Fig. S4). We conducted a multivariate regression 
analysis to study sources of overdispersion for the genome-wide rare mutation burden 
computed using synonymous singletons. Genome-wide mutation burden was regressed 
under the following model: 

 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛽𝛽0 + 𝛽𝛽1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 1+. . + 𝛽𝛽5𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 5 + 𝛽𝛽6𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ + 𝛽𝛽7𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

+ 𝛽𝛽8𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ +  𝛽𝛽9𝑃𝑃𝑃𝑃 1+. . + 𝛽𝛽19𝑃𝑃𝑃𝑃 10 

where 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ refers to the sequencing batch (our GoNL samples were sequenced 
in 5 batches), 𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵 refers to the geographic region where the sample originated (The 
Netherlands is divided into 3 broad regions - north, central, and south), and 𝑃𝑃𝐶𝐶 refers to 
principal component.  

Principal components in the GoNL dataset were computed using EIGENSTRAT 
(32). To perform PCA analysis, we removed SNPs with greater than 5% missing data, 
sites out of Hardy-Weinberg (P-value < 0.001), SNPs residing in the inaccessible genome 
of GoNL, and retained only common SNPs (minor allele frequency > 0.05). Before 
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computing principal components, we removed regions with long range LD (53), and 
performed two-step LD-pruning using PLINK to obtain a set of independent SNPs. In 
step one of LD pruning, we used a window of 200 SNPs with a step size of 5 and a VIF 
threshold of 1.03. In step two of LD pruning, we performed pairwise pruning using an r2 
threshold of 0.1. Table S4 lists the coefficients and P-values for all covariates of 
population and technical structure in the multivariate regression model. We repeated the 
regression analysis for missense alleles and LoF alleles (Tables S15, S16).  
 We regressed mutation burden at each locus 𝑋𝑖 under the same model as above. 
We used the residuals for burden at each locus to compute the residualized genome-wide 
mutation burden. We observed no correlation between the residualized burden and the 
first principal component (Fig. S5). We computed 𝜎2 and 𝑉𝐴 for the residualized 
mutation burden (Table S5). Positive disequilibria due to population structure and other 
sources of correlations between samples, such that sub-populations show different values 
of the mean mutation burden 𝜇, leads to overdispersion in the rare mutation burden 
(𝜎2 > 𝑉𝐴). Reduced overdispersion in the residualized mutation burden compared to the 
raw mutation burden shows that a proportion of the overdispersion can be explained by 
geographic and technical covariates in our regression model. 
 
 
Simulations for a finite population with realistic demography 

We used SLiM 2.0 (54) to conduct forward population genetics simulations with 
realistic demography. We ran 100 replicates each of African and European populations 
modeled as per the demography published in Tennessen et al (55). Each replicate was 
started with a population (N = 14474) that had been burned in for 40,000 generations, 
after which the Tennessen et al demography was applied as follows: 

 
1. Out of Africa bottleneck starting 2040 generations ago, shrinking European 
population size N to 1861. 
2. Second European bottleneck starting 920 generations ago shrinking N to 1032, 
followed immediately by exponential growth in Europeans at 0.307%. 
3. Explosive growth at 1.95% in Europeans and 1.66% in Africans starting 204 
generations ago. 
 

Africans (N = 11,754) and Europeans (N = 68,858) were sampled separately for 
mutation burden analysis. All simulations had a length of 1 Mb, mutation rate of 10-8 

per generation per base pair, and recombination rate of 10-5 per generation per base pair. 
The high recombination rate was chosen to simulate largely unlinked sites. Strength of 
selection acting on deleterious alleles was varied between -10-1, -10-2, -10-3, -10-4, and -
10-5. Alleles were assumed to be additive (h = 0.5).  

Mutation burden was computed on singletons for each selection coefficient, and 
σ2/VA was calculated in African and European samples separately (Fig. S10). Population 
structure leading to inbreeding (‘heterogeneous demography’) was modeled by 
combining the African and European samples together before performing mutation 
burden analysis (Fig. 2a).  

The generation at which each mutation arose was used to stratify alleles by age 
and the analysis was repeated in two separate age brackets (Fig. S11). We verified in 

17 
 



 
 

simulations that, although synonymous alleles may be older than LoF alleles at the same 
allele frequency, our statistic gives almost identical values for old and new alleles if 
analyzed separately (Fig. S11). Unsurprisingly, there is larger variance for older alleles 
but the effect is quantitatively almost negligible.   
  
