Figure S1.

Figure S1. Competitive phagocytosis is dynamic and subsequent genetic screen for linker cell degradation mutants. Related to Figures 1, 2 and 4.

(**A-F**) Additional movie frames of animal shown in Figure 1, demonstrating back-and-forth tugging events leading to linker cell splitting. Scale bar, 10 μ m.

(**G-J**) Linker cell splitting correlates with loss of mKate2-PH, an open phagosome marker. Scale bar, 10 μ m. (**G-H**) Arrowhead, mKate2-PH plasma membrane marker around linker cell prior to cell splitting (**I-J**) Caret, mKate2-PH plasma membrane marker absent from phagosome after cell splitting.

(K) Genetic screen scheme.

(L-N) Artificial insemination procedure. (L) Needle filled with buffer plunged into a 24h mutant adult male gonadal cavity. Spermatids automatically flow into the needle (arrow). (M) Needle aligned with a wild type hermaphrodite vulva (arrowhead). (N) Needle inserted into the vulva and spermatids released. Released spermatids fill the hermaphrodite gonadal cavity (arrows).

Figure S2.

Figure S2. RAB-35, RME-4, and TBC-10 reagents and interactions. Related to Figure 2.

(**A**) *rme-4* gene locus. Pink diamonds, locations of point mutations. Yellow box, deletion allele *tm1865*.

(B) Histogram details as in Figure 2b.

(**C**) *rme-4* translational reporter expression. Arrowhead, linker cell. Caret, U.lp or U.rp cell. Top: GFP. Bottom: DIC. Scale bar, 10 μ m.

(**D**) *rab-35* gene locus. Yellow box, deletion allele *tm2058*. Pink diamonds, point mutations. Red octagon, early stop allele *b1013*.

(E) *rab-35* translational reporter expression. Arrowhead, linker cell. Caret, U.lp or U.rp cell. Top: GFP. Bottom: DIC. Scale bar, 10 μ m.

(**F**) Yeast two-hybrid assay with LexA-RAB-35[S24N] (GDP) as bait, and Gal4-AD (GAD) empty vector, GAD-RME-4A, or GAD-RME-4B as prey. Top: histidine present. Bottom: histidine absent. Growth on -His plates, physical interaction.

(G) Histogram details as in (B).

(H) *tbc-10* transcriptional reporter. Arrowhead, linker cell. Caret, U.I/rp cells. Top: GFP. Bottom: DIC. Scale bar, 10 μm.

Figure S3.

Figure S3.Characterization of stereotypical events during linker cell clearance in rab-35 and arf-6 mutants. Related to Figures 1, 2, and 4.

(A-I) Strains contain linker cell reporter [*mig-24*p::Venus], U.I/rp cell reporter [*lin-48*p::mKate2], *him-5*(*e1490*). Dots, individual events in single animals in hours with respect to first contact. X, event did not occur; not factored into statistical analysis. Bars, mean \pm std. Statistical significance, Student's t-test.

Figure S4.

Figure S4. RAB-5 and RAB-7 do not sustained around the phagosome membrane in the absence of RAB-35. Related to Figure 3.

(**A-C**) Localization of mCh-RAB-5 (top) within the U.I/rp cells examined during linker cell (YFP) death and degradation in a *rab-35(b1013*) animal. Bottom: linker cell, green; mCh-RAB-5, magenta. Scale bar, 5 μ m. (**D**) Ratio of average fluorescence intensity on phagosome membrane over the cytoplasm in hours after the first contact of animal shown in adjacent images. Logarithmic scale, where 1 indicates equal amount of cytoplasmic and phagosome membrane bound fluorescence. Any data point with a ratio below 0.5 indicated with a diamond and dotted line. (**E-G**) Imaging details as in (**A**), except that mCh-RAB-7 is imaged in a *rab-35(b1013)* animal (top). Bottom: linker cell, green; mCh-RAB-7, magenta. (**H**) Same details as in (**D**).

efa-6(ok3533); arf-6(ns388)

)

Figure S5. CNT-1/ACAP2 and EFA-6/EFA6 regulate ARF-6. Related to Figures 4 and 6.

(**A**) *arf-6* genomic locus. Yellow box, deletion alleles. Caret, single nucleotide insertion allele *ns764*. Pink diamonds, point mutations.

(**B**) Histogram details as in Figure 2b.

