# Science Advances

advances.sciencemag.org/cgi/content/full/4/10/eaau5716/DC1

### Supplementary Materials for

### Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP

Noa Barak-Gavish, Miguel José Frada, Chuan Ku, Peter A. Lee, Giacomo R. DiTullio, Sergey Malitsky, Asaph Aharoni, Stefan J. Green, Ron Rotkopf, Elena Kartvelishvily, Uri Sheyn, Daniella Schatz, Assaf Vardi\*

\*Corresponding author. Email: assaf.vardi@weizmann.ac.il

Published 24 October 2018, *Sci. Adv.* **4**, eaau5716 (2018) DOI: 10.1126/sciadv.aau5716

### This PDF file includes:

Text S1. Coculturing of *E. huxleyi* with the CAM exhibits similar phases of pathogenicity to that of *Sulfitobacter* D7.

Text S2. Sulfitobacter D7 consumes DMSP and produces MeSH but not DMS.

Fig. S1. Algicidal effect of the CAM on *E. huxleyi*.

Fig. S2. Phylogenetic analysis of Sulfitobacter D7 within the Roseobacter group.

Fig. S3. *Marinobacter* D6 isolated from CAM has no algicidal effect when cocultured with *E. huxleyi*.

Fig. S4. Headspace analysis of volatiles produced during algae-bacteria interactions using SPME coupled to GC-MS.

Fig. S5. Representative chromatograms of VOSC standards in GC-FPD analysis.

Fig. S6. Sulfitobacter D7 genome encodes a DMSP catabolic pathway.

Fig. S7. DMSP promotes *Sulfitobacter* D7 virulence toward *E. huxleyi* in a dose-dependent manner.

Fig. S8. DMSP promotes growth of Sulfitobacter D7.

Fig. S9. E. huxleyi and Sulfitobacter D7 coculturing dynamics.

Table S1. Evaluation of DMSP<sub>d</sub>, MeSH, DMDS, DMS, and bacterial abundances after 24-hour incubation of *Sulfitobacter* D7 in CM obtained from uninfected *E. huxleyi* 379 cultures (*E. huxleyi*–CM) or MM supplemented with DMSP.

Table S2. Comparison of parameters related to *Sulfitobacter* D7 infection dynamics in various *E*. *huxleyi* strains.

Reference (71)

### Supplementary Text

## Text S1. Coculturing of *E. huxleyi* with the CAM exhibits similar phases of pathogenicity to that of *Sulfitobacter* D7.

Time course of *E. huxleyi* cultures incubated with CAM (fig. S1C-E) showed three-phase dynamics, similar to co-culturing with *Sulfitobacter* D7 (Fig. 1B-D). In phase I, algal cultures grew exponentially until day 5, similar to control cultures (fig. S1C). In phase II, while control cultures kept growing, CAM-treated cultures entered a short 2-day stationary phase. During the 4 days of phase III, there was a rapid decline in algal abundance, while control cultures kept growing until they reached stationary phase. Induction of algal cell death (determined by SYTOX green staining) in phase III occurred in ~80% of the population (fig. S1D) and was concomitant with rapid exponential growth of bacteria (overall growth of four orders of magnitude) (fig. S1E). Interestingly, during phases II and III of co-culturing, we detected a similar scent to that emitted during incubation of *E. huxleyi* with *Sulfitobacter* D7 (fig. S1C-E, represented by green background). Interestingly, the abundance of *Sulfitobacter* D7 during co-culturing with CAM increased steadily by 3 orders of magnitude, as quantified by qPCR (fig. S1E, inset).

