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Note 1: Preprocessing  

Typical echocardiograms consist of a combination of 70-120 still images and videos. The still 

images are usually used for manual measurements and thus our primary interest was in the 

videos. We first used the pydicom Python library to count the number of frames within each file 

thus enabling separation of still images from videos. We used the RSNA Clinical Trial Processor 

(https://www.rsna.org/ctp.aspx) for deidentification of videos, as this tool allows specification of 

location of identifying patient information for specific ultrasound manufacturer and model 

combinations. We next used the gdmconv utility from the Grassroots DICOM Library (GDCM) to 

convert compressed DICOM format videos into a raw DICOM format. This allowed use of the 

pydicom library for conversion of DICOM videos into numerical arrays. Numerical arrays were 

compressed for subsequent use. A subset of these were converted into Audio Video Interleaved 

(avi) format for manual segmentation. 

 

Note 2: Architecture of the View Classification Model  

The VGG network1 takes a fixed-sized input of grayscale images with dimensions 224x224 pixels 

(we use scikit-image to resize by linear interpolation). Each image is passed through ten 

convolution layers, five max-pool layers, and three fully connected layers. (We experimented with 

a larger number of convolution layers but saw no improvement for our task). All convolutional 

layers consist of 3x3 filters with stride 1 and all max-pooling is applied over a 2x2 window with 

stride 2. The convolution layers consist of 5 groups of 2 convolution layers, which are each 

followed by 1 max pool layer. The stack of convolutions is followed by two fully connected layers, 

each with 4096 hidden units, and a final fully connected layer with 23 output units. The output is 

fed into a 23-way softmax layer to represent 23 different echocardiographic views. This final step 

represents a standard multinomial logistic regression with 23 mutually exclusive classes. The 

predictors in this model are the output nodes of the neural network. The view with the highest 

probability was selected as the predicted view. 

 

Additionally, each echocardiogram contains periphery information unique to different output 

settings on ultrasound machines used to collect the data. This periphery information details 

additional details collected (i.e. electrocardiogram, blood pressure, etc.). To improve 

generalizability across institutions, we wanted the classification of views to use ultrasound data 

and not metadata presented in the periphery. To address this issue, every image is randomly 

cropped between 0-20 pixels from each edge and resized to 224x224 during train ing. This 

provides variation in the periphery information, which guides the network to target more relevant 

features and improves the overall robustness of our view classification models.  

 

Training data comprised of 10 random frames from each manually labe led echocardiographic 

video. We trained our network on approximately 70,000 pre-processed images. For stochastic 

optimization, we used the ADAM optimizer2 with an initial learning rate of 1e-5 and mini-batch 

size of 64. For regularization, we applied a weight decay of 1e-8 on all network weights and 



dropout with probability 0.5 on the fully connected layers. We ran our tests for 20 epochs or 

~20,000 iterations, which takes ~3.5 hours on a Nvidia GTX 1080. Runtime per video was 600 

ms on average. 

 

Accuracy was assessed by 5-fold cross-validation at the individual image level. When deploying 

the model, we would average the prediction probabilities for 10 randomly selected images from 

each video. 

 

An important and unaddressed quantity is the fraction of echocardiograms for which we could 

generate a usable view. One way to address this is to look at the probabilities for a view that we 

would expect in every study, such as A4c. We took all studies we had downloaded for which there 

was at least one measurement in the UCSF database (mass, volume or function) and had at least 

40 videos (suggesting it was likely not a limited study). For each of these, we looked at the 

probability of the A4c class for all videos and took the maximum (Figure S2). Only 3% of these 

had a maximum probability of the A4c class that was less than 0.25 (a value that we found 

empirically was still interpretable for segmentation) and 5% had a maximum probability less than 

0.40. If we include probabilities for both A4c and A4c with occlusion of the left atrium, these values 

drop to 1% and 2% respectively. 

 

Note 3: Convolutional Neural Networks for Image Segmentation  

To train image segmentation models, we derived a CNN based on the U-net architecture 

described by Ronneberger et al3. The U-net-based network we used accepts a 384x384 pixel 

fixed-sized image as input, and is composed of a contracting path and an expanding path with a 

total of 23 convolutional layers. The contracting path is composed of twelve convolutional layers 

with 3x3 filters followed by a rectified linear unit and four max pool layers each using a 2x2 window 

with stride 2 for down-sampling. The expanding path is composed of ten convolutional layers with 

3x3 filters followed by a rectified linear unit, and four 2x2 up-convolution layers. Every up-

convolution in the expansion path is concatenated with a feature map from the contracting path 

with same dimension. This is performed to recover the loss of pixel and feature locality due to 

downsampling images, which in turn enables pixel-level classification. The final layer uses a 1x1 

convolution to map each feature vector to the output classes. 