 
Analytics for an infinite population with synergistic epistasis 

We used theoretical estimates derived by Charlesworth (13) for 𝜎2 and 𝜇 of the 
rare mutation burden in an infinite population under multiplicative and epistatic selection. 
These are reproduced below for 𝑉 = 𝜎2 and 𝜇 in the case where 𝑤(𝑥)   =  𝐵𝐵−𝛼𝑥−

1
2𝛽𝑥

2
 is 

the fitness function for an individual carrying 𝑥 mutations, with 𝛼 = ℎ𝑠 and 𝛽𝛽 = 2ℎ2𝑏𝑏, 
for selection coefficient (𝑠), dominance coefficient (ℎ) and pairwise epistasis coefficient 
(𝑏𝑏). Given the genomic deleterious mutation rate per generation 𝑈, 
 

𝜇 =
𝑈 − 𝑉(𝛼 − 𝛽𝛽𝑈)

𝛽𝛽𝑉
 

 
 𝑓(𝑉) = 𝑉3𝛽𝛽2 �1 + 𝑍

2
� + 𝑉2𝛽𝛽(1 + 𝛼 − 𝛽𝛽𝑈) − 𝑉(2𝛽𝛽𝑈 − 𝛼) − 𝑈 = 0 

 
where  𝑍 = 𝐸( 1

𝑟𝑖,𝑗+2ℎ𝑠
) and 𝐵𝐵𝑖,𝑗 =  𝐵𝐵𝐵𝐵𝑏𝑏𝑟𝑟𝑚𝑏𝑏𝑟𝑟𝐵𝐵𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝐵𝐵 𝑓𝐵𝐵𝐵𝐵𝑞𝐵𝐵𝐵𝐵𝐵𝐵𝑏𝑏𝑦 𝑏𝑏𝐵𝐵𝑏𝑏𝑤𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝑟𝑟𝑏𝑏𝐵𝐵𝑠 𝑟𝑟 𝑏𝑏𝐵𝐵𝐵𝐵 𝑗 

 
We solved these equations in Matlab for 𝐵𝐵𝑖,𝑗 = 0.5 (free recombination) and 

plotted σ2/VA (𝜇 ≈ 𝑉𝐴 for rare mutations) at the mutation-selection balance, under 
multiplicative selection (𝛽𝛽 = 0, Fig S1), and epistatic selection for a range of 𝛼 and 𝛽𝛽 
values (Fig. S2). We also note that the quadratic model is only one possible model of 
synergistic epistasis (another model, for example, is truncation selection) and we present 
Figure S2 to provide intuition rather than as a way to estimate parameters. 

Truncation selection represents the extreme mode of synergistic epistasis (4) and 
leads to the smallest 𝜌, where 𝜌 describes the factor reduction in the variance of the 
mutation burden due to dependencies between independent alleles. For example, if 50% 
of individuals with above average numbers of mutations would produce no offspring, 
𝜌 would be 0.36 under a normal approximation if the average genomic number of 
mutations is high. Because free recombination halves LD within a single generation, at 
the mutation-selection equilibrium, we should expect 𝜎2 = 𝑉𝐴 (2 − 𝜌⁄ ), where 𝑉𝐴 is the 
variance of the mutation burden under linkage equilibrium. Thus our observed reduction 
in variance (σ2/VA ~ 0.9) is consistent with that calculated (𝜌 = 0.89) for a truncation of 
less than 2% of the population. 
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Supplementary Figures 

 

  

Fig. S1. Predictions for rare mutation burden under multiplicative selection. 

Values of σ2/VA are shown as a function of the strength of selection (𝑠) under free 
recombination (r = 0.5). Analytical solutions (blue) for 𝜎2 and 𝜇 (≈ 𝑉𝐴) of the rare 
mutation burden in an infinite population under multiplicative selection are derived in 
previous work (16) for the fitness function 𝑤(𝑥)  =  𝐵𝐵−𝛼𝑥−

1
2𝛽𝑥

2
 for an individual carrying 

𝑥 mutations with 𝛼 = ℎ𝑠 and 𝛽𝛽 = 2ℎ2𝑏𝑏 given selection coefficient (𝑠), dominance 
coefficient (ℎ) and pairwise epistasis coefficient (𝑏𝑏). Here, alleles are assumed to be 
additive (ℎ = 0.5), and to have negligible epistasis (𝑏𝑏 = 10−15).  
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Fig. S2. Predictions for rare mutation burden under a quadratic model of synergistic epistasis. 