(**C**) *arf-6* translational reporter expression. Arrowhead, linker cell. Caret, U.Ip or U.rp cell. Top: GFP; bottom: DIC. Scale bar, 10 μm.

(D-F) Expression reporter for *arf-6*(*ns388*), and *cnt-1*.

(**G**) Histogram as in B. UCp = lin-48p. LCp = mig-24p. Error bars represent standard error of the proportion or standard error of the mean. #, significantly different from both *cnt-1(gk899634)* and wild type. ^, only two lines out of three show significant rescue.

(H) Histogram as in B. UC*p* = *lin-48*p. LC*p* = *mig-24*p. Error bars represent standard error of the proportion or standard error of the mean. #, significantly different from both *efa-6(ok3533)*; *arf-6(ns388)* and *arf-6(ns388)*. ^, only one line out of three show significant rescue.

(I) *efa-6* transcriptional reporter. Annotations as in (C).

Figure S6. RAB-35 and ARF-6 are in the same genetic pathway. Related to Figure 7.

(A-E) Histogram details as in Figure 2B. $\Delta G2$ = deletion of glycine2, necessary for myristoylation. #, (A) significantly different from single mutants, (C) significantly different from both *rab-35(b1013)*; *arf-6(tm1447)* and *rab-35(b1013)*, or (E) significantly different from both *arf-6(tm1447)* and *arf-6(ns388)*. ^, only 2/4 lines showed significant rescue. (F) RAB-35:GTP promotes linker cell degradation by interacting with the ARF-6 GAP CNT-1. CNT-1 is required for turning ARF-6 off and removing it from the membrane. ARF-6:GTP inhibits linker cell degradation. GAP, GTPase activating protein. GEF, guanine nucleotide exchange factor.

Genotype	% linker cell corpses	Ν
	in 24h adults	
qls56[LCp::GFP]	12 ± 3.2	100
nsls65[LCp::Venus]	11 ± 3.1	100
<i>nsls60</i> [LCp::Venus]	5 ± 2.1	103
arf-6(ns388); nsIs65	64 ± 4.8	101
_rab-35(b1013); nsls65	79 ± 4.0	102
nsls589[UCp::mKate2];	5 ± 5.0	101
arf-6(ns388); nsls589; nsls65	57 ± 6.6	56
_rab-35(b1013);	54 ± 8.4	35
nsls653[UCp::mKate2-PH]; nsls65	1 ± 1.0	104
<i>nsls60; </i>	0	100
<i>nsls592</i> [UCp::mCh-RAB-7];	8 ± 2.8	91
nsls586[UCp::CTNS-1-mKate2]; nsls65	3 ± 1.7	101
nsls650[LCp::mKate2]	4 ± 2.0	101
<i>nsls595</i> [UCp::YFP-RAB-35];	2 ± 1.4	101
rab-35(b1013); nsls595; nsls650	1 ± 1.0	100
arf-6(tm1447); nsls595; nsls650	3 ± 1.7	101
nsls625[UCp::ARF-6-YFP]; nsls650	10 ± 3.9	59
arf-6(tm1447);	4 ± 2.6	55
rab-35(b1013);	51 ± 6.9	53
arf-6(tm1447);	43 ± 5.2	90
_ <i>nsls636</i> [UCp::ARF-6 (D92N)-YFP];	56 ± 4.9	101
rab-35(b1013): nsls713[UCp::YEP-BAB-35]: nsls65	0	53

Table S1. Reporter identity does not affect linker cell degradation (mean \pm SE of proportion). Related to Figures 1-5, 7.

Tab-35(b 1013); nsis 713[0Cp::YFP-RAB-35]; nsis 65 0 53UCp = *lin-48*p; LCp = *mig-24*p, except for *qls56*, which is *lag-2*p. All animals carried a *him-5(e1490)* mutation in addition to the transgenes listed above.