 

Separate U-net CNN networks were trained to perform segmentation on images from PLAX, 

PSAX (at the level of the papillary muscle), A4c, A3c, and A2c views. Training data was derived 

for each class of echocardiographic view via manual segmentation. We performed data 

augmentation techniques including cropping and blacking out random areas of the 

echocardiographic image in order to improve model performance in the setting of a limited amount 

of training data. The rationale is that models that are robust to such variation are likely to 

generalize better to unseen data. Training data underwent varying degrees of cropp ing (or no 

cropping) at random amounts for each edge of the image. Similarly, circular areas of random size 

set at random locations in the echocardiographic image were set to 0-pixel intensity to achieve 

``blackout''. This U-net architecture and the data augmentation techniques enabled highly efficient 

training, achieving accurate segmentation from a relatively low number of training examples. 

Finally, in addition to pixelwise cross-entropy loss, we included a distance-based loss penalty for 



misclassified pixels. The loss function was based on the distance from the closest pixel with the 

same misclassified class in the ground truth image. This helped mitigate erroneous pixel 

predictions across the images. 

 

We used an Intersection Over Union (IoU) metric for assessment of results. The IoU takes the 

number of pixels which overlap between the ground truth and automated segmentation (for a 

given class, such as left atrial blood pool) and divides them by the total number of pixels assigned 

to that class by either method. It ranges between 0 and 100. 

 

Note 4: Derivation of measures of cardiac structure and function  

We used the output of the CNN-based segmentation to compute chamber dimensions and 

ejection fraction. A typical echocardiographer typically filters through many videos to choose 

specific frames for measurement. They also rely on the electrocardiogram (ECG) tracing to phase 

the study and thus choose end-systole and end-diastole. Since our goal is to enable use of 

handheld echocardiographic devices without ECG capabilities, we needed to rely on 

segmentation (i.e. variation in ventricular area) to identify end-systole and end-diastole. Since 

there are likely to be chance errors in any CNN model, we emphasized averaging as many cardiac 

cycles as possible, both within one video and across videos.  For each study, we used all videos 

that included the chamber of interest, provided that it was not occluded, relying upon our view 

classification model to identify those videos. 

 

LVEDV,LVESV,LVEF:  We first used the time interval between frames and the patient heart rate 

to estimate the duration of the cardiac cycle (we thus restricted our analyses to echocardiograms 

for which heart rate and frame rate were available within the metadata). We then moved a sliding 

window across the video with a window length of 90% of a cardiac cycle (thus avoiding seeing 

end-systole or end-diastole more than once). Within a window, we selected the 90% and 10% 

percentile of the left ventricular volumes to serve as LV end-diastolic area and end-systolic areas, 

respectively. We derived LVEDV and LVESV using the area-length formula. We also used these 

to compute an EF for that cycle. To enable making multiple measurements per study, we moved 

a sliding window across the video with a step size of half of a cardiac cycle.  We selected two 

additional percentile values for each metric: one percentile applied to measurements from multiple 

cycles within one video, and a second across all videos in a study. We selected the first percentile 

based on intuition regarding how the typical echocardiographer scans through images to select 

one for manual segmentation. We also avoided minimum and maximum values to exclude outliers 

from poor quality segmentation. We selected the second percentile to minimize bias  between 

measured and automated values, although in most cases there was relatively little difference with 

choice of threshold and we used the median as default. For the first cutoff (i.e. multiple 

measurements from one video), we used 90% percentile for LVEDV and 50% percentile values 

(i.e. the median) for LVESV and LVEF. For the second cutoff (across multiple videos in a study), 

we selected median values for LVEDV, 25th percentile for LVESV, and 75th percentile for LVEF. 

 

LAVOL:  For LAVOL, we took a similar approach, again taking the 90% percentile of the LA area 

for each window. If there were multiple LAVOL measurements from one video we took the median 

value, and if there were multiple videos per study, we took the 25th percentile of these values. 



We found that erroneous LAVOL values would arise from videos with an occluded LA. Although 

our view classification CNN was trained to discriminate these, some videos slipped through. We 

thus imposed an additional heuristic of excluding measurements from videos where 

LAVOL/LVEDV was less than 30%, as we found empirically that fewer than 5% of non-occluded 

studies had a ratio this extreme. 

