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Supplementary Note

Model and estimands
The model

Let M be the length of the genome. Given a genotype vector x ∈ RM of an individual sampled randomly
from some population distribution and a vector β ∈ RM of causal SNP effects, we model the phenotype y
with a standard linear model:

y|β, x ∼ N (xTβ, σ2
e). (1)

We assume that the genotypes are standardized in the population, i.e., that E(xm) = 0 and E(x2m) = 1
for all SNPs m. We assume the same of the phenotype: E(y) = 0 and E(y2) = 1. Because our GWAS sample
will be very large, these assumptions are for expositional convenience only.

The last ingredient of our model is the connection between β and the signed functional annotation of
interest v ∈ RM . To get this, we assume that β is sampled from a distribution satisfying

E(β|v) = µv, cov(β|v) = σ2I (2)

where µ and σ are scalars.

The estimands

The first estimand we might be interested in is µ, which would tell us the expected change in the per-
normalized-genotype effect βm of SNP m for every unit increase of vm. However, this estimand depends on
the units of v: if we multiply v by a constant c, then µ is decreased by a factor of c. We therefore introduce
a second estimand, the functional correlation rf , which is defined as the genetic correlation between y and
the 100%-heritable phenotype xT v, i.e.,

rf := corr(xTβ, xT v). (3)

Under our model,

cov(xTβ, xT v) = E(βTxxT v) (4)

= E(β)TE(xxT )v (5)

= µvTRv (6)

where R = E(xxT ) ∈ RM×M is the (signed) population LD matrix of the genotypes, and v is fixed and
known. Since

var(xT v) = E(vTxxT v) = vTRv, (7)

we obtain

rf =
cov(xTβ, xT v)√
var(xTβ)var(xT v)

= µ

√
vTRv

h2g
. (8)

where h2g = var(xTβ) is the SNP-heritability of the phenotype. Note that rf can also be derived under a
model in which v is also modeled as random and jointly distributed with β, in which case rf is equal to a
standard random-effects genetic correlation.1 The choice to model v as fixed here arises from the fact that,
since it is a complicated biological object, we wish to make as few assumptions as possible about its structure.

In addition to µ and rf , we might wish to know how much total phenotypic variance is explained by the
signed contribution of v to β. This parameter, h2v, is defined by

h2v := var(µxT v) = µ2vTRv. (9)

This is equal to the prediction r2 that we would obtain if we tried to predict y from xT v. If we scale h2v by
the total heritability of y, we obtain the proportion of heritability explained by the signed contribution of v,
i.e.,

h2v
h2g

=
µ2vTRV

h2g
= r2f . (10)
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We remark that for annotations with small support, rf and its associated quantities should generally
expected to be small in magnitude. To see this, define h2|v| to be the prediction r2 that we would obtain
if we predicted y from an optimal predictor that was constrained to be zero outside the support of v. By
construction we have h2v ≤ h2|v|, but since h2|v| is the total phenotypic variance explained by SNPs in the
support of v, this implies that r2f = h2v/h

2
g ≤ h2|v|/h

2
g is at most the proportion of heritability explained by

the SNPs in the support of v.

Derivations and description of method
Main derivation

Now suppose that N individuals x1, . . . , xN have been sampled i.i.d. from the population with corresponding
phenotypes y1, . . . yN , and that we are given the vector of marginal correlations between each SNP and the
trait, i.e., we are given

α̂ :=
1

N

N∑
n=1

xnyn ∈ RM . (11)

It is easily shown that E(α̂|β) = Rβ (see Proposition 2 in the Appendix), from which it follows that

E(α̂|v) = E(E(α̂|β, v)|v) (12)
= E(Rβ|v) (13)
= µRv. (14)

This means that naive regression of α̂ on the signed LD profile Rv of v is an unbiased estimator of µ.
However, ordinary least-squares is best powered when the observations have i.i.d. noise. In this regression,
each SNP provides one observation (α̂m, (Rv)m), but under our model the covariance of α̂m and α̂m′ given Rv
is non-zero. Therefore, if we can model this covariance structure properly, we should be able to use generalized
least-squares to reduce variance and increase power. In Theorem 1 of the Appendix, we show that indeed

cov(α̂|v) ≈ σ2R2 +
R

N
=: Ω. (15)

The default version of signed LD profile regression estimates Ω from the reference panel and the chi-squared
statistics of the GWAS in question and then performs generalized least-squares using a pseudo-inverse of Ω
to de-couple correlated errors among SNPs. It can be shown that if a) all causal SNPs are typed, b) sample
size is infinite, and c) R is invertible, this method is equivalent to estimating β via R−1α̂ and then regressing
this estimate on v to obtain µ, which is the optimal approach in that setting. Note that because we generate
P-values for hypothesis testing empirically (see below), we are guaranteed that our generalized least-squares
scheme will remain well-calibrated even if our estimate of the matrix Ω is inaccurate due to, e.g., mis-match
between the reference panel and the study population.

The point estimate arising from the regression described above is an estimate µ̂ of µ. To obtain an
estimate of rf , we plug into Equation 3, estimating h2g using the “aggregate estimator” of heritability2 given
by

ĥ2g :=
|α̂|22 − M

N

1
M5,50

∑
m
̂̀
m

(16)

where |α̂|2 is the `2-norm of α̂, ̂̀m is a reference-panel-based estimate of the LD-score `m :=
∑
m′ R2

mm′ of
SNP m, and M5,50 is the number of causal SNPs with MAF between 5% and 50%. Equation 3 also has
a vTRv term; for convenience we approximate this term by vT v; our simulations show that we do not suffer
from this approximation, and it is empirically quite accurate for our annotations (data not shown).