Values of σ2/VA are shown as a function of the extent of epistasis (𝛽𝛽) under free 
recombination (r = 0.5) for different selection strengths (ℎ𝑠). Analytical solutions for 𝜎2 
and 𝜇 (≈ 𝑉𝐴) of the rare mutation burden in an infinite population under a quadratic 
model of synergistic epistasis are derived in previous work (16) for the fitness function 
𝑤(𝑥)  =  𝐵𝐵−𝛼𝑥−

1
2𝛽𝑥

2
 for an individual carrying 𝑥 mutations with 𝛼 = ℎ𝑠 and 𝛽𝛽 = 2ℎ2𝑏𝑏 

given selection coefficient (𝑠), dominance coefficient (ℎ) and pairwise epistasis 
coefficient (𝑏𝑏). These are solved here for 𝑈 = 0.08 per genome per generation for the 
class of LoF (nonsense and splice-disrupting) mutations (56). Alleles are assumed to be 
additive (ℎ = 0.5). We note that the quadratic model is only one possible model of 
synergistic epistasis (another model, for example, is truncation selection) and we present 
this plot to provide intuition rather than as a way to estimate parameters. 
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Fig. S3. Rare mutation burden for spousal pairs in the GoNL dataset. 

Synonymous singletons were used to compute mutation burden for every sample in the 
GoNL dataset. Spouses show a positive correlation in rare mutation burden (Pearson’s r = 
0.31).  Dutch provinces are divided into 3 regions – north, central and south (15). Each 
point is colored by the region of origin of the male spouse (only 1 pair has the two 
spouses originating from different regions). Mean rare mutation burden varies between 
the three regions (𝜇𝑛𝑜𝑟𝑡ℎ = 26.88, 𝜇𝑐𝑒𝑛𝑡𝑟𝑎𝑙 = 31.98, 𝜇𝑠𝑜𝑢𝑡ℎ = 33.74). 
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Fig. S4. Rare mutation burden in the GoNL dataset reflects geographic structure. 

Synonymous singletons were used to compute mutation burden for every sample in the 
GoNL dataset. Mutation burden shows a positive correlation, along a south-north cline, 
with the first principal component (see methods for details) computed on the GoNL 
dataset (Pearson’s r = 0.4).  
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Fig. S5. Residuals for rare mutation burden in the GoNL dataset. 

Synonymous singletons were used to compute mutation burden for every sample in the 
GoNL dataset. Mutation burden was residualized under a generalized linear model 
consisting of 10 principal components and other covariates for geographic structure (see 
methods for model details). Residualized mutation burden does not show a positive 
correlation with the first principal component computed on the GoNL dataset (Pearson’s r 
= -5.59x10-17). 
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Fig. S6. Net LD as a function of physical distance between rare deleterious alleles. 

Data are shown for intra-chromosomal interactions between splice-disrupting and stop 
gain singletons in twenty-two autosomal chromosomes in the GoNL dataset. Net LD 
values are shown binned by physical distance between loci. Net LD in a given bin can be 
positive (blue) or negative (pink). Error bars show standard errors.  
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Fig. S7. Net LD as a function of physical distance between rare synonymous alleles. 

Data are shown for intra-chromosomal interactions between synonymous singletons in 
twenty-two autosomal chromosomes in the GoNL dataset. Net LD values are shown 
binned by physical distance between loci. Net LD in a given bin can be positive (blue) or 
negative (pink). Error bars show standard errors.  
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Fig. S8. Mutation burden in the crucial genome in humans.  

Mutation burden was computed on synonymous and missense singletons and alleles with 
derived allele frequency up to 1% and 2% in the GoNL dataset. Only most selectively 
constrained genes were used for this analysis (estimated selection coefficient against 
heterozygous protein truncating variants exceeding 0.2)(37). Black curve shows the 
expectation under Poisson distribution with the maximum likelihood estimator of its 
single parameter θ derived from the data (red). P-values for σ2/VA were computed by 
permuting functional consequences across variants (see Table S22).  
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Fig. S9. Mutation burden in the essential genome in D. melanogaster.  

Mutation burden was computed on alleles with minor allele frequency up to 50% in the 
DPGP3 dataset. Only set of 267 genes considered essential from the DEG database were 
used for this analysis. (A) Synonymous and missense rare mutation burden (red) in the D. 
melanogaster essential genome, overlaid with Poisson distributions (black) having 
identical means. (B, C) Resampling distributions of σ2/VA for missense alleles in the D. 
melanogaster essential genome. Synonymous and missense alleles were resampled at 
population frequencies matching the frequency distribution of missense alleles residing 
within the essential genes. Resampled datasets were used to obtain null distributions for 
σ2/VA. We generated 1000 resampled sets of synonymous and missense SNPs picking 
alleles at random in the D. melanogaster genome (B), and restricting the maximum 
number of genes in each set to 400 (C) to control for the effects of physical linkage 
between SNPs from the essential genes. Analogously we obtained resampled 
distributions of synonymous alleles randomly picked from the D. melanogaster essential 
genes (B, C). Underdispersion for missense alleles in the essential genome remained 
significant when compared to the resampled sets of synonymous alleles with (p < 10-3) or 
without (p = 0.002) controlling for the gene number. 
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Fig. S10. Simulated mutation burden in African and European populations.  