 

LV mass:  For LV mass we again took a sliding window approach, using the 90% percentile value 

for the LV outer (myocardial) area and computed LV mass using the Area-Length formula4. If 

there were multiple LV mass measurements from one video we took the median  value, and if 

there were multiple videos per study, we took the 25th percentile of these values.  

 

Note 5: Automated Longitudinal Strain Measurements Using Speckle Tracking  

We opted to write our own algorithm for strain computation, adapting an approach p reviously 

described by Rappaport and colleagues5. Using the results of our image segmentation, we split 

the left ventricle along its long axis, and output images focused on the endocardial border of the 

hemi-ventricle. For a given frame, we used the trackpy Python package, a particle tracking 

software package, to locate speckles. The trackpy locate function allows the user to modify 

parameters involved in particle localization including particle diameter and minimum inter -particle 

separation. To track a given speckle from frame to frame, we selected a multipixe l patch 

surrounding it and then located the best match for that patch in the next frame using the 

matchTemplate function in the OpenCV package (with the TMCCOEFFNORMED statistic). 

Importantly, we limited the search space to that region that could be attained based on the 

maximum predicted velocity of the corresponding myocardial segment6 and excluded matches 

that fell below a threshold level of agreement (0.85). We then computed the displacement (in 

pixels) of the patch and projected the displacement onto the long axis of the ventricular segment. 

We fit a cubic polynomial function to estimate the variation in frame-to-frame longitudinal 

displacement with position along the long axis and computed its first derivative to obtain the strain 

rate. We next performed median smoothing and integrated the strain rate to obtain longitudinal 

strain. Analysis was performed within windows corresponding to one cardiac cycle (as estimated 

from the heart rate and frame rate). For each window, we selected the frame with the lowest (most 

negative) strain value across all segments to compute the global longitudinal strain, integrating 

both the medial and lateral portions of the ventricle. The use of a sliding window allowed multiple 

strain estimates per video. 

 

We also computed average longitudinal strain, deriving the minimum strain value across 25-30 

positions along the length of the left or right ventricle, taken separately, and then computing a 

median across all positions. 

 

We noted that images with very few successfully tracked speckles gave unstable estimates of 

longitudinal strain and thus we adaptively lowered the threshold level of agreement to include 

sufficient particles for function estimation for each frame. The median number of particles that 

passed the original filter was stored as a measure of quality for each video. 

 

Estimation of strain typically required 1-4 minutes per video, depending on the image size and 



the number of frames. 

 

Note 6: CNNs to detect disease. 

Just as with view classification, we used a 13 layer VGG model1. Our method and architecture 

were identical to our view classification network described in Note 2, but with a final fully 

connected layer of 2 output units. This final layer is fed into a 2-class softmax layer to represent 

probabilities for disease vs. control. For stochastic optimization, we used the ADAM optimizer 2 

with an initial learning rate of 1e-5 and mini-batch size of 64. For regularization, we applied a 

weight decay of 1e-8 and dropout with probability 0.5 on the fully connected layers. We ran our 

tests on 20000 training images for 20 epochs, which took two hours to run on a Nvidia GTX 1080. 

Run-time performance was approximately 600ms per video. 

  



Supplemental Tables 

 

Table S1. Characteristics of Echocardiograms Used in this Manuscript 
 

Year 
 2017 5471 
 2016 2865 
 2015 919 
 2014 2088 
 2013 607 
 2012 634 
 2011 532 
 2010 and before 918 
 Total 14035 
Manufacturer (%) 
 Philips Medical Systems ie33 44 
 Acuson Sequoia 14 
 Philips Medical Systems EPIQ 7C 14 
 GE Vingmed Ultrasound Vivid E9 11 
 Philips Medical Systems HD15 11 
 GE Vingmed Ultrasound Vivid E95 4 
 GE Vingmed Ultrasound Vivid i 2 
 Other <1 
Patients 
 Age (years) 5717 
 Sex (% Female) 55 

 
 



 Table S2:  Characteristics of Studies Used to Train View Classification Model 
 
 
Year 
 2017 76 
 2016 66 
 2015 15 
 2014 35 
 2013 38 
 2012 19 
 2011 10 
 2010 and before 18 
 Total 277 
Manufacturer (%) 
 Philips Medical Systems ie33 36 
 Acuson Sequoia 36 
 GE Vingmed Ultrasound Vivid E9 11 
 Philips Medical Systems HD15 9 
 Philips Medical Systems EPIQ 7C 4 
 Other 4 
Patients 
 Age (years) 5716 

 Sex (% Female) 68 
 
 
  



Table S3:  Characteristics of Studies Used to Train Segmentation Models for Individual Views 
 