To estimate h2v/h2g, we use the jackknife to estimate the sampling variance τ̂2 of the statistic r̂f , and
then report r̂f 2 − τ̂2. Though this is an exactly unbiased estimate of h2v only if r̂f is normally distributed
and the jackknife provides an accurate estimate of the sampling variance of µ, our simulations show that it
is very close to unbiased in practice. Note that while we use a jackknife estimate of the variance of r̂f to
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estimate r2f , this is not how we compute P-values for null hypothesis testing; for details of null hypothesis
testing, see below.

To estimate h2v, we simply multiply our estimate of r2f = h2v/h
2
g by our estimate of h2g.

Untyped SNPs

Typically, our set of potentially causal SNPs is much larger than the set of SNPs for which we have GWAS
summary statistics. Signed LD profile works well in such scenarios: it simply uses only the entries of Rv
corresponding to typed SNPs in the regression. Because drastically different sets of typed SNPs require
estimation of Ω anew, we estimate Ω assuming that all non-MHC HapMap3 SNPs are typed, and then
restrict the summary statistics for each trait analyzed to non-MHC HapMap3 SNPs only.

Null hypothesis testing

To test the null hypothesis H0 : µ = 0 (or, equivalently, H0 : rf = 0), we split the genome into approximately
300 blocks of approximately the same size with the block boundaries constrained to fall on estimated re-
combination hotspots.3 We then define the null distribution of our statistic as the distribution arising from
independently multiplying v by one independent random sign for each block. We perform this empirical sign-
flipping many times to obtain an approximation of the null distribution and corresponding P-values. Our use
of sign-flipping ensures that any true positives found by our method are the result of genuine first-moment
effects; if in contrast we estimated standard errors using least-squares theory or a re-sampling method such
as the jackknife or bootstrap, our method might inappropriately reject the null hypothesis only because the
variance of β is higher in parts of the genome where Rv is large in magnitude. This would make our method
susceptible to confounding due to unsigned enrichments, as might arise from the co-localization of TF bind-
ing sites with enriched regulatory elements such as enhancer regions. Additionally, the fact that we flip the
signs of SNPs in each block together ensures that our null distribution preserves any potential relationship
of our annotation to the LD structure of the genome. In choosing how many blocks to use for this procedure,
we took into account that i) the fewer blocks we use the fewer assumptions we make about LD structure and
the faster we can compute P-values, and ii) the more blocks we use the higher the precision of the P-values
that we can obtain. Our choice to use 300 blocks is a compromise between these two considerations.

Controlling for covariates and the signed background model

Given a signed covariate u ∈ RM , we can perform inference on the signed effect of v conditional on u. This
is done by first regressing Ru out of α̂ and out of Rv using the generalized least-squares method outlined
above, and then proceeding as usual with the residuals of α̂ and Rv. This can be done simultaneously for
multiple covariates u.

Unless stated otherwise, all analyses in this paper are done controlling for a “signed background model”
consisting of 5 annotations u1, . . . , u5, defined by

uim = 1 {MAFm is in i-th quintile}
√

2MAFm(1−MAFm)1+αs (17)

where MAFm is the minor allele frequency of SNP m and αs is a parameter describing the MAF-dependence
of the signed effect of minor alleles on phenotype. Based on the literature on MAF-dependence of the
unsigned effects var(βm), we set αs = −0.3.4

Computational considerations
We model the LD matrix R as being block-diagonal, with the block endpoints defined by recombination
hotspots.3 This allows both more statistically efficient estimation of the true Rv as well as more efficient
computation.

For estimating Ω, we use the above block-diagonal decomposition, together with a truncated singular
value decomposition applied in each block. Specifically, we store enough singular vectors to capture 95% of
the spectrum of each LD block. This is a pre-processing step that need only be carried out once per reference
panel, and the relevant outputs of this step for the 1000G Phase 3 Europeans can be downloaded from our
website.
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Additional details of analyses
We provide here additional details of analyses discussed in the main text and Online Methods.

Comparison of blood molecular QTL results to UniProt annotations

We tested whether the set of significant positive SLDP associations for blood eQTL/chromatin QTL were
enriched for (unambiguously) “activating” TFs in UniProt compared to the set of annotations as a whole, of
which 45% corresponded to (unambiguously) “activating” TFs. We did this using a one-sided binomial test.
To account for the correlated nature of our annotations, we assumed independence only among distinct TFs
but not among distinct annotations for the same TF. Using this method, we determined that both sets of
positive associations were highly significantly enriched for (unambiguously) “activating” TFs (P = 7.9×10−43

for eQTL results and P = 1.9× 10−9 for chromatin QTL results).

Conditional analysis for tissue-specific effects in GTEx

For cases in which a P-value for association to either α̂(t) or α̂(t′) was ≤ 10−5 (one order of magnitude
greater than the maximal resolution of of our empirical null hypothesis testing procedure), we replaced that
P-value by a closed-form P-value computed by constructing a z-score out of the estimated value of rf and
its jackknife-based standard error.