### Text S2. Sulfitobacter D7 consumes DMSP and produces MeSH but not DMS.

In order to characterize the origin of MeSH production during *Sulfitobacter* D7-infection of *E. huxleyi* (Fig. 3), we obtained conditioned media (CM) derived from 0.22  $\mu$ m filtrate of uninfected *E. huxleyi* cultures at stationary phase (*E. huxleyi*-CM). We inoculated *Sulfitobacter* D7 in *E. huxleyi*-CM and found that after 24h of incubation the concentration of DMSP<sub>d</sub> was 51  $\mu$ M, while in uninoculated (blank) *E. huxleyi*-CM it was 72  $\mu$ M (table S1). Namely, *Sulfitobacter* D7 consumed ~21  $\mu$ M DMSP<sub>d</sub> from the medium concomitant to production of MeSH. In order to validate that the production of MeSH by *Sulfitobacter* D7 resulted from DMSP (rather than other substrates within *E. huxleyi*-CM), we inoculated *Sulfitobacter* D7 in minimal media (MM) supplemented with synthetic DMSP. Also here, *Sulfitobacter* D7 consumed DMSP<sub>d</sub> and produced MeSH but to a lesser extent than in *E. huxleyi*-CM (table S1). A similar observation was seen for the

bacterial growth. This implies that *E. huxleyi*-CM contains other substances that promote *Sulfitobacter* D7 growth and metabolism. Taken together, *Sulfitobacter* D7 can produce MeSH from DMSP<sub>d</sub> in MM and in *E. huxleyi*-CM and most likely during *Sulfitobacter* D7-infection of *E. huxleyi*. Interestingly, in both media the concentration of DMS was similar between uninoculated and inoculated media (table S1). Therefore, it seems that *Sulfitobacter* D7 does not produce DMS from DMSP. *Sulfitobacter* spp. have been reported to encode for DddL, a DMSP-lyase enzyme (*14, 71*), however, we did not detect any homologs of a DMSP-lyase (*ddd* genes) in *Sulfitobacter* D7 genome.

### **Supplementary Figures**



**Fig. S1. Algicidal effect of the CAM on** *E. huxleyi.* (A) Picture of *E. huxleyi* 379 cultures (control or incubated with CAM) applied (or not) with penicillin and streptomycin antibiotics mix. (B) Flow cytometric analysis of bacterial populations, stained with SYTO13, in *E. huxleyi* 379 cultures incubated with CAM after 7 days of growth. Bacteria were differentiated based on green fluorescence (530/30 nm) intensity (arbitrary units) corresponding to DNA content. Two bacterial sub-populations were sorted: P1 and P2, featured low and high green fluorescence intensity, respectively. *Sulfitobacter* D7 and *Marinobacter* D6 were each isolated from a single colony of P2 population plated on marine agar. (C-E) A detailed time course of *E. huxleyi* 379 monocultures (grey line) and during co-culturing with CAM (orange line). The following parameters were assessed: algal growth (C), algal cell death (D) and bacterial growth (E). Inset in (E): quantification of *Sulfitobacter* D7 abundance during co-culturing of *E.* 

*huxleyi* with CAM, determined by qPCR analysis. No bacterial growth was observed in control cultures. Green background represents the presence of a pungent scent in co-cultures. Alga-bacteria co-culturing had distinct dynamics characterized by defined phases (I-III) of pathogenicity. Results depicted in (C-E) represent average  $\pm$  SD (n = 3). Error bars < than symbol size are not shown. Statistical differences in (C-E) were tested using repeated measures ANOVA. *P*-values are <0.001 for the differences between control and CAM-treated *E. huxleyi* cultures.



Fig. S2. Phylogenetic analysis of Sulfitobacter D7 within the Roseobacter group.

Maximum likelihood phylogenetic tree of the *Roseobacter* group of the  $\alpha$ -Proteobacteria class, based on 16S rRNA gene. Bootstrap values (based on 1000 replicates) are specified

with circles at the nodes (white  $\geq$  50%, grey  $\geq$  70%, black  $\geq$ 90%). *Sulfitobacter* D7 isolate can be found within the group (green box), closely associated with *Sulfitobacter dubius*. *Erythrobacter lithoralis*, affiliated to the  $\alpha$ -Proteobacteria class, was used as an outgroup.



Fig. S3. *Marinobacter* D6 isolated from CAM has no algicidal effect when cocultured with *E. huxleyi*. A detailed time course of *E. huxleyi* 379 mono-cultures (grey line) and during co-culturing with *Marinobacter* D6 (blue line). The following parameters were assessed: (A) algal growth, (B) algal cell death and (C) bacterial growth. No bacterial growth was observed in control cultures. Results represent average  $\pm$  SD (n = 3). Error bars < than symbol size are not shown. Statistical differences were tested using repeated measures ANOVA. *P*-values are <0.05 for the differences between control and D6-treated *E. huxleyi* cultures.



