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Table S1. Bacterial strains used in this study. 

Strains Characteristics References 

E. coli    
    S17.1λpir conjugative strain for suicide plasmids. (1) 

P. aeruginosa   

    PAO1 

    

Nottingham collection wild type strain. 

 

 

    ∆pqsR PAO1 mutant strain with in frame clear deletion of the 

pqsR gene. 

(2) 

    PAO1 PpqsA::lux PAO1 wild type strain carrying chromosomal insertion of 

the PpqsA::lux transcriptional fusion; TcR. 

(3) 

    PAO1 mini-CTX::lux PAO1 wild type strain carrying chromosomal insertion of 

the  mini-CTX::lux empty vector; TcR. 

 

 

 

 

(3) 

    ∆pqsA PpqsA::lux  PAO1 mutant strain deleted in pqsA gene carrying 

chromosomal insertion of the PpqsA::lux transcriptional 

fusion; TcR (named AQ-Rep). 

(4) 

    ∆lasI PrsaL::lux  PA14 mutant strain deleted in lasI gene carrying 

chromosomal insertion of the PrsaL::lux transcriptional 

fusion (named PA14-R3). 

(5) 

    ∆rhlI PrhlA::lux  PAO1 mutant strain deleted in rhlI gene carrying 

chromosomal insertion of the PrhlA::lux transcriptional 

fusion; KmR (named C4-Rep). 

(6) 

    ∆pqsAH PpqsA::lux 

 

 

  

 

PAO1 double mutant strain deleted in pqsA and pqsH 

genes carrying chromosomal insertion of the PpqsA::lux 

transcriptional fusion; TcR. 

 

(3) 

 

 

    ∆pqsAHR PpqsA::lux 

 

 

  

 

PAO1 triple mutant strain deleted in pqsA, pqsH and pqsR 

genes carrying chromosomal insertion of the PpqsA::lux 

transcriptional fusion; TcR. 

 

(7) 

 

 

     PAO1 PlecA::lux PAO1 wild type strain carrying chromosomal insertion of 

the PlecA::lux transcriptional fusion; TcR. 

(8) 

    ∆pqsR PlecA::lux PAO1 mutant strain deleted in pqsA gene carrying 

chromosomal insertion of the PlecA::lux transcriptional 

fusion; TcR. 

This study 
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Table S2. Clinical isolates used in this study. 

Isolate namea Colonizationb Years of 

colonization 

Phenotypic 

characteristicsc 

Antibiotics 

susceptibilityd 

Residual AQs 

productione 
BG 4 first isolate - frayed R 22 

BG 5 chronic early 2 frayed R 31 

BG 6 chronic middle 6 frayed R 35 

BG 7 first isolate - circular S 25 

BG 8 chronic early 2 circular R 26 

BG 10 first isolate  - frayed S 14 

BG 11 chronic early 3 frayed R 44 

BG 12 chronic middle 5 frayed S 32 

BG 13 first isolate  - frayed MDR 44 

BG 17e chronic early 2 circular R 24 

BG 18e chronic middle 6 circular R 25 

BG 36 chronic early 3 rugose S 32 

BG 56 first isolate  - small R 57 

BG 76 chronic middle 7 mucoid R 23 

BG 80e chronic middle 5 circular R 87 

BG 92e chronic late ≥15 small XDR 12 

BG 93 chronic late ≥15 rugose MDR np 

BG 96 chronic late ≥15 circular R 58 

BG 97 chronic late ≥15 frayed XDR np 

BG 100e chronic late ≥15 small R 67 
 

a CF clinical isolates from the collection of the Bambino Gesú hospital, Rome, Italy. 
b Different categories depending on the year of infection of the clinical isolates in the lung of individuals with cystic 

fibrosis: first isolate; chronic early (from 2 to 3 years); chronic middle (from 5 to 7 years); chronic late (equal or more 

than 15 years). 
c Characteristics observed when clinical isolates were grown as colony biofilms. 
d Criteria to define multi-drug resistant (MDR) and extensively-drug resistant (XDR) bacteria have been taken from 

European Centre for Diseases Prevention and Control (ECDC) web site (http://ecdc.europa.eu/en/Pages/home.aspx): 

MDR, resistant to one or more antibiotics belonging to at least three different classes; XDR, resistant to one or more 

antibiotics belonging to all classes except two or less; S, susceptible to all classes of antibiotics; R, resistant to one or 

more antibiotics belonging to less than three different classes. 
e Residual production of AQs in samples treated with 100 µM clofoctol relative to untreated samples, considered as 

100%. np, strains that do not produce detectable levels of AQs.  