Assessment for concordance with absolute expression levels in GTEx tissues

We obtained raw gene expression levels across the GTEx samples as in ref.5 and filtered both the raw
expression levels and our 382 TF binding annotations to the set of 68 TFs that were represented in both
data sets. (This procedure excluded, e.g., POL2, which does not correspond to a single gene.) For each of
the 34 GTEx tissues t in which we detected significant association(s) among these 68 TFs, we then computed
pt, the proportion of the significant TFs in that tissue with a median transcripts per million (TPM) value
greater than 5 across the GTEx samples for that tissue (following ref.6), and qt, the proportion of the
remaining TFs in that tissue with a median TPM value greater than 5 across the GTEx samples for that
tissue. Supplementary Figure 7 contains a plot of pt against qt across tissues t. To evaluate the significance of
the trend across tissues that pt > qt, we compared pT =

∑
t stpt/

∑
t st to qT =

∑
t ntqt/

∑
t nt where st and

nt are the numbers of TFs with significant associations and without significant associations, respectively, in
tissue t. We then rejected the null hypothesis that pT ≤ qT using a one-sided two-sample z-test for difference
in means.

Statistical significance for complex trait analysis

In our complex trait analysis, as in our other analyses, we call significance using a per-trait FDR of 5%,
following standard practice. However, when many traits are analyzed, per-trait FDR control does not imply
global FDR control. This is because in the case of a completely null trait, the guarantee of FDR control
does not imply that there will never be any rejections but rather only that there will be a non-zero number
of rejections at most 5% of the time. Therefore, if enough null traits are analyzed the set of results may be
contaminated by these spurious findings. In the case of independent tests (i.e., uncorrelated annotations)
with FDR controlled by the Benjamini-Hochberg procedure, this can be taken into account7 and the global
FDR can be approximated using the formula

q =
ql(D + T )

D + 1
(18)

where q is the estimated global FDR, ql is the per-trait FDR, D is the observed total number of discoveries at
per-trait FDR ql, and T is the number of traits. This correction is based on the intuition that for a null trait
with independent tests, the Benjamini-Hochberg procedure behaves similarly to a Bonferroni correction, and
so the expected number of rejections per null trait is approximately ql, and the expected number of rejections
for T null traits would be approximately qlT .

Applying this correction to our results yields a global FDR estimate of 7.9%. However, since our an-
notations are dependent, this estimate can be anti-conservative. To see this, imagine a null trait with 100
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perfectly correlated tests. The Benjamini-Hochberg procedure will give more than zero rejections only 5% of
the time, but whenever it rejects it will yield 100 rejections rather than 1. Therefore, the expected number
of rejections is not 0.05 but rather 5. We heuristically corrected for this using the intuition that under
dependent tests, the expected number of false discoveries in a null stratum is not ql but rather ql times the
number of tests conducted per single “independent” test. We estimated the number of independent tests as in
the GWAS literature, by simulating 1,000 independent null traits with a heritability of 0.5, testing each trait
against our 382 annotations, and asking for what S we see at least one p-value ≤ 0.05/S in approximately
5% of the 1,000 null traits. This procedure gave us S = 250. We then estimated the global FDR using the
equation

q =
ql(D + 382T/S)

D + 1
. (19)

This yielded a global FDR of 9.4%.
Throughout this paper, we chose to use the Benjamini-Hochberg procedure rather than more sophis-

ticated procedures such as the Storey-Tibshirani procedure.8 This is because the latter procedure, while
more powerful, is more difficult to analyze in a multi-trait setting in the way that we have done above for
Benjamini-Hochberg, and it controls FDR more noisily when applied in situations with only hundreds (rather
than thousands) of tests.

Pruning 77 significant associations to 12 independent signals in complex trait analysis

To prune our set of 77 significant associations to a set of approximately independent results, we used the
following iterative greedy approach for each trait: we chose the pair of associations whose annotations had
the most strongly correlated signed LD profiles, removed the annotation with the less significant P-value,
and repeated until no annotations in the result set had signed LD profiles that were correlated at R2 > 0.25.
We used correlation between signed LD profiles rather than between the annotations themselves because,
since our method regresses the summary statistics on the signed LD profile rather than the raw annotation,
correlation between signed LD profiles most accurately represents the correlation between the test statistics
for the two annotations. Grouping the results by TF identity gives similar results (13 distinct TF-trait
associations as opposed to 12 independent TF-trait associations; see Supplementary Table 21).

Analysis of diseases and complex traits with annotations corresponding to directional effects
of minor alleles

To verify empirically that our results were not driven by confounding due to directional effects of minor
alleles, we re-analyzed our data using an alternate set of 382 annotations defined using the same set of SNPs
with non-zero effects but with the directionality of effect determined by minor allele coding rather than
predicted TF binding, for SNPs in the bottom quintile of the MAF spectrum. Specifically, for each of the
382 ChIP-seq experiments represented by a set of peaks C, we set

vm = 1 {m ∈ C}u1m (20)

where u1 is the signed background annotation corresponding to SNPs in the bottom quintile of the MAF
spectrum. We then used signed LD profile regression to test for association between each of these 382
annotations and each of our 46 traits, assessing significance as above.

This analysis yielded only 4 significant annotation-trait associations at per-trait FDR<5%, implying that
minor-allele-driven confounding is unlikely to explain our results. (Due to the small number of associations
relative to the number of traits, these 4 minor-allele associations have a global FDR of 92.9% after accounting
for 46 traits.) Furthermore, none of these 4 minor-allele associations overlapped with our set of 77 significant
associations (see Supplementary Table 9b).