Fig. S4. Headspace analysis of volatiles produced during algae-bacteria interactions using SPME coupled to GC-MS. (A-B) Representative total ion chromatograms of headspaces of control, CAM- and *Sulfitobacter* D7-infected *E. huxleyi* 379 cultures at 10 days of growth (phase III). Detected compounds- 1: methanethiol (MeSH); 2: dimethyl sulfide (DMS); 3: dimethyl disulfide (DMDS), 4: dimethyl trisulfide (DMTS); 5: methyl methylthiomethyl disulfide. (C-D) Extracted ion chromatograms represent characteristic masses (47, 62, 94, 61, 126 m/z) of compounds 1-5, respectively. Analysis was done in triplicates.



### Fig. S5. Representative chromatograms of VOSC standards in GC-FPD analysis.

Representative GC-FPD chromatograms of 150 nM of (**A**) dimethyl sulfide (DMS), retention time of 4.3 min; (**B**) dimethyl disulfide (DMDS), retention time of 8.2 min; and (**C**) methanethiol (MeSH), retention time of 3.3 min. The additional peak in (**C**) is DMDS which is a product of MeSH oxidation that occurred during the GC-FPD procedure (*39*).



**Fig. S6.** *Sulfitobacter* **D7** genome encodes a DMSP catabolic pathway. Competing DMSP catabolic pathways. Genes encoding enzymes mediating each transformation are specified next to the arrow. Genes of the demethylation pathway, highlighted in green, are present in *Sulfitobacter* D7 genome. MMPA, methylmercaptopropionate; CoA,

coenzyme A; MMPA-CoA, methylmercaptopropionate-CoA; MTA-CoA, methylthioacryloyl-CoA.



Fig. S7. DMSP promotes *Sulfitobacter* D7 virulence toward *E. huxleyi* in a dosedependent manner. Time course of *E. huxleyi* 379 mono-cultures (dashed lines) and during co-culturing with *Sulfitobacter* D7 (smooth lines). DMSP was applied at day 0 to a final concentration of 10  $\mu$ M (purple, triangle), 100  $\mu$ M (green, square), 500  $\mu$ M (orange, diamond) or none (gray, circle). The following parameters were assessed: (**A**) algal growth, (**B**) algal cell death and (**C**) bacterial growth. No bacterial growth was observed in control cultures. Results represent average  $\pm$  SD (n = 3). Error bars < than symbol size are not shown. Statistical differences were tested using two-way repeated measures ANOVA, accounting for infection and DMSP concentration. *P*-values in (A) and (B) are <0.001 for the differences between control and co-cultures and for the differences between the DMSP treatments in co-cultures. *P*-values in (C) are <0.001 for the differences between the 100  $\mu$ M DMSP treatment and the rest of the co-cultures.



Fig. S8. DMSP promotes growth of *Sulfitobacter* D7. *Sulfitobacter* D7 abundance after 16 h of growth in minimal media (MM) supplemented with different concentrations of DMSP. Results represent average  $\pm$  SD (n = 3). Statistical differences were tested using one-way ANOVA, followed by a Tukey post-hoc test. *P*-values are <0.01 and <0.05 for the differences of the 100  $\mu$ M concentration from the "No DMSP" and 1  $\mu$ M concentration, respectively.



**Fig. S9.** *E. huxleyi* and *Sulfitobacter* **D7** coculturing dynamics. Time course of *E. huxleyi* 379 mono-cultures (grey line) and during co-culturing with *Sulfitobacter* **D7** (green line) from the experiment presented in Fig. 3. The following parameters were assessed: (**A**) algal growth, (**B**) algal cell death and (**C**) bacterial growth. No bacterial growth was observed in control cultures. Defined phases (I-III) of pathogenicity are denoted. Results represent average  $\pm$  SD (control, n = 4; *Sulfitobacter* D7-infected, n = 2). Error bars < than symbol size are not shown. Statistical differences were tested using repeated measures ANOVA. *P*-values are <0.001 for the differences between control and co-cultures.