SLiM 2.0 was used to simulate a population with demography from Tennessen et al (55). 
σ2/VA of the mutation burden computed on singletons was calculated for Africans (top) 
and Europeans (bottom). A (blue) dotted line is drawn at the null expectation for a 
randomly mating population at equilibrium. All simulations had a length of 1 Mb, 
mutation rate of 10-8 per generation per base pair, and recombination rate of 10-5 per 
generation per base pair. The high recombination rate was chosen to simulate largely 
unlinked sites. Strength of selection acting on deleterious alleles was varied between -10-

1, -10-2, -10-3, -10-4, and -10-5. Alleles were assumed to be additive (h = 0.5). 
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Fig. S11. Simulated mutation burden for alleles of different ages in African and European populations. 

SLiM 2.0 was used to simulate a population with demography from Tennessen et al (55). 
σ2/VA of the mutation burden computed on singletons was calculated for alleles 
segregated by their age into two groups (older, younger) in Africans (top) and Europeans 
(bottom). All simulations had a length of 1 Mb, mutation rate of 10-8 

per generation per base pair, and recombination rate of 10-5 per generation per base pair. 
The high recombination rate was chosen to simulate largely unlinked sites. Strength of 
selection acting on deleterious alleles was varied between -10-1, -10-2, -10-3, -10-4, and -
10-5. Alleles were assumed to be additive (h = 0.5). 
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Fig. S12. Mutation burden in the GoNL dataset overlaid with Poisson distributions having identical means.  

Mutation burden was computed on synonymous, missense and LoF singletons in the 
GoNL dataset. Black curve shows the expectation under Poisson distribution with the 
maximum likelihood estimator of its single parameter θ derived from the data (red).  
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Fig. S13. Mutation burden in the ADNI dataset overlaid with Poisson distributions having identical means.  

Mutation burden was computed on synonymous, missense and LoF singletons in the 
ADNI dataset. Black curve shows the expectation under Poisson distribution with the 
maximum likelihood estimator of its single parameter θ derived from the data (red).  
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Fig. S14. Mutation burden in the MinE dataset overlaid with Poisson distributions having identical means.  

Mutation burden was computed on synonymous, missense and LoF singletons in the 
MinE dataset. Black curve shows the expectation under Poisson distribution with the 
maximum likelihood estimator of its single parameter θ derived from the data (red).  
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Fig. S15. Mutation burden in the 1000 Genomes YRI dataset overlaid with Poisson distributions having identical 
means.  

Mutation burden was computed on synonymous, missense and LoF singletons in the 
1000 Genomes YRI dataset. Black curve shows the expectation under Poisson 
distribution with the maximum likelihood estimator of its single parameter θ derived 
from the data (red).  
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Fig. S16. Mutation burden in the DPGP3 dataset overlaid with Poisson distributions having identical means.  

Mutation burden was computed on synonymous, missense and LoF alleles up to a minor 
allele count of 5 in the DPGP3 dataset. Black curve shows the expectation under Poisson 
distribution with the maximum likelihood estimator of its single parameter θ derived 
from the data (red). (A) Mutation burden was computed for all available rare 
alleles. (B) Mutation burden was computed only for alleles residing within regions of 
the D. melanogaster genome devoid of inversion polymorphisms. (C) Mutation burden 
was computed only in inversion-free individuals for alleles residing within the regions of 
the D. melanogaster genome devoid of inversion polymorphisms. 
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Fig. S17. Mutation burden in the DGRP dataset overlaid with Poisson distributions having identical means.  

Mutation burden was computed on synonymous, missense and LoF alleles up to a minor 
allele count of 5 in the DGRP dataset. Black curve shows the expectation under Poisson 
distribution with the maximum likelihood estimator of its single parameter θ derived 
from the data (red). (A) Mutation burden was computed for all available rare 
alleles. (B) Mutation burden was computed only for the alleles residing within regions of 
the D. melanogaster genome devoid of inversion polymorphisms. (C) Mutation burden 
was computed only in inversion-free individuals for alleles residing within the regions of 
the D. melanogaster genome devoid of inversion polymorphisms. 
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Fig. S18. Mutation burden for common missense and synonymous alleles residing within genes evolving at 
different rates in two D. melanogaster datasets. 

Mutation burden was computed on synonymous and missense alleles with minor allele 
frequency up to 50% in the DPGP3 and DGRP datasets. Genes were subdivided into five 
equal-sized bins according to the dN/dS ratio where bin 1 contains the most slowly 
evolving genes and bin 5 contains the most rapidly evolving genes. Missense alleles in 
bins 2,3,4,5 (top) and synonymous alleles in bins 1,2,3,4,5 (bottom) were resampled at 
population frequencies matching the population frequencies of missense alleles in dN/dS 
bin 1. The value of σ2/VA for missense alleles in dN/dS bin 1 (dashed line) is shown for 
reference. Black points connected with solid lines and the colored area represent median 
values and 95% confidence intervals for σ2/VA calculated in 1000 resamplings for each 
dN/dS bin.  
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Supplementary Tables 

 

Table S1. Mutation burden for singletons in six human datasets.  