Additional interpretation of results
Additional interpretation of BCL11A-Years of education association

As stated in the main text, we observed a positive association between genome-wide binding of BCL11A
and years of education, and the genes putatively regulated in cis by BCL11A to achieve its effect on years
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of education were enriched for cholesterol metabolism genes and mTOR signalling genes (see Table 1).
Regarding the mTOR gene set, the MTOR gene is itself an intellectual disability gene that has been

intimately linked to brain development.9,10 Regarding the cholesterol metabolism gene set, the brain contains
approximately 25% of the body’s cholesterol (mostly as a component of the myelin sheaths that surround
axons)11,12 with defects in brain cholesterol metabolism being linked to central nervous system disease,13,14
and BCL11A has recently been shown to influence (and be influenced by) lipid levels.15–17 Furthermore,
the cholesterol metabolism and mTOR gene-set enrichments may be related, as mTOR has been linked to
cholesterol metabolism,18 including in the developing brain.19

This information can be distilled into three observations: (i) mTOR is tied to intellectual disability
and cholesterol metabolism, (ii) BCL11A is tied to intellectual disability and cholesterol metabolism, (iii)
mTOR signalling genes and cholesterol metabolism genes are enriched among the genes modulated in cis
by BCL11A to affect cognitive function All three of these observations could be parsimoniously explained
by the hypothesis put forward in the main text, that mTOR exerts its effect on intellectual disability by
interacting with BCL11A to influence cholesterol metabolism in the developing brain.

Interpretation of additional results

We discuss other associations in Table 1 that are not discussed in the main text. Three of these associations
support and refine emerging theories of disease, while five are previously unknown. We begin by discussing
the three associations that build on previous knowledge.

First, we detected a negative association between genome-wide binding of CCCTC-binding factor (CTCF)
and risk of systemic lupus erythematosus (see Supplementary Figure 9a and Supplementary Table 12) that
supports an emerging theory of disease. Although there exists anecdotal evidence linking CTCF binding
to lupus risk at a few isolated loci,20–22 these results are susceptible to the effects of LD and pleiotropy,
whereas our approach is able to provide stronger evidence for a causal relationship using genome-wide
evidence involving TF binding at many concordant loci (at least 100; see Table 1). We note that we do not
observe a GWAS signal for lupus at the CTCF locus. This could be because the CTCF gene is under strong
selective constraint (probability of loss-of-function intolerance23 = 1.00, greater than 99.9% of genes), and/or
because of the small sample size of the lupus GWAS. This association therefore demonstrates that signed LD
profile regression can yield gene-disease associations in cases when GWAS is under-powered near the gene in
question due to selection or small sample size. Our MSigDB gene-set enrichments shed additional light on
this relationship: though CTCF has many diverse regulatory functions throughout the genome, the genomic
regions driving the CTCF-Lupus association are most significantly enriched in immune gene sets, with the
two strongest enrichments being targets of NF-κB and genes differentially expressed between two different
stages of myeloid differentiation under knockout of the gene IKZF1 (but not in the presence of IKZF1 ) (see
Supplementary Figure 9a). The latter gene-set enrichment, because it pertains to genes putatively regulated
in cis by CTCF, suggests a detailed mechanism whereby IKZF1 (itself a transcription factor) regulates or
acts in concert with CTCF to activate a broader transcriptional program that opposes myeloid differentiation
and reduces lupus risk. This hypothesis makes three predictions, each of which has evidence in the literature
and/or publicly available data that we analyzed: (i) It predicts that IKZF1 affects Lupus risk; indeed, the
IKZF1 gene lies inside a Lupus GWAS locus.24,25 (ii) It predicts that CTCF affects myeloid development;
indeed, CTCF has been experimentally shown to slow myeloid differentiation.26,27 (iii) It predicts that IKZF1
modulates CTCF activity; indeed, we determined using publically available data28,29 that IKZF1 has ChIP-
seq peaks in the vicinity of the CTCF promoter (see Supplementary Table 16), consistent with a direct effect
of IKZF1 binding on CTCF expression, and IKZF1 ChIP-seq peaks have also been shown to be enriched
for the CTCF motif,30 suggesting that these two TFs may also work in concert at binding sites throughout
the genome. Thus, the association between CTCF binding and lupus that we detected, together with the
associated MSigDB gene-set enrichments, enhances our understanding of the lupus GWAS signal at the
IKZF1 locus by providing evidence for IKZF1 as the causal gene (out of 7 total protein coding genes within
500kb); suggests a mechanism to explain the effect of IKZF1 on lupus; and proposes a regulatory relationship
between IKZF1 and CTCF that unifies disparate molecular evidence for the effects of both of these genes
on myeloid development and ties them jointly to lupus risk.

Second, we detected a positive association between genome-wide binding of ELF1 and Crohn’s disease
(CD). ELF1 is a hematopoietic and immune regulator31 that, as mentioned in the main text, lies in a
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genome-wide significant Crohn’s disease locus in a GWAS of a Japanese population,32,33 along with 10 other
protein-coding genes within 500kb. Our top significant MSigDB enrichment for this relationship was a set of
genes differentially expressed following treatment with the drug MRL24, which is a PPARγ agonist. PPARγ
has been linked to regulation of the colonic antimicrobial response and inflammatory bowel disease in several
studies.34 Moreover, PPARγ agonists have been shown to have clinical efficacy in treating inflammatory
bowel disease,35 with some agents in current clinical use theorized to act in part via this mechanism.35

Third, we detected a positive relationship between genome-wide binding of ETS1 and Crohn’s disease.
ETS1 is known to regulate genes involved in immunity31 and, as mentioned in the main text, the ETS1
gene was recently found to lie in a locus associated with CD36 and IBD,37 along with 6 other protein-coding
genes within 500kb. The top significant MSigDB enrichments for this relationship point to transcriptional
programs associated with EI24 and MYC, both of which play important roles in autophagy38–40 (EI24 is also
known as “autophagy-associated transmembrane protein”). These gene-set enrichments suggest that ETS1
may play a role in mediating the well-known relationship between autophagy and CD.41