### **Supplementary Tables**

Table S1. Evaluation of DMSP<sub>d</sub>, MeSH, DMDS, DMS, and bacterial abundances after 24-hour incubation of *Sulfitobacter* D7 in CM obtained from uninfected *E*. *huxleyi* 379 cultures (*E. huxleyi*–CM) or MM supplemented with DMSP.

|               |                   | DMSP <sub>d</sub><br>(µM) | MeSH <sup>a</sup> | DMDS<br>(nM) <sup>b</sup> | DMS<br>(nM) | <i>Sulfitobacter</i> D7<br>abundance (10 <sup>6</sup> ·mL <sup>-1</sup> ) |
|---------------|-------------------|---------------------------|-------------------|---------------------------|-------------|---------------------------------------------------------------------------|
| E. huxleyi-CM | - D7 <sup>c</sup> | 72                        | -                 | -                         | 406         | _                                                                         |
|               | + D7 <sup>d</sup> | 51 ± 0.3                  | 1017 ± 34         | 465 ± 11                  | 398 ± 24    | 94.4 ± 0.5                                                                |
| MM + DMSP     | - D7 <sup>c</sup> | 70                        | -                 | -                         | 23          | _                                                                         |
|               | + D7 <sup>f</sup> | 65 ± 1                    | 46 ± 33           | 276 ± 19                  | 16 ± 1.5    | 10.14 ± 0.97                                                              |

<sup>a</sup> Square root of peak area

<sup>b</sup> DMDS is presumably an oxidation product of MeSH (Fig. S5c) and therefore considered as part of the MeSH pool

<sup>c</sup> Blank media without *Sulfitobacter* D7 (n = 1)

 $^{d,f}$  Results represent average ± SD ( $^{d}$ n = 2,  $^{f}$ n = 3)

P-values were calculated for all parameters between Sulfitobacter D7-inoculated media and are <0.01

|                                                                                                                               | Emiliania huxleyi strain |            |            |           |  |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|------------|-----------|--|
|                                                                                                                               | 379                      | 1216       | 373        | 2090      |  |
| $DMSP_d$ ( $\mu M$ ) at stationary growth $^a$                                                                                | 71.9 ± 1.8               | 27.1 ± 0.4 | 13.2 ± 0.8 | 5.5 ± 0.1 |  |
| Duration of phase III (days) <sup>b</sup>                                                                                     | 5                        | 7          | 10         | -         |  |
| Duration of phase II (days)                                                                                                   | 1                        | 4          | 2          | 16        |  |
| <i>Sulfitobacter</i> D7 abundance on phase III initiation (10 <sup>7</sup> ·mL <sup>-1</sup> )                                | 1.28 ± 0.5               | 2.9 ± 0.3  | 1.28 ± 0.2 | -         |  |
| Maximum <i>Sulfitobacter</i> D7 abundance during co-culturing (10 <sup>7</sup> ·mL <sup>-1</sup> ) <sup>c</sup>               | 15 ± 0.3                 | 12 ± 0.7   | 15 ± 0.4   | 1.5 ± 0.6 |  |
| <i>Sulfitobacter</i> D7 abundance after 24h growth in <i>E. huxleyi</i> -CM (10 <sup>7</sup> ·mL <sup>-1</sup> ) <sup>d</sup> | 12 ± 0.7                 | 7.5 ± 0.2  | 2 ± 0.2    | 0.8 ± 0.2 |  |

Table S2. Comparison of parameters related to Sulfitobacter D7 infection dynamics in various E. huxleyi strains.

Results represent average ± SD (n = 3) <sup>a</sup> At 11 days of mono-culture (Fig. 4A) <sup>b</sup> Until *E. huxleyi* cultures reached <1% of maximum growth (Fig. 4C-F) <sup>c</sup> For 2090 at t = 20d, other strains at t = 21d (Fig. 4C-F) <sup>d</sup> Conditioned media (CM) was derived from the same cultures presented in the first row of this table