View   

A2c   

 Number of  images 214 

 Year of  study  
  2017 2 

  2016 20 

  2015 18 

  2014 43 
  2013 61 

  2012 29 

  2011 15 

  2010 and bef ore 26 

 Patients 
  Age (y ears) 6212 

  Sex (% Female) 77 

A3c   

 Number of  images 141 

 Year of  study  

  2017 141 
 Patients 

  Age 6115 

  Sex (% Female) 52 

A4c   

 Number of  images 182 

 Year of  study  
  2016 26 

  2015 9 

  2014 26 

  2013 53 
  2012 19 

  2011 19 

  2010 and bef ore 30 

 Patients 

  Age (y ears) 5914 

  Sex (% Female) 65 

PSAX   

 Number of  images 124 

 Year of  study  

  2017 6 

  2016 20 
  2015 6 

  2014 9 

  2013 36 

  2012 12 

  2011 13 
  2010 and bef ore 22 

 Patients 

  Age (y ears) 5916 

  Sex (% Female) 52 

PLAX   

 Number of  images 130 
 Year of  study  

  2017 3 

  2016 50 

  2015 18 
  2014 24 

  2013 8 

  2012 8 

  2011 8 

  2010 and bef ore 9 
 Patients 

  Age (y ears) 6115 

  Sex (% Female) 85 

 

  



Table S4:  Characteristics of Echocardiograms Used to Validate Measurements of Structure and Function 

 

Year 
 2017 4797 
 2016 2085 
 2015 335 
 2014 1352 
 2013 54 
 2012 37 
 2011 5 
 2010 and before 1 
 Total 8666 
Manufacturer (%) 
 Philips Medical Systems ie33 49 
 GE Vingmed Ultrasound Vivid E9 11 
 GE Vingmed Ultrasound Vivid E95 5 
 Philips Medical Systems HD15 13 
 Philips Medical Systems EPIQ 7C 

GE Vingmed Ultrasound Vivid i 
20 
2 

 Other <1 
Patients 
 Age (years) 5818 
 Sex (% Female) 50 

 

 
  



 

Table S5:  Characteristics of Echocardiograms Used to Train HCM Classification Model 
 
 Cases Controls p-value 
   
Year  - Number of studies (%)   
 2017 62 (13) 364 (16)  
 2016 81 (16) 414 (18)  
 2015 59 (12) 240 (11)  
 2014 42 (8) 210 (9) 0.21 
 2013 55 (11) 189 (8)  
 2012 47 (9) 209 (9)  
 2011 52 (11) 223 (10)  
 2010 and before 97 (20) 399 (18)  
Manufacturer (%)   
 Philips Medical Systems iE33 28 27  
 Acuson Sequoia 33 32  
 GE Vingmed Ultrasound Vivid E9 16 16 0.84 
 Philips Medical Systems HD15 12 14  
 Philips Medical Systems EPIQ 7C 5 6  
 GE Vingmed Ultrasound Vivid i 3 2  
 GE Vingmed Ultrasound Vivid E95 2 2  
 Other 0 1  
Patients   
 N (unique patients/studies) 260/495 2064/2244  
 Age (years) 5814 5715 0.63 
 Sex (% Female) 44 47  
 Genotype Positive (%) 18 0  

  



Table S6:  Characteristics of Echocardiograms Used to Train Amyloid Classification Model 
 
 Cases Controls p-value 
   
Year  - Number of studies (%)   
 2017 21 (12) 121 (15)  
 2016 29 (16) 147 (18)  
 2015 37 (21) 144 (18)  
 2014 17 (9) 86 (7) 0.89 
 2013 14 (8) 57 (8)  
 2012 14 (8) 63 (7)  
 2011 14 (8) 55 (7)  
 2010 and before 33 (18) 132 (16)  
Manufacturer (%)   
 Philips Medical Systems iE33 52 52  
 Acuson Sequoia 32 30  
 GE Vingmed Ultrasound Vivid E9 5 6 0.99 
 Philips Medical Systems HD15 3 3  
 Philips Medical Systems EPIQ 7C 7 8  
 GE Vingmed Ultrasound Vivid i 1 1  
Patients   
 N (unique patients/studies) 81/179 771/804  
 Age (years) 6511 6611 0.36 
 Sex (% Female) 22 23  

 
  



 

Table S7:  Characteristics of Echocardiograms Used to Train PAH Classification Model 
 