We next discuss the five associations that have not previously been observed from GWAS data.
First, we detected a positive association between binding of RNA polymerase II (POL2) and Crohn’s

disease (CD) (Supplementary Figure 9b). This association is surprising given the very broad role of POL2
throughout the genome. However, our MSigDB gene-set enrichments shed some light on the biology un-
derlying this association, with many significant enrichments in immune and immune-related gene sets (see
Supplementary Table 10). In particular, the top two significant gene sets are genes down-regulated upon
immunosuppression and genes involved in cell-cycle regulation (see Supplementary Figure 9b and Supple-
mentary Table 10). Because of the central role of POL2 in gene transcription, these results suggest that
there may exist a large set of immune- or proliferation-related genes whose increased expression contributes
to CD risk. Indeed, CD is an auto-immune disease, and it has been hypothesized that increased expression
is a prominent component of many immune responses since it can be enacted more quickly than decreased
expression.42–44 Furthermore, acute inflammation has been associated in observational studies with CD on-
set,45,46 and recent experimental work47 has shown that the acute inflammatory response in mice is greatly
attenuated by non-specific inhibition of the general-purpose transcriptional machinery containing POL2.
Our result potentially links these two findings, providing evidence that the observational association be-
tween acute inflammation and CD is causal and suggesting that there exists a polygenic liability for acute
inflammation that acts via increased transcription of a large set of immune- or proliferation-related genes
and contributes to CD risk. To better understand the POL2-CD association, we investigated whether any
of the 14 genes comprising the RNA polymerase II protein complex lie inside a CD GWAS locus. We iden-
tified a CD GWAS peak located 28kb from one of these genes, POLR2E. This locus is quite gene-dense (28
protein-coding genes within 500kb; 3 protein-coding genes within 28kb), and a recent large-scale CD fine-
mapping effort48 was unable to nominate any gene as potentially causal. Thus, our POL2-CD association
also nominates a potential causal gene for the CD GWAS association at this gene-dense locus.

The association described above is accompanied by two additional biologically concordant but statistically
approximately independent associations: a positive association between CD and genome-wide binding of
POL2 in a separate cell line, and a positive association between CD and genome-wide binding of TATA-
binding protein (TBP), a component of the transcription pre-initiation complex.

Fourth, we detected a positive association between genome-wide binding of FOS and HDL. In mice, liver-
specific overexpression of the FOS gene leads to increased intrahepatic cholesterol and modulation of genes
in metabolic pathways connected to cholesterol and fatty acid biosynthesis.49 FOS has also been shown to
be up-regulated when HeLa cells are grown in a sterol-depleted medium designed to activate cellular sterol
homeostatic machinery,50 and the AP-1 complex that it forms has been shown to be down-regulated by
high-cholesterol diet in model organisms.51 A different mechanism is suggested by the fact that in humans, a
mutation in the FOS gene is associated with congenital generalized lipodystrophy, a phenotype characterized
by absence of adipocytes.52 Our top (and only) significant MSigDB gene-set enrichment for this association
was genes regulated by NF-κB in response to TNF stimulation. This is potentially consistent with emerging
relationships between NF-κB and FOS,53 as well as between TNF and HDL.54

Fifth, we detected a positive association between E2F1 and Crohn’s disease. E2F1 has roles in immunity,
and E2f1-deficient mice challenged with lipopolysaccharide exhibit an attenuated inflammatory response.55
Additionally, chronic colonic inflammation is associated with release of E2F1 inhibition and activation of
E2F1 target genes.56 Finally, activity of RB, an upstream regulator of the E2F1 pathway, is a highly sensitive
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and specific test for distinguishing Crohn’s disease from ulcerative colitis in some cases, with RB activity
being elevated in Crohn’s disease.57

Note: suggestively significant CTCF associations The relationships we detected between CTCF
binding and both lupus and eczema (see main text) raised the question of whether any other traits had sub-
significant signals of this sort. We investigated this question, with a primary goal of identifying specifically
auto-immune diseases with this property and a secondary goal of identifying any traits with this property.
We determined that beyond lupus and eczema no other auto-immune trait exhibited a suggestive (per-trait
FDR< 25%) association with CTCF binding. However, we note a suggestive positive association between
CTCF binding and red blood cell count (p = 2.7× 10−4; FDR= 11%).

Additional discussion points
Relationship to existing methods

Our method differs from unsigned GWAS enrichment methods2,58–63 by assessing whether there is a system-
atic genome-wide correlation between a signed functional annotation and the (signed) true causal effects of
SNPs on disease, rather than assessing whether a set of SNPs have large effects on a disease without regard
to the directions of those effects. An advantage of this approach is reduced susceptibility to confounding: for
example, an unsigned GWAS enrichment for binding of an immune TF could indicate a causal role for that
TF in the associated disease, or could instead be a side effect of a generic enrichment among cell-type-specific
regulatory elements in immune cells.2 Unsigned enrichments can also be complicated by LD, as functional
elements in LD with binding sites of a TF may contribute to its enrichment if not properly modeled.2 In con-
trast, if alleles that increase binding of the TF tend to increase disease risk and alleles that decrease binding
of the TF tend to decrease disease risk, the set of potential confounders is smaller because a confounding
process has not only to co-localize in the genome with binding of the TF but also to have the property that
alleles that increase the process have a consistent directional effect on binding of the TF.

