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The results of Experiment 1 demonstrated that a manipulation that increased the influence
of internal noise (reducing contrast) for one stimulus freed working memory to store another
stimulus more precisely. We further showed that an existing model of working memory based
on population coding [1, 2] could account for these behavioral results in quantitative detail.
In the neural model, activity associated with the variable noise stimulus scaled with contrast
following a Naka-Rushton function. This function was chosen in earlier work [2] because it
provides a good approximation to the contrast responses of visual cortical neurons [3], as
well as those earlier in the visual pathways, with few free parameters. Here we consider some
alternative accounts of the relationship between stimulus contrast and signal strength, focusing
in particular on models in which the variable noise stimulus is sometimes not encoded at all.
Despite differences, all the following models adhere to the fundamental resource principle that
attenuating (or eliminating) the signal associated with one stimulus results in an increase in
signal strength for other stimuli, and they are therefore all consistent with the main conclusions
of the study. In the event, none of these alternative models were supported over the model

presented in the main text.

Probabilistic encoding model

The first model is the simplest in the class of “all-or-nothing” models (e.g. [4]) that might provide
an alternative account for our data. Responses were derived from a probabilistic mixture of two
types of trial, those on which the variable noise stimulus was encoded and those on which it
was not. Assuming the relative frequency of these two kinds of trial varied with contrast, and if
precision for the low noise stimulus was higher when the variable noise stimulus was not stored
(according to the resource principle), this probabilistic model might produce the appearance of

a continuous change in recall precision with contrast as observed empirically.

We assumed that /ow noise stimuli were always encoded, as were the matching (400% con-
trast) variable noise stimuli; stimuli with 0% contrast were by definition always unencoded.

Stimuli of intermediate contrasts were encoded with varying probability, determined by free

parameters prs%, P100%, P150%-



For encoded stimuli, we modelled recall responses as a circular normal (von Mises) distribution
with precision that depended on the total number of encoded stimuli on that trial. For unen-
coded stimuli, responses were uniformly distributed. As a result, the distribution of responses

for a variable noise stimulus with contrast C' was a mixture with density:

A ~ 1 _
p(0) = pcVM(0; 0, Kpotn) + (2;00) (1)
where VM(0; u, k) is the density function of a Von Mises distribution with mean p and concen-

tration . The response distribution for a low noise stimulus was given by:

p(0) = pcVM(8; 0, kporn) + (1 — pe) VM(B; 0, Ksingie)- (2)

We fit the model using the Nelder-Mead simplex method (fminsearch in MATLAB), and com-
pared it to the population coding model using the Akaike Information Criterion. Maximum
likelihood parameter estimates for this and subsequent models are shown in Table S1. The
probabilistic encoding model was a poorer fit than the population coding model to data from
both the simultaneous version of Exp 1 (AAIC = 188; 7 out of 9 participants; t(8) = 3.13, p =
0.01) and the follow-up sequential version (although with greater intersubject variability: AAIC
= 14; 5 out of 10 participants; t(9) = 0.349). Combining results from simultaneous and sequen-
tial versions of the experiment by summing AIC scores, we obtained strong evidence in favor

of the neural resource model (AAIC = 202).

Probabilistic encoding model with varying precision

We considered the further possibility that the precision of the variable noise stimulus, on those
trials when it was encoded, varied with contrast. We supplemented the probabilistic encoding
model with three free parameters, ({k75%, K100%, K150% }» replacing k.t in Eq. 1 above), that
determined precision of the variable noise stimulus at intermediate contrasts (precision at the
highest contrast was necessarily equal to k.1, because the variable noise and low noise were

physically indistinguishable in that condition; precision at 0% contrast was necessarily zero).



Compared to the neural resource model, the modified probabilistic encoding model was a
poorer fit to the experimental data from both simultaneous (AAIC = 213; 8 out of 9 participants;
t(8) = 3.76, p < 0.01) and sequential (AAIC = 47; 6 out of 10 participants; t(9) = 1.2, p = 0.26)
versions of Exp 1. In line with other comparisons, combining AIC scores provided strong

evidence in favor of the neural resource model (AAIC = 260).

Population coding model with encoding front-end

We next turned our attention to models that attempted to incorporate the possibility of encod-
ing failure into the neural model presented in the main paper. The first was a variant of the
population coding model in which a probabilistic encoding process operated at the “front end”.
We again assumed that low noise stimuli and the matching (400% contrast) variable noise
stimuli were always encoded. For intermediate contrasts, the probability of encoding the vari-
able noise stimulus was determined by one of three free parameters {p75%, P100%, P150% }- TO
model an unencoded variable noise stimulus, we set the neural response (Eqg. 1 in main text)
of neurons dedicated to that stimulus to zero. Due to normalization, all the population activity

was devoted to the low noise stimulus in these cases.

This model gave a consistently poorer account of the experimental data than the unmodified
neural resource model for simultaneous (AAIC = 67; 9 out of 9 participants; t(8) = 3.98, p <
0.01) and sequential versions of Exp 1 (AAIC = 57; 10 out of 10 participants; t(9) = 4.91, p <

0.001). Combined evidence favored the unmodified neural resource model (AAIC = 124).

Population coding model with contrast threshold

Finally, we directly incorporated a threshold contrast for encoding into the neural model. We
replaced the continuous contrast response function (Eq. 3 in main text) with a threshold func-
tion which output 1 if the contrast was above threshold (a free parameter) and 0 if below. This
meant that the neural signal was either evenly distributed between stimuli or allocated solely to

the low noise stimulus, depending on contrast.

The threshold model provided an inferior fit to the data compared to the unmodified neural



resource model, both in simultaneous (AAIC = 90; 9 out of 9 participants; t(8) = 5.54, p <
0.001) and sequential versions of Exp 1 (AAIC = 59; 6 out of 10 participants; t(9) = 1.51, p

= 0.17). Combined AIC scores (AAIC = 149) again favored the unmodified neural resource

model.
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