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I. DISCUSSION ABOUT CHARACTERISTIC TIME SCALES ON THE SYSTEM

The characteristic frequency for giant dipole oscillations has been conjectured to lie

in a range between 0.1 − 10 THz so that the characteristic time for the oscillations is

τosc ∼ ω−1
0 ≃ 10−13 − 10−11s. Recent experiments seem to provide a first evidence of the

existence of collective biomolecule oscillations in this range of frequency in out-of-thermal

equilibrium conditions. The characteristic time scale associated with translational diffusion

of biomolecules can be estimated by

τtrs ≈
δR2

6Dtrs

(1)

where δR is the tolerance in defining center of mass position of two biomolecules and Dtrs is

the self-diffusion coefficient of a biomolecule. We are interested in studing collective phenom-

ena emerging due to long-range interactions in “diluted” system, meaning that the average

intermolecular distance 〈R〉 ≈ 10−7m is much larger then the characteristic molecular linear

dimension scale λbio & 10−9m of biomolecules: this allows to consider δR ≈ λbio. Using

Einstein’s formula for Brownian self-diffusion coefficient Dtrs = kBT/(6πηWλbio) in eq. (1)

we obtain

τtrs ≃
6πλ3

bio

kBT
& 3× 10−9s ≈ 102τosc. (2)

This makes plausible the hypothesis that the center of mass of each biomolecule can be

considered as a parameter and not a dynamical variable. Analogously, the characteristic

time for biomolecules rotational diffusion has been estimated using

τrot ≈ D−1
rot =

(

kBolT

8πηWλ3
bio

)

−1

& 5× 10−9s ≈ 102τosc . (3)

It follows that also diffusive rotation can be neglected on time scales characteristics for giant

dipole oscillations and the orientation of dipoles can be assumed to be initially fixed.

II. LEVEL OF SYNCHRONIZATION IN THE SYSTEM

The collective evolution of the population and in particular the level of coherence is

usually characterized in terms of the macroscopic field

ρ(t) = r1(t)e
iΦ(t) =

1

N

N
∑

j=1

eiθj(t), (4)
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where the modulus r1 is an order parameter for the synchronization transition being one

(O(N−1/2)) for synchronous (asynchronous) states, while Φ is the phase of the macroscopic

indicator [1]. However, in our case, the molecules are pivoted to the center of mass and can-

not rotate: the effective degree of freedom of these objects consists in an elongation/shrinkage

along the direction identified by the mutual distance between the two centers of charges.

Therefore it is not possible to describe the movement of the dipole in terms of an oscillator

rotating along the unit-circle via the identification of a time-dependent phase. The solution

that we have adopted is to calculate the phase of the single molecule by using the inversion

formulas

sin θi =
xi − x0i

√

v2i + (xi − x0i)2
, cos θi =

vi
√

v2i + (xi − x0i)2
(5)

to associate a phase θi ∈ [−π, π] according to

θi =























arcsin(sin θi) if cos θi ≥ 0

π − arcsin(sin θi) if sin θi > 0 ∧ cos θi < 0

−π − arcsin(sin θi) if sin θi < 0 ∧ cos θi < 0.

(6)
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Figure 1: Synchronization properties of the system. Order parameters r1 (a), r2 (b) as a function

of time for different coupling constants. Panel (c): Time-averaged order parameters as a function of

the coupling constant K. The parameters values used for these simulations are: Ωi = 0.01, xi0 = 5,

Ωfrict,i = 0.97 (for every i = 1, . . . , N), Ωpul = 0.1, ANE = 0.011, N = 50.

In the following we will present the analysis done for two sets of parameters, according to

what we have already shown in Sec. III (Main Text). As a first set of parameters we consider
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those corresponding to Figs. (1-4) in the main text. In this case the calculation of the

order parameter r1 does not lead to the identification of emergent (phase) synchronization

in the system; in particular r1 does not show any dependence on the coupling constant

(see Fig. 1, panels (a) and (c)), as we would expect when the molecules are interacting

with increasing strength. On the other hand if we calculate the order parameter usually

employed to identify the emergence of 2-clusters (r2(t) = |
1

N

N
∑

j=1

ei2θj(t)|), we clearly observe

a transition to synchronization already for small coupling constants (see Fig. 1 (c)). This

is confirmed if we calculate the distribution of positions and velocities of the molecules

(see Fig. 2, panels (a)-(i)). In particular, if we look at the phase space (x, v) it emerges

clearly that the system splits naturally in 2 clusters and the distance between the clusters

increases if the single elements are coupled. The probability distribution functions of the

positions reveal an increase of the elongation towards values that turn out to be not realistic

from a bio-physical point of view if the coupling constant is too big (K ≥ 1). Only the

probability distribution profile of the velocities remains unchanged if the coupling constant

and, therefore, the distance among the dipoles, is changed.