Our method differs from existing single-locus GWAS methods64–66 in that it enables stronger statements
about causality and mechanism. Regarding causality, this is because a consistent genome-wide directional
effect of SNPs predicted to affect TF binding due to sequence change (across a large set of TF binding
sites; see Table 1) is less susceptible to pleiotropy, LD, and allelic heterogeneity.66,67 The robustness of
our method to these potential confounders is also greater than that of genetic correlation and Mendelian
randomization1 (MR) analyses, which can be confounded by reverse causality and pleiotropic effects68–70
(and which would scale poorly because they would require TF ChIP-seq in many individuals for every
TF/cell-type pair studied). The reason that our method is not confounded by reverse causality is that each
of our annotations is produced in a cell population that is isogenic and therefore does not have variance in
genetic liability for any trait. In other words, our annotations provide ideal instrumental variables for the
effect of TF binding on the trait of interest because they are created not by naively correlating SNPs with
TF binding but rather by examining the effect of each SNP on local DNA sequence.

Local versus global disease mechanisms

Since the associations we find involve a consistent net direction of effect of TF binding on a trait throughout
the genome, they cannot be explained by a local model and therefore represent evidence for the existence
of transcriptional programs and their relevance to complex traits. This is of basic interest, but it also
has therapeutic relevance: if a TF causally affects a trait but the TF is not druggable due to its nuclear
localization or large DNA- and protein-binding domains,71,72 then the local model suggests targeting a
downstream gene, whereas the genome-wide model instead suggests targeting an upstream regulator since
the causal link between TF and trait is mediated through a large number of downstream genes. (We
emphasize that a significant result for our method does not imply that all binding events of the TF in
question affect disease via activation of a single transcriptional program; rather, it implies that there exists
a program that is widespread enough that we observe its effect on disease in a large number of locations in
the genome; see Table 1 and Supplementary Figure 8.)
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Analysis with annotations from DeepSEA, GTRD, and HOCOMOCO

Although we constructed our predicted TF binding annotations using the neural-network predictor Basset,73
there exist many other effective methods for making such signed predictions58,74–80 and many other data sets
on which to train them.81–83 In an initial effort to assess these, we repeated our analyses of molecular traits in
blood, gene expression in 48 GTEx tissues, and 46 diseases and complex traits using annotations generated via
three other approaches: 382 annotations generated using the DeepSEA neural-network predictor76 applied
to the same ENCODE ChIP-seq data that we analyzed using Basset; 184 annotations generated using
the Basset predictor trained on a larger but noisier set of meta-analyzed ChIP-seq data from the Gene
Transcription Regulation Database81 (GTRD) followed by our Basset QC procedures; and 276 annotations
generated using position-weight matrices (PWMs) from the Homo sapiens Comprehensive Model Collection82
(HOCOMOCO), which are based in part on data from the GTRD. (See below for additional detail on how
these annotations were constructed.)

Results are reported in Supplementary Tables 17, 18, and 19, respectively, and summarized in Supple-
mentary Table 20. For the 382 DeepSEA annotations, we obtained results similar to our primary set of
382 Basset annotations, including replication of many of our top results (see Supplementary Figures 10 and
11 and Supplementary Table 17); intriguingly, we also determined that the concordance between signed
LD profile regression results using Basset and DeepSEA was greater than the concordance between Basset
and DeepSEA at the level of annotations (see Supplementary Figure 12), suggesting that the signal that is
shared between the predictions made by the two methods is indeed biological. The DeepSEA annotations
produced fewer significant associations in total (see Supplementary Table 20), although this comparison was
restricted to annotations passing our Basset QC procedures, including a filter on Basset prediction accuracy
(see Supplementary Figure 11). The 184 GTRD annotations produced fewer significant annotations than
either set of annotations created using ENCODE data, though they did identify new associations, espe-
cially in GTEx eQTL data (see Supplementary Tables 18 and 20). For the 276 PWM-based annotations
from HOCOMOCO, we again observed correlation between results using PWMs and results using Basset
(see Supplementary Figures 13 and 14), though this correlation was weaker than the correlation between
the DeepSEA results and the Basset results. We identified fewer significant associations overall using the
PWM-based annotations than we did using the more sophisticated neural-network based annotations (see
Supplementary Tables 19 and 20), providing evidence that the latter methods can provide a scientifically
meaningful increase in performance.

Other potential biological sources of signed annotations

Our method could be used to link disease to biological processes beyond TF binding. For example, sequence-
based models can also produce signed predictions of DNase I hypersensitivity,73,75,76 histone modifica-
tions,73,76 splicing,77,84 and transcription initiation.85 Additionally, allele-specific molecular assays, massively
parallel assays, and CRISPR screens are increasingly yielding high-resolution experimental information about
the effects of genetic variation on gene expression86–91 as well as cellular processes such as growth92–94 and
inflammation.95 Finally, perturbational differential expression experiments can yield signed predictions for
the relationships of genes to a variety of biological processes such as drug response,96 immune stimuli,97 and
many others.98 Though converting such data to signed functional annotations will require care, doing so
could allow us to leverage them to make detailed statements about disease mechanism.