Mutation burden was computed on synonymous, missense and LoF singletons in 
European, African and East Asian human populations. P-values for σ2/VA were computed 
by two methods; by resampling synonymous alleles at matched allele frequency as LoF 
alleles, and by permuting functional consequences across variants. A joint P-value for 
each functional variant type was computed by weighted meta-analysis using Stouffer’s 
method. Values of σ2/VA < 1 and P-values < 0.05 are highlighted.  
In a separate excel file.  
 
 

Table S2. Mutation burden for rare and common alleles in six human datasets. 

Mutation burden was computed on synonymous, missense, stop gain and splice-
disrupting singletons and alleles with derived allele frequency up to 0.5%, 1%, 2% and 
50% in European, African and East Asian human populations. P-values for σ2/VA were 
computed by resampling synonymous alleles at matched allele frequency as LoF alleles. 
A joint P-value for each deleterious variant type was computed by weighted meta-
analysis using Stouffer’s method. Values of σ2/VA < 1 and P-values < 0.05 are 
highlighted. 
In a separate excel file. 
 
 

Table S3. Mutation burden for rare and common alleles in two D. melanogaster datasets. 

Mutation burden was computed on synonymous, missense and LoF alleles in African and 
American fruit fly datasets. For rare variants, alleles with a minor allele count up to 1, 2 
or 5 were included. For common variants, alleles up to 50% minor allele frequency were 
included. P-values for σ2/VA were computed by resampling synonymous alleles at 
matched allele frequency as LoF alleles. A joint P-value for each deleterious variant type 
was computed by weighted meta-analysis using Stouffer’s method on genome-wide 
burden including inversions. Values of σ2/VA < 1 and P-values < 0.05 are highlighted. 
In a separate excel file.  
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Variable Coefficient Std.Error P-value 
Intercept 28.486 1.294 < 2x10-16 
Sequencing batch 2 3.401 1.469 0.021 
Sequencing batch 3 2.998 1.304 0.022 
Sequencing batch 4 2.294 1.316 0.082 
Sequencing batch 5 2.755 1.347 0.041 
Region - north -2.335 0.758 0.002 
Region - south 0.859 0.863 0.320 
Principal component 1 49.641 7.989 1.13x10-9 
Principal component 2 -26.924 7.120 1.76x10-4 
Principal component 3 14.704 6.336 0.021 
Principal component 4 -7.264 6.523 0.266 
Principal component 5 4.849 6.381 0.448 
Principal component 6 2.882 6.266 0.646 
Principal component 7 -6.358 6.247 0.309 
Principal component 8 -6.052 6.230 0.332 
Principal component 9 -7.730 6.343 0.224 
Principal component 10 7.040 6.279 0.263 

 

Table S4. Multivariate regression analysis for rare synonymous mutation burden. 

Synonymous singletons were used to compute mutation burden for every sample in the 
GoNL dataset. Mutation burden was residualized under a generalized linear model 
consisting of 10 principal components and other covariates for geographic structure (see 
methods for model details). 
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Table S5. Properties of residualized mutation burden. 

Raw mutation burden was computed on synonymous, missense and LoF singletons in the 
GoNL dataset. Residualized mutation burden was computed by correcting for geographic 
and technical covariates in a multivariate regression model (see methods for details). 
Values of σ2/VA < 1 are highlighted.  
In a separate excel file.  
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Net LD   Mean LD per pair of loci 

Variant type 
Genome-

wide 
Inter-

chromosomal 
Intra-

chromosomal 
 

Genome-
wide 

Inter-
chromosomal 

Intra-
chromosomal 

Synonymous 20.409 16.782 3.627 
 

4.549x10-8 3.959 x10-8 1.471 x10-7 
Missense 65.489 57.770 7.720 

 
3.605 x10-8 3.370 x10-8 7.543 x10-8 

Stop gain -0.106 -0.080 -0.026 
 

-8.186 x10-8 -6.561 x10-8 -3.570 x10-7 
Splice -0.042 -0.039 -0.004 

 
-1.068 x10-7 -1.042 x10-7 -1.490 x10-7 

Splice and stop 
gain -0.182 -0.135 -0.047 

 
-5.832 x10-8 -4.584 x10-8 -2.654 x10-7 

Table S6. Net LD for rare alleles partitioned into intra-chromosomal and inter-chromosomal components. 