A better insight can be achieved if we looked at the average values and probability

distribution functions of the phases. In absence of coupling the average phases are distributed

in the interval (−0.2, 0.2) (see Fig. 3 (a)). However, once the coupling is set, the profile of

the time-averaged phases does not flatten sufficiently to show two distinct plateaus at two

different phase values, thus allowing us two identify two phase-synchronized clusters (see

Fig. 3 panels (d), (g)). Probably the approximation we have used to derive the phases as

a function of positions and velocities (eq. 6), assuming still possible to invert the angle-

action variables, is not sufficiently precise to capture the real dynamics of the system. Some

more information can be deduced investigating the collective properties of the system, in

particular by calculating the probability distribution function of the phases and visualizing

the obtained results in terms of the corresponding effective free energy landscape, defined

by F (θ) = − ln(P (θ)), as plotted in Fig. 3 panels (c), (f), (i). The probability distributions

of the phases present three peaks in correspondence of the angles θ = 0,−π, π, see Fig. 3

panels (b), (e), (h), where the velocity of the oscillators is maxima; moreover, due to the

formulation we have used, +π and −π are equivalent. This indicates that the system spends

more time in these configurations, therefore we expect that the free energy landscape presents
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Figure 2: Panels (a), (d), (g): snapshots of the velocities of the single dipoles as a function of their

positions for K=0 (a), K=0.1 (d), K=1 (g). Panels (b), (e), (h): probability distribution of the

positions of the dipoles for different coupling constants. The panels refer to K=0 (b), K=0.1 (e),

K=1 (h). Panels (c), (f), (i): probability distribution of the velocities of the dipoles for different

coupling constants. The panels refer to K=0 (c), K=0.1 (f), K=1 (i). The probability distribution

functions are obtained by measuring the corresponding variables at regular time intervals δT during

a long simulation, after discarding an initial transient time. Parameters as in Fig. 1.

two minima, as the system preferably arranges itself along two specific angles. Indeed the

free energy landscape F (θ) presents two peaks at 0,±π, thus suggesting that these angles

are more likely than the others and justifing the splitting in two clusters shown in Fig. 1(c),

where the time-averaged behavior of r2 is reported for increasing coupling strength.

Finally, a second set of parameters is investigated, corresponding to the Figs. (5, 6) shown

in Sec. III (Main Text). Also in this second case the calculation of the order parameter r1

does not lead to the identification of emergent (phase) synchronization in the system. In

addition to this, the emergence of a collective behavior is not identifiable in a straightforward

manner neither looking at the order parameter usually employed to identify the emergence
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Figure 3: Panels (a),(d), (g): time-averaged phases as a function of the node index for K=0 (a),

K=0.1 (d), K=1 (g). Panels (b), (e), (h): probability distribution of the phases of the dipoles

for different coupling constants. The panels refer to K=0 (b), K=0.1 (e), K=1 (h). Panels (c),

(f), (i): Effective free energy landscape F (θ) = − ln(P (θ)) as obtained from the PDF of the phase

P (θ). The panels refer to K=0 (c), K=0.1 (f), K=1 (i). The probability distribution functions

are obtained by measuring the corresponding variables at regular time intervals δT during a long

simulation, after discarding an initial transient time. Parameters as in Fig. 1.

of 2-clusters (r2(t) = |
1

N

N
∑

j=1

ei2θj(t)|), nor at the distribution of positions and velocities of

the molecules (see Fig. 4, panels (b)-(m)). Looking at the phase space (x, v) it does not

emerge a clear separation in synchronized clusters among the dipoles and also the probability

distributions of positions and velocities are simply Boltzmann-distributed, as we expect from

a set of indepent oscillators subjected to a single asymmetric well potential in absence of

coupling. For this second set of parameters the level of noise is much stronger, therefore a

bigger coupling range is investigated. Only for very strong coupling (K=50) we can observe

the emergence of a secondary small cluster in the phase space (x, v) (see Fig. 4(i)) that

leads to a modification of the probability distribution of the positions, that is no more
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simply Boltzmann-distributed, and to an increasing of the average value of r2(t) (see Fig. 4

panels (l) and (b) respectively).
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Figure 4: Synchronization properties of the system. Order parameters r1 (a), r2 (b) as a function

of time for different coupling constants. Panels (c),(f), (i): snapshots of the velocities of the single

dipoles as a function of their positions for K=0 (c), K=5 (f), K=50 (i). Panels (d), (g), (l):

probability distribution of the positions of the dipoles for different coupling constants. The panels

refer to K=0 (d), K=5 (g), K=50 (l). Panels (e), (h), (m): probability distribution of the velocities

of the dipoles for different coupling constants. The panels refer to K=0 (e), K=5 (h), K=50 (m).

The parameters values used for these simulations are: Ωi = 1, xi0 = 5, Ωfrict,i = 0.105 (for every

i = 1, . . . , N), Ωpul = 0.1, ANE = 1.4, N = 50.

In conclusion the features of synchronization are not clearly identifiable in this system:

for small noise levels (that correspond to settle the temperature of the system at T=300K)

clustering effects are visible, enhanced by the proximity in space and confirmed by the shape

of the effective free energy landscape; for higher noise values, phase synchronization cannot

be achieved and it is even not possible to identify some form of cluster synchronization. In

addition to this, the time behavior of the Kuramoto order parameter discards the possibility

of having a synchronized state at the macroscopic level in both cases, since this would

correspond to a constant behavior in time of r1. On the other hand, the irregular behavior

in time of the order parameter r1 suggests a quasi-periodic or a chaotic behavior of the

system at a macroscopic level. However, we have not calculated the maximum Lyapunov
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exponent to discriminate among these two possibilities.
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