Additional limitations of signed LD profile regression

First, although we have shown our method to be robust in a wide range of scenarios, we cannot rule
out the possibility of un-modeled directional effects of minor alleles on both trait and TF binding as a
confounder; however, our empirical analysis of real traits with minor-allele-based signed annotations suggests
that directional effects of minor alleles are very unlikely to explain our results (see Supplementary Table 9b).
Second, our results are limited by the quality of the annotations we are able to produce. For example, TF
binding is easier to measure in open chromatin and so it may be the case that our annotations for activating
TFs are more representative of underlying biology — and therefore better powered — than our annotations
for repressing TFs. Third, our method is not well-powered to detect instances in which a TF affects trait
in different directions via multiple heterogeneous programs. Fourth, the effect sizes of the associations to
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diseases and complex traits that we report are small in terms of the estimated values of rf , which range
in magnitude from 2.4% to 8.9% (recall that rf is analogous to a genetic correlation; see Supplementary
Table 9a), although signals of this size for predicted TF binding could be indicative of much stronger
associations, e.g., with true TF binding, TF expression, TF phosphorylation, or TF binding in specific
subsets of the genome. We further note that the magnitude of the signals that we detect is commensurate
with the very small number of SNPs in our annotations. Specifically, r2f divided by the proportion of SNPs
in an annotation quantifies how much heritability the signed TF binding signal that we detect explains as
compared to the total heritability explained by a random set of SNPs of the same size. This ratio is as
large as 3.5x (see Supplementary Table 9c), implying that our signed TF binding signals can account — in a
signed fashion — for substantial trait heritability relative to the proportion of SNPs. Fifth, our annotations
are constructed by testing each minor allele in the context of the reference genome and separately from
variation at all other SNPs, rather than taking into account potential non-linear interactions between nearby
SNPs;58 this is a source of reduced power but not increased false positive rates. Sixth, though we detected
many significant associations overall, there were many diseases and complex traits, including schizophrenia,
height, and blood cell traits, for which we did not detect any significant associations using our Basset TF
annotations. We believe that three factors may contribute to this: (i) As we observed here and as others have
noted as well,99 auto-immune traits appear to have a stronger association to TFs than other traits, at least
for the TFs on which we have systematic, high-quality ChIP-seq data, and these traits comprised only 8 out
of 47 (17%) of the diseases and complex traits in our study; it may be that genome-wide directional effects of
these TFs are not as prominent a mechanism for other traits. (ii) We construct our annotations by annotating
all SNPs in the ChIP-seq peaks for the TF in question; it could be that in many cases these annotations
represent multiple opposing or unrelated transcriptional programs, and that restricting them to more specific
sets of SNPs would reveal additional genome-wide directional effects. (iii) Genome-wide directional effects
may be contingent on annotations constructed using data generated in the “correct” cellular context (beyond
the set of cell lines analyzed in this paper). It is possible that additional signed TF-trait associations will
be identified as higher-quality functional data sets become more available and molecular hypotheses become
more detailed.

Creation of additional annotations using DeepSEA, GTRD, and HOCOMOCO
Creation of additional annotations using DeepSEA

For each of the 382 ENCODE TF ChIP-seq tracks used to generate our post-QC Basset annotations, we
obtained predictions for the same track using the DeepSEA method from the authors of that method. We
then created 382 new annotations using the same procedure used to generate the 382 Basset annotations
(see Equation (7) of Online Methods). We analyzed each of these annotations against the blood molecular
QTL, the GTEx eQTL, and the 46 diseases and complex traits; for results, see Supplementary Table 17 and
Supplementary Figures 10 and 12. We also obtained the reported AUPRCs of Basset and DeepSEA on all
691 of ENCODE TF ChIP-seq tracks; these are compared in Supplementary Figure 11.

Creation of additional annotations using GTRD

We downloaded all 482 of the meta-cluster tracks from the GTRD (see URLs) and trained Basset to predict
these tracks jointly with the ENCODE tracks used to train our main Basset predictor. We created 482 anno-
tations from these tracks using the same procedure used to generate the 382 (ENCODE) Basset annotations
(see Equation (7) of Online Methods). Only 149 (31%) of these annotations passed our standard QC filter
(Basset prediction AUPRC > 0.3 and at least 5,000 SNPs with non-zero annotation values). We analyzed
each of these 149 annotations against the blood molecular QTL, the GTEx eQTL, and the 46 diseases and
complex traits; for results, see Supplementary Table 18.

Creation of additional annotations using HOCOMOCO

We downloaded the 402 core human mononucleotide TF binding PWMs from the HOCOMOCO database
(see URLs). We filtered these 402 PWMs to those for which the TF in question had a ChIP-seq track among
the 382 post-QC ENCODE TF binding tracks used to produce our main set of annotations. For each of the
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resulting 58 PWMs, we then created one new annotation for every matching ENCODE TF binding track
by using the PWM to score SNPs inside the ChIP-seq peaks in the matching track. This resulted in 276
annotations. To create an annotation from a PWM and an ENCODE TF binding track, we first computed
a score t(x) for every SNP allele x via t(x) =

∑0
i=−l+1 exp pwmi(x) where l is the length of the PWM, and

where pwmi(a) is the PWM score given by the motif in question to the reference genome sequence with allele
x substituted for the SNP in question and the first position of the PWM placed i bases before the SNP.
(The PWM score of a sequence is the sum of the entries of the PWM specified by the bases comprising each
position of the sequence.100) We then treated these scores as binding predictions and produced an annotation
from them using the same procedure used to generate the 382 Basset annotations (see Equation (7) of Online
Methods). We analyzed each of the resulting 276 annotations against the blood molecular QTL, the GTEx
eQTL, and the 46 diseases and complex traits; for results, see Supplementary Table 19 and Supplementary
Figures 13 and 14.

Appendix: the distribution of GWAS summary statistics
We define the vector α̂ of marginal correlations between SNPs and trait and derive its first two moments
under a variety of relevant models, building up to the signed LD profile regression model.