Net LD was computed for synonymous, missense, stop gain and splice-disrupting 
singletons in the GoNL dataset, and partitioned by summing 𝐷𝑖,𝑗 values for all intra-
chromosomal pairs of SNPs and all inter-chromosomal pairs of SNPs separately (see 
methods for details). Net LD normalized per pair of loci is also shown.  
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Chromosome Net intra-chromosomal LD by chromosome 
  Synonymous Missense Splice and stop gain 

1 0.5927 0.9401 -0.0311 
2 0.2880 1.3311 -0.0040 
3 0.3382 0.7028 -0.0083 
4 0.1454 0.4624 -0.0082 
5 0.2267 0.3676 0.0084 
6 0.2117 0.2443 0.0005 
7 -0.0189 0.1969 -0.0033 
8 -0.0648 -0.1567 -0.0037 
9 0.2008 0.6133 -0.0027 
10 0.0589 0.3451 -0.0090 
11 0.2614 0.5889 0.0005 
12 0.1288 0.3945 0.0118 
13 0.0534 0.0286 -0.0013 
14 0.0711 0.3316 -0.0032 
15 0.2966 0.1723 0.0040 
16 0.2734 0.4084 -0.0017 
17 0.3252 0.3772 0.0113 
18 0.0847 0.1265 -0.0029 
19 0.0963 0.2889 -0.0100 
20 0.0920 -0.1830 0.0005 
21 0.0216 0.0362 0.0032 
22 -0.0569 0.1030 0.0018 

Table S7. Net LD for rare alleles by chromosome. 

Net LD was computed for synonymous, missense, stop gain and splice-disrupting 
singletons in the GoNL dataset, and partitioned by summing 𝐷𝑖,𝑗 values for all intra-
chromosomal pairs of SNPs in each chromosome separately (see methods for details).  
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Table S8. Variant quality control in human datasets. 

Variants were filtered based on various quality control criteria (see methods for details). 
Raw number of variants, filtering steps and final number of variants used for population 
genetics analysis are shown for six human datasets.  
In a separate excel file.  
 

Table S9. Sample quality control in human datasets. 

Samples were filtered based on various quality control criteria (see methods for details). 
Raw number of samples, filtering steps and final number of samples used for population 
genetics analysis are shown for six human datasets.  
In a separate excel file.  
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Filter The total number of canonical D. 
melanogaster FlyBase gene 
models retained after filtering  

Unfiltered (total) 13300 
Pseudogenes, putative annotation errors 13252 

Pseudogenes, putative annotation errors, 
chemoreceptor genes 

13088 

Pseudogenes, putative annotation errors, 
chemoreceptor genes, genes residing in 
known inversions 

4881 

 

Table S10. The numbers of D. melanogaster FlyBase canonical gene models retained after various filtering steps. 

Only genes on 5 euchromatic chromosome arms are considered. 
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Dataset Total number of 
segregating codon 
sites 

Total number of 
segregating codon 
sites after excluding 
codons with putative 
double mutations 

Total number of 
segregating codon sites 
after excluding codons 
with putative double 
mutations and codons with 
missing genotypes 

DPGP3 1147021 1128927 858135 
DGRP 471696 463690 51608 
 

Table S11. Total numbers of segregating codon sites in D. melanogaster datasets.  
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Dataset Total 
number of 
segregating 
splice sites 

Total number of 
segregating splice 
sites after excluding 
splice sites with 
putative double 
mutations 

Total number of segregating splice 
sites after excluding splice sites 
with putative double mutations and 
splice sites with missing genotypes 

DPGP3 712 703 516 
DGRP 297 294 38 
 

Table S12.  Total numbers of segregating splice sites in D. melanogaster datasets.  
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Table S13. Mutation burden for rare and common alleles in two D. melanogaster datasets after exclusion of 
multi-allelic splice sites and codon sites with more than one minor allele belonging to the same functional class. 

Mutation burden was computed on synonymous, missense and LoF alleles in African and 
American fruit fly datasets. For rare variants, alleles with a minor allele count up to 1, 2 
or 5 were included. For common variants, alleles up to 50% minor allele frequency were 
included. P-values for σ2/VA were computed by resampling synonymous alleles at 
matched allele frequency as LoF alleles. A joint P-value for each deleterious variant type 
was computed by weighted meta-analysis using Stouffer’s method on genome-wide 
burden including inversions. Values of σ2/VA < 1 and P-values < 0.05 are highlighted. 
In a separate excel file.  
 

Table S14. Missense mutation burden for rare and common alleles in two D. melanogaster datasets. 