 4 

Table S3. Plasmids used in this study. 

Plasmids Characteristics References 

pME6032 pVS1-p15A shuttle expression (IPTG-inducible) vector; TcR. (9) 

pPqsR-6H pME6032 derivative for IPTG-inducible expression of the PqsR 

protein fused with a 6xHis tag; TcR. 

(7) 

pBBR1MCS-5 

 

shuttle vector for constitutive expression; GmR. (10) 

pBBR-pqsABCD 

 

 

pBBR1MCS-2 derivative for constitutive expression of PqsA, 

PqsB, PqsC and PqsD proteins in P. aeruginosa; KmR. 

(11) 

 

pFD-pqsABCD 

 

 

pBBR1MCS-5 derivative for constitutive expression of PqsA, 

PqsB, PqsC and PqsD proteins in P. aeruginosa; GmR. This 

plasmid was obtained by cloning into pBBR1MCS-5 the SalI-

SacI pqsABCD fragment extracted from pBBR-pqsABCD. 

This study 

 

pMRP9-1 pMRP9 derivative for constitutive expression of GFP in P. 

aeruginosa; ApR/CbR. 

(12) 

 

 

Table S4. Oligonucleotides used in this study. 

Name Sequence (5’-3’) 

FWpqsA GACCGCGAAGGACACACTAT 

FWpqsA TGAACAGATCGTCTTCCCGC 

FWlecA CAGGGCAGGTAACGTCGATT 

RVlecA CAACCCGGTATTGACCGGAA 

FWpchR CTCAGCGCACAGTTCCTTTC 

RVpchR CGAACACCTTGCGAAAGCC 

FWpqsR AACATGTTCCTCCAGGTCATCG 

RVpqsR TGCGCATGTAAGGGATCAGG 

FWpvdS GGAACAACTGTCTACCCGCA 

RVpvdS GTAGCTGAGCTGTGCCTTGA 

FW16S GAGAGTTTGATCCTGGCTCAG 

RV16S CTACGGCTACCTTGTTACGA 

FWPpqsL TCCGCTCGAGGATCGTCACCGTCAACTG 

RVPpqsL TAACTGCAGCGTCATGGATGAGTCTCCG 
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Figure S1 

 

Figure S1. Set up of the PAO1/AQ-Rep coculture system. 

(A) Response of the AQ-Rep biosensor after 3 h (white bars), 5 h (light-grey bars) and 7 h (dark-

grey bars) incubation in LB supplemented with the indicated concentrations of PQS. (B) Activity of 

the AQ-Rep biosensor inoculated at starting optical density (OD600) of 0.4 (white bars), 0.1 (light-

grey bars) and 0.025 (dark-grey bars) after 5 h incubation in LB supplemented with the indicated 

concentrations of PQS. (C) Activity of the AQ-Rep biosensor after 5 h co-incubation with PAO1 

(white bars) or ∆pqsA (grey bars) strains at the indicated starting optical density (OD600). The first 

value refers to the PAO1 or ∆pqsA strains (OD600 from 0.1 to 0.015), the second to the AQ-Rep 

biosensor (OD600 = 0.1). (D) Activity of the PAO1/AQ-Rep (white bars) and ∆pqsA/AQ-Rep (grey 

bars) cocultures after 5 h incubation at 30°C or 37°C in static or shaking (200 rpm) conditions. 

Starting OD600 was 0.1 for the AQ-Rep biosensor and 0.03 for the PAO1 and ∆pqsA strains. For 

(A)-(D), biosensor activity is reported as relative light units (RLU) normalized to cell density 

(OD600); the average of three independent experiments is reported with SD. 
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Figure S2 
 

 

 
 

Figure S2. Primary and secondary screens of the PHARMAKON library. 

(A) PAO1/AQ-Rep activity (bars) and cell density (diamonds) measured after 5 h incubation at 

37°C in shaking conditions in LB supplemented with molecules of the PHARMAKON library, 

indicated with codes from inhibitor 1 (I-1) to inhibitor 17 (I-17), at 20 µM (white bars and 

diamonds) and 200 µM (grey bars and diamonds) concentration. PAO1/AQ-Rep activity and cell 

density measured in the presence of 0.2% and 2% DMSO were considered as 100%. (B) AQ 

production measured in supernatants of the PAO1 strain treated with PHARMAKON library 

compounds, clotrimazole (I-3), clofoctol (I-9) and miconazole (I-14) at 20 µM (white bars) and 200 

µM (grey bars) concentration. AQs were quantified using the AQ-Rep biosensor strain. 
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Figure S3 
 

 

 
 

Figure S3. Effect of the pqs inhibitors on PAO1 growth. 