 Cases Controls   
    
Year  - Number of studies (%)    
 2017 117 (20) 564 (23)   
 2016 108 (18) 503 (20)   
 2015 85 (15) 285 (11)   
 2014 64 (11) 297 (12) 0.20  
 2013 54 (9) 190 (8)   
 2012 54 (9) 194 (8)   
 2011 33 (6) 135 (5)   
 2010 and before 69 (12) 323 (13)   
Manufacturer (%)    
 Philips Medical Systems iE33 50 51   
 Acuson Sequoia 24 25   
 GE Vingmed Ultrasound Vivid E9 10 9 0.65  
 Philips Medical Systems HD15 6 5   
 Philips Medical Systems EPIQ 7C 8 8   
 GE Vingmed Ultrasound Vivid i 2 1   
 Other 0 1   
Patients    
 N (unique patients/studies) 104/584 2180/2487   
 Age (years) 5112 5113 0.62  
 Sex (% Female) 82 80   

 

 

 
  



Table S8:  Characteristics of Echocardiograms Used for Cardiotoxicity Study of Chemotherapy  

 

Year 
 2017 18 
 2016 53 
 2015 119 
 2014 220 
 2013 173 
 2012 137 
 2011 83 
 2010 and before 102 
 Total 890 
Manufacturer (%) 
 Philips Medical Systems ie33 49 
 GE Vingmed Ultrasound Vivid E9 9 
 GE Vingmed Ultrasound Vivid E95 <1 
 Philips Medical Systems HD15 4 
 Philips Medical Systems EPIQ 7C 

Acuson Sequoia 
1 
37 

Patients 
 Age (years) 5511 

 Sex (% Female) 100 
 

 
  



 
 
Table S9:  Numbers of Echocardiogram Videos Labeled to Train View Classification Model 
 
View Number of videos labeled 
Parasternal  
 Long axis – remote 91 
 Long axis 456 
 Long axis – zoom of left atrium 88 
 Long axis – centered over left atrium 78 
 RV inflow 95 
 Short axis at apex 21 
 Short axis at papillary muscle 458 
 Short axis at mitral valve 114 
 Short axis at aortic valve 263 
 Short axis at aortic valve - zoom 106 
Apical  
 Apical 2-chamber – no occlusions 465 
 Apical 2-chamber – occluded left atrium 266 
 Apical 2-chamber – occluded left ventricle 30 
 Apical 3-chamber – no occlusions 235 
 Apical 3-chamber – occluded left atrium 103 
 Apical 3-chamber – occluded left ventricle 25 
 Apical 4-chamber – no occlusions 770 
 Apical 4-chamber – occluded left atrium 314 
 Apical 4-chamber – occluded left ventricle 57 
 Apical 5-chamber 191 
Subcostal All subcostal views 422 
Suprasternal All suprasternal views 85 
Other Views with Doppler, IV contrast, could not classify 2530 
Total  7168 

  



Table S10:  Internal measures of consistency for echocardiographic structure and function measurements. 
Spearman correlation coefficients are listed along with a p-value for a null hypothesis significance test. 
 
 

Comparison N Correlation – 
Manual vs.  
Manual 
(p-value) 

Correlation – 
Automated vs. 
Automated 
(p-value) 

Left atrial volume vs. left ventricular mass  4012 0.54 (<2e-16) 0.56 (<2e-16) 
Left ventricular mass vs. left ventricular diastolic volume 5874 0.62 (<2e-16) 0.61 (<2e-16) 
Left ventricular mass vs. left ventricular systolic volume 5856 0.58 (<2e-16) 0.55 (<2e-16) 
Left atrial volume vs. left ventricular diastolic volume 4748 0.48 (<2e-16) 0.56 (<2e-16) 
Left atrial volume vs. left ventricular systolic volume 4738 0.46 (<2e-16) 0.49 (<2e-16) 
Left atrial volume vs. left ejection fraction 4720 -0.22 (<2e-16) -0.23 (<2e-16) 
Left ventricular mass vs. global longitudinal strain 243 -0.16 (0.01) -0.27 (<2e-16) 
Left ventricular mass vs. left ejection fraction 5123 -0.28 (<2e-16) -0.28 (<2e-16) 
Left ventricular diastolic volume vs. global longitudinal 
strain 

326 -0.15 (0.006) -0.17 (0.002) 

Left ventricular systolic volume vs. global longitudinal 
strain 

326 -0.29 (<2e-16) -0.27 (<2e-16) 

Left ventricular ejection fraction vs. global longitudinal 
strain 

251 0.37 (<2e-16) 0.32 (<2e-16) 

 
 
  



 Supplemental Figures 
 

 
 
Figure S1:  Bland-Altman plot for 110 studies from a polycystic kidney disease cohort (PKD).  
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Figure S2:  Frequency distribution of maximum probabilities of A4c view class for 10524 studies.  
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