Mutation burden was computed on missense alleles in African and American fruit fly 
datasets. For rare variants, alleles with a minor allele count up to 5 were included. For 
common variants, alleles up to 50% minor allele frequency were included. P-values for 
the σ2/VA were computed by permuting functional consequences across variants. A joint 
P-value for each functional variant type was computed by weighted meta-analysis using 
Stouffer’s method. Values of σ2/VA < 1 and P-values < 0.05 are highlighted. 
In a separate excel file.  
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Variable Coefficient Std. Error P-value 
Intercept 57.518 1.974 < 2x10-16 
Sequencing batch 2 4.540 2.242 0.043 
Sequencing batch 3 4.570 1.990 0.022 
Sequencing batch 4 4.510 2.009 0.025 
Sequencing batch 5 3.691 2.056 0.073 
Region - north -3.274 1.157 0.005 
Region - south 3.088 1.317 0.019 
Principal component 1 73.729 12.191 2.96x10-9 
Principal component 2 -61.995 10.866 2.04x10-8 
Principal component 3 -2.089 9.669 0.829 
Principal component 4 1.751 9.954 0.860 
Principal component 5 5.510 9.737 0.572 
Principal component 6 -3.281 9.562 0.732 
Principal component 7 -2.186 9.533 0.819 
Principal component 8 1.374 9.507 0.885 
Principal component 9 -3.042 9.679 0.753 
Principal component 10 -0.975 9.583 0.919 

Table S15. Multivariate regression analysis for rare missense mutation burden. 

Missense singletons were used to compute mutation burden for every sample in the 
GoNL dataset. Mutation burden was residualized under a generalized linear model 
consisting of 10 principal components and other covariates for geographic structure (see 
methods for model details). 
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Variable Coefficient Std. Error P-value 
Intercept 2.533 0.323 2.99x10-14 
Sequencing batch 2 0.041 0.367 0.912 
Sequencing batch 3 -0.003 0.326 0.993 
Sequencing batch 4 0.206 0.329 0.531 
Sequencing batch 5 0.002 0.337 0.995 
Region - north -0.196 0.189 0.302 
Region - south 0.246 0.216 0.254 
Principal component 1 -0.738 1.996 0.712 
Principal component 2 0.139 1.779 0.938 
Principal component 3 -1.246 1.583 0.432 
Principal component 4 -0.132 1.629 0.935 
Principal component 5 0.129 1.594 0.936 
Principal component 6 -1.838 1.565 0.241 
Principal component 7 -2.910 1.561 0.063 
Principal component 8 2.057 1.556 0.187 
Principal component 9 -2.229 1.585 0.160 
Principal component 10 -0.117 1.569 0.941 

Table S16. Multivariate regression analysis for rare LoF mutation burden. 

LoF singletons were used to compute mutation burden for every sample in the GoNL 
dataset. Mutation burden was residualized under a generalized linear model consisting of 
10 principal components and other covariates for geographic structure (see methods for 
model details). 
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Mean 
(𝜇) 

Additive 
variance (𝑉𝐴) Variance (𝜎2) 𝜎2/𝑉𝐴 

Net LD per 
pair of alleles P-value 

sample size = 495 
Synonymous 30.257 30.257 50.685 1.675 0.022   
Missense 60.883 60.883 126.436 2.077 0.018   
LoF 2.576 2.576 2.395 0.930 -0.027 0.025 

sample size = 247 
Synonymous 51.279 51.279 84.641 1.651 0.013   
Missense 97.449 97.449 166.387 1.707 0.007   
LoF 3.891 3.891 3.464 0.890 -0.028 0.037 

sample size = 123 
Synonymous 80.098 80.098 137.810 1.721 0.009   
Missense 145.358 145.358 214.281 1.474 0.003   
LoF 5.325 5.325 4.680 0.879 -0.023 0.096 

sample size = 82 
Synonymous 103.146 103.146 216.349 2.097 0.011   
Missense 179.805 179.805 275.270 1.531 0.003   
LoF 5.988 5.988 5.025 0.839 -0.027 0.090 

Table S17. Subsampling experiments to test sensitivity of underdispersion signal to changes in sample size.  

Mutation burden was computed on synonymous, missense and LoF singletons in the 
GoNL dataset, and in the dataset down-sampled to half, quarter and one-sixth its original 
size. P-values for σ2/VA were computed by resampling synonymous alleles at matched 
allele frequency as LoF alleles in each subsampled dataset.  
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Mean 
(𝜇) 

Additive 
variance (𝑉𝐴) 

Variance 
(𝜎2) 𝜎2/𝑉𝐴 

Net LD per 
pair of alleles P-value 

Singletons 
Synonymous 7.582 7.582 8.697 1.147 0.019   
Missense 15.107 15.107 18.157 1.202 0.013   
LoF 0.653 0.653 0.616 0.944 -0.086 0.146 

DAF ≤ 1% 
Synonymous 36.501 36.916 39.732 1.076 0.002   
Missense 58.861 59.448 59.647 1.003 0.000   
LoF 1.741 1.742 1.593 0.915 -0.049 0.060 

DAF ≤ 2% 
Synonymous 55.917 56.357 64.007 1.136 0.002   
Missense 82.669 83.197 88.222 1.060 0.001   
LoF 2.390 2.393 2.194 0.917 -0.035 0.077 

 

Table S18. Mutation burden analysis restricted only to sites with coverage close to the dataset mean. 