Growth curves of PAO1 wild type (A) and of the biosensor strain AQ-Rep (B) incubated at 37°C in 

shaking conditions in LB supplemented with 200 µM clotrimazole (blue), clofoctol (green), 

miconazole (purple) or with the corresponding amount of DMSO (red). The average of three 

independent experiments is reported with SD. 

  

1.0 

2.0 

1.5 

0.5 

time (h) 

ce
ll 

de
ns

ity
 (O

D
60

0) 

0 4 2 
0 

6 8 10 12 14 16 18 20 22 24 

1.0 

2.0 

1.5 

0.5 

time (h) 

ce
ll 

de
ns

ity
 (O

D
60

0) 

0 4 2 
0 

6 8 10 12 14 16 18 20 22 24 

A 

B 



 8 

Figure S4 
 

 

 
 

 

Figure S4. Effect of the pqs inhibitors on constitutive bioluminescence. 

Percentage of light emitted by the PAO1 strain carrying the mini-CTX::lux empty vector grown at 

37°C in shaking conditions in LB supplements with 200 µM clotrimazole (white bars), clofoctol 

(light-grey bars), or miconazole (dark-grey bars). Bioluminescence of the same strain grown in the 

presence of DMSO was considered as 100%. The average of three independent experiments is 

reported with SD. 
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Figure S5 
 

 

 
 

 

Figure S5. Effect of the pqs inhibitors on the las and rhl QS systems. 

Effect of clotrimazole (white bars), clofoctol (light-grey bars) and miconazole (dark-grey bars) on 

the PAO1/PA14-R3 (A) and PAO1/C4-Rep (B) coculture systems. PA14-R3: las-specific biosensor 

strain PA14 ∆lasI PrsaL::luxCDABE (5); C4-Rep: rhl-specific biosensor strain PAO1 ∆rhlI 

PrhlA::luxCDABE (6). Bioluminescence of untreated cocultures normalized to cell density is 

considered as 100%. 
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Figure S6 
 

 

 
 

 

Figure S6. Effect of clotrimazole on the mRNA level of pqs-controlled genes. 

Real Time RT-PCR analysis showing mRNA level of the indicated genes in PAO1 treated with 100 

µM clotrimazole (white bars) and in ∆pqsR (grey bars) relative to untreated PAO1. The average of 

three independent experiments is reported with SD. **, p < 0.01; ***, p < 0.001 (ANOVA). 
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Figure S7 
 

 

 
 

 

Figure S7. Competition assay between clofoctol and PQS for binding to PqsR. 

PpqsA::lux activity measured in the AQ-Rep biosensor grown in LB supplemented with different 

concentrations of PQS in the absence (green) or in the presence of 12.5 µM (red) or 50 µM (blue) 

clofoctol. Promoter activity is reported as relative light units (RLU) normalized to cell density 

(OD600). 
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Figure S8 
 

 

 
 

 

Figure S8. Effect of clofoctol on PlecA activity. 

Activity of the PlecA promoter in PAO1 cultures grown in LB supplemented with DMSO 

(untreated) or with 100 µM clofoctol, and in the ∆pqsR culture grown in LB supplements with 

DMSO. PlecA activity in untreated PAO1 is considered as 100%. The average of three independent 

experiments is reported with SD. ***, p < 0.001 (ANOVA). 
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Figure S9 
 

 

 
 

 

Figure S9. Effect of clofoctol on AQ production in P. aeruginosa CF isolates grouped 

according to their antibiotic resistance profile. 

Dot plot showing the inhibition of AQ production in P. aeruginosa CF isolates (filled symbols) and 

P. aeruginosa PAO1 (open square) treated with 100 µM clofoctol, relative to the untreated samples 

considered as 100%. Black lines represent the median values: S, 28.4%; R, 32.6%. AQ production 

in the MDR, XDR and PAO1 strains were 43.5%, 11.6% and 34.3%, respectively. Differences 

between the median values are not statistically significant. Mean results of three independent 

experiments are reported. 
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