Genotype	Mammalian homolog	% linker cell corpses in 24h adults	Ν
WT		12 ± 3.2	100
ced-1(e1735)	CD91	14 ± 3.4	103
ced-6(n2095) ^a	Gulp	9 ± 2.9	100
ced-7(n1892)	ABĊA	7 ± 2.3	120
ced-2(e1752) ^a	CrkII	$20 \pm 4.0^{*}$	102
ced-5(n1812) ^a	Dock180	12 ± 2.9	125
ced-12(k149)	Elmo	27 ± 4.5*	96
ced-10(n1993)	Rac1	26 ± 4.5*	97
ced-1; ced-5		21 ± 3.2	162
ced-7; ced-10		27 ± 4.5*	98
nuc-1(e1392)	DNasell	31 ± 4.5**	104
cep-1(gk138)	p53	12 ± 3.2	103
ced-8(n1891)	ХК	7 ± 2.5	104
dyn-1(ky51)	dynamin	22 ± 4.1	103
cdc-42(gk388) ^b	Cdc42	17 ± 7.8	23
ttr-52(tm2003)	transthyretin-like	7 ± 2.5	101
ttr-52(tm2078)	transthyretin-like	4 ± 1.9	102
psr-1(ok714)	phosphatidylserine receptor	7 ± 2.5	103
psr-1(tm469)	phosphatidylserine receptor	4 ± 2.6	56
piki-1(ok2346)	PI3K	13 ± 3.4	94
unc-108(n3263)	Rab2	5 ± 2.3	88
sand-1(or552)	Mon1	38 ± 4.9***	97
sand-1(ok1963)	Mon1	58 ± 4.8***	104
<i>rab-7(ok511</i>) ^b	Rab7	79 ± 9.5***	19
<i>rme-1(b1045</i>) ^c	EHD4	19 ± 6.1	42
scav-1(ok2598)	Scarb1	12 ± 5.1	41
scav-2(ok877)	CD36	4 ± 2.7	54
scav-3(ok1286)	CD36	3 ± 2.1	64
scav-5(ok1606)	Scarb1	5 ± 2.9	56
cdh-3(gk178860)	cadherin	13 ± 4.5	56
_cdh-3(pk87)	cadherin	3 ± 2.8	36

Table S2. Canonical apoptotic engulfment genes play a minor role in linker cell corpse removal (mean \pm SE of proportion). Related to Figure S1.

^a*nsls1*[*lag-2*p::GFP, *rol-6*(+)]; ^bStrain maintained with mIn1 balancer; ^c*nsls65*[*mig-24*p::Venus]; *him-8*; *: p < 0.05, Fisher's exact test; **: p < 0.005, Fisher's exact test; **: p < 0.0001, Fisher's exact test. All animals carried a *him-5*(*e1490*) mutation and *qls56*[*lag-2*p::GFP] linker cell marker, unless otherwise noted.

Genotype	% linker cell corpses	Ν	homolog
	in 24h adults		
WT	12 ± 3.2	100	
F23H11.4(gk585084)	8 ± 4.3	39	ARAP1-3/ ArfGAP
F23H11.4(gk165637)	13 ± 3.4	96	ARAP1-3/ ArfGAP
git-1(ok1848)	10 ± 3.9	59	GIT1
git-1(gk392605)	15 ± 5.6	41	GIT1
gap-2(ok1001)	10 ± 4.2	52	SynGAP/RasGAP
cnt-2(gm377)	12 ± 3.2	102	ArfGAP

Table S3. Other putative ARF-6 GAPs have no linker cell defect (mean \pm SE of proportion). Related to Figure 6.

All animals carried a *him-5(e1490*) mutation and *qls56[lag-2*p::GFP] linker cell marker.

not enhance indiations in rab-35 (mean ± 32 of proportion). Herated to Figure 2.				
Genotype	% linker cell corpses in 24h adults	Ν		
WT	12 ± 3.2	100		
ced-1(e1735)	14 ± 3.4	103		
<i>ced-5</i> (<i>n1812</i>) ^a	12 ± 2.9	125		
rab-35(b1013)	74 ± 4.2	105		
rab-35(tm2058)	69 ± 4.6	99		
ced-1; rab-35(b1013)	77 ± 4.2	101		
ced-5; rab-35(b1013)	63 ± 4.8	101		
ced-1; ced-5; rab-35(b1013)	62 ± 4.8	103		
ced-1; rab-35(tm2058)	56 ± 4.9	102		
ced-5; rab-35(tm2058)	58 ± 4.9	102		
ced-1; ced-5; rab-35(tm2058)	63 ± 4.7	104		

Table S4. Mutations in the canonical apoptotic engulfment genes *ced-1* and *ced-5* do not enhance mutations in *rab-35* (mean \pm SE of proportion). Related to Figure 2.

^a*nsls1*[*lag-2*p::GFP, *rol-6*(+)].All animals carried a *him-5*(*e1490*) mutation and *qls56*[*lag-2*p::GFP] linker cell marker, unless otherwise noted.