Mutation burden was computed on synonymous, missense, and LoF singletons and 
alleles with derived allele frequency up to 1% and 2% in the GoNL dataset. Only sites 
with an average coverage between 12x and 14x were considered (~13x is the dataset 
average). P-values for σ2/VA were computed by resampling synonymous alleles at 
matched allele frequency as LoF alleles.  
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  Mean (𝜇) 
Additive 

variance (𝑉𝐴) 
Variance 

(𝜎2) 𝜎2/𝑉𝐴 
Net LD per 

pair of alleles P-value 
Singletons 

Synonymous 30.257 30.257 50.685 1.675 0.022   
Missense 60.883 60.883 126.436 2.077 0.018   
LoF and 
frameshift  4.469 4.469 4.719 1.056 0.013 0.218 

DAF ≤ 1% 

Synonymous 130.867 132.087 200.549 1.518 0.004   
Missense 220.156 221.911 273.727 1.233 0.001   
LoF and 
frameshift  11.800 11.881 11.132 0.937 -0.005 0.023 

DAF ≤ 2% 

Synonymous 202.099 203.366 317.312 1.560 0.003   
Missense 309.760 311.282 364.090 1.170 0.001   
LoF and 
frameshift  15.325 15.405 14.507 0.942 -0.004 0.043 

 

Table S19. Mutation burden for rare SNPs and indels.  

Mutation burden was computed on synonymous, missense, and LoF SNPs for singletons 
and alleles with derived allele frequency up to 1% and 2%, and on frameshift indels for 
singletons and alleles with minor allele frequency up to 1% and 2% in the GoNL dataset. 
P-values for σ2/VA were computed by resampling synonymous alleles and intronic indels 
at matched allele frequency as LoF alleles and frameshift indels respectively. 
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Table S20. Mutation burden for common alleles versus evolutionary rate of genes in two D. 
melanogaster datasets. 

Mutation burden was computed on missense alleles with minor allele frequency up to 
50% in African and American fruit fly datasets. Genes were subdivided into five equal-
sized bins according to the dN/dS ratio where bin 1 contains the most slowly evolving 
genes and bin 5 contains the most rapidly evolving genes. Mutation burden was 
computed separately for each bin. Values of σ2/VA < 1 are highlighted. 
In a separate excel file.  
 
 
 
 

Table S21. Mutation burden for rare alleles versus evolutionary rate of genes in two D. melanogaster datasets. 

Mutation burden was computed on missense alleles with minor allele count up to 5 in 
African and American fruit fly datasets. Genes were subdivided into five equal-sized bins 
according to the dN/dS ratio where bin 1 contains the most slowly evolving genes and bin 
5 contains the most rapidly evolving genes. Mutation burden was computed separately 
for each bin. Values of σ2/VA < 1 are highlighted. 
In a separate excel file. 
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  Mean (𝜇) 
Additive 

variance (𝑉𝐴) 
Variance 

(𝜎2) 𝜎2/𝑉𝐴 
Net LD per 

pair of alleles P-value 
Singletons 

Synonymous 2.414 2.414 2.567 1.063 0.026 0.911 
Missense 3.489 3.489 3.271 0.937 -0.018 0.219 
LoF 0.032 0.032 0.031 0.970 -0.939 0.617 

DAF ≤ 1% 
Synonymous 10.602 10.716 12.208 1.139 0.013 0.979 
Missense 10.851 10.940 10.123 0.925 -0.007 0.030 
LoF 0.044 0.044 0.043 0.958 -0.944 0.289 

DAF ≤ 2% 
Synonymous 16.269 16.380 17.165 1.048 0.003 0.847 
Missense 14.059 14.141 12.901 0.912 -0.006 0.063 
LoF 0.044 0.044 0.043 0.958 -0.944 0.285 

 

Table S22. Mutation burden in the crucial genome in humans.   

Mutation burden was computed on synonymous, missense and LoF singletons and alleles 
with derived allele frequency up to 1% and 2% in the GoNL dataset. Only most 
selectively constrained genes were used for this analysis (estimated selection coefficient 
against heterozygous protein truncating variants exceeding 0.2)(37). P-values for σ2/VA 
were computed by permuting functional consequences across variants.  
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