Definitions

LetM be the number of SNPs in the genome. Assume we have sampled N genotype vectors x1, . . . , xN i.i.d.
from some population distribution, and that the phenotypes y1, . . . , yN of those individuals satisfy

yn = xTnβ + εn (21)

where β ∈ RM is the vector of true causal SNP effects on trait, and εn
iid∼ N (0, σ2

e) are independent of the xn.
We assume throughout this section that genotypes are standardized in the population, i.e., E(xnm) = 0
and E(x2nm) = 1 for all n,m. We assume the same of the phenotype: E(yn) = 0 and E(y2n) = 1 for all n.
These assumptions are for expositional convenience.

Let X ∈ RN×M be the matrix whose n-th row is xTn , and let Y ∈ RN be the vector whose n-th entry
is yn. The vector

α̂ =
XTY

N
, (22)

which has as its m-th entry the in-sample marginal correlation between SNP m and the trait, is the vector
of GWAS summary statistics.

Having defined α̂, we now proceed to derive its first two moments, initially for fixed X and fixed β, and
then for fixed β only. After doing so, we will impose the distributional assumption on β used in signed
LD profile regression and, by marginalizing out β according to this distribution, we will obtain the result
required for this paper.

Derivation for fixed X and fixed β

When both X and β are fixed, the following proposition101 gives the moments of α̂.

Proposition 1. Under the model defined above, α̂ satisfies

α̂|X,β ∼ N

(
R̂β, σ2

e

R̂

N

)
(23)

where R̂ = XTX/N is the sample covariance matrix of the genotypes.
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Proof. Let ε ∈ RN be the vector whose n-th entry is εn. When X and β are both fixed, it is easy to see that

α̂ =
1

N
XTY (24)

=
1

N
XT (XTβ + ε) (25)

= R̂β +
1

N
XT ε. (26)

The result follows from normality of ε, together with E(ε) = 0, and var(XT ε/N) = σ2
eX

TX/N2 = σ2
eR̂/N .

Derivation for random X and fixed β

When working with summary statistics, it is desirable to explicitly model the relationship between the
unobserved individuals and the LD reference panel by assuming the individuals were drawn from a population
distribution whose LD properties we are given by the reference panel. The following result states the moments
of α̂ when we do so. We prove the result assuming Gaussian genotypes, but it can be shown to be robust to
this assumption provided there is a lower bound on minor allele frequency relative to sample size.

Proposition 2. Under the model defined above and assuming Gaussian genotypes, α̂ satisfies

α̂|β ∼
[
Rβ,

1

N

(
R+RββTR

)]
(27)

where R = cov(xn) ∈ RM×M is the population covariance matrix of the genotypes, and the notation [, ] is
used to specify the mean and covariance of the distribution without specifying any higher moments.

Proof. Application of the law of total expectation to the result from Proposition 1 readily gives

E(α̂|β) = E (E(α̂|X,β)|β) (28)

= E(R̂β|β) (29)
= Rβ. (30)

Application of the law of total covariance yields

cov(α̂|β) = E (cov(α̂|X,β)|β) + cov (E(α̂|X,β)|β) (31)

σ2
e

R̂

N
+ cov(R̂β|β). (32)

It is left then only to analyze cov(R̂β|β) = E(R̂ββT R̂)−RββTR. To do so, we note that

cov(R̂β|β)mm′ =
(
E(R̂ββT R̂)−RββTR

)
mm′

(33)

=
∑
i,j

(
E
(
R̂miβiβjR̂jm′

)
−RmiβiβjRjm′

)
(34)

=
∑
i,j

βiβj

(
E
(
R̂miR̂m′j

)
−RmiRm′j

)
(35)

=
1

N

∑
i,j

βiβj (Rmm′Rij +RmjRm′i) (36)

=
1

N
Rmm′

∑
i,j

βiβjRij +
1

N

∑
i,j

βiβjRmjRm′i (37)

=
1

N
Rmm′βTRβ +

1

N

∑
i,j

βiβjRmjRm′i (38)
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where Equation 36 follows from the fact that for Gaussian genotypes, Isselis’ theorem implies that

E(R̂miR̂m′j) = RmiRm′j +
1

N
(Rmm′Rij +RmjRm′i). (39)

The result of this argument can be summarized across all pairs of SNPs m,m′ by

cov(R̂β|β) =
1

N

(
(βTRβ)R+RββTR

)
, (40)

whereupon noticing that βTRβ + σ2
e = var(yn) = 1 completes the proof.

Corollary 1. Under the model defined above, α̂ approximately satisfies

α̂|β ∼
[
Rβ,

R

N

]
(41)

where R = cov(xn) ∈ RM×M is the population covariance matrix of the genotypes.

Proof. For a polygenic trait, βm ≈ O(1/M), and so βmβm′ ≈ O(1/M2). This means that we have that
(RββTR)mm′ = O(k2/M2) where k is the number of SNPs in non-zero LD with both SNP m and SNP m′.
Since k �M , k2/M2 is very small compared to Rmm′ .

We remark that the above argument does indeed require a polygenic trait. In the other extreme of a
trait determined entirely by the value of one SNP, RββTR can take on large values around the single causal
SNP.

Derivation for random X and random β

We now assume the full signed LD profile regression model, i.e., we fix some signed annotation v ∈ RM , and
let β ∼ [µv, σ2]. Under this model, we have the following result.

Theorem 1. If β ∼ [µv, σ2] for some v ∈ RM and σ2 > 0, then α̂ approximately satisfies

α̂|v ∼
[
µRv, σ2R2 +

R

N

]
(42)

where R = cov(xn) ∈ RM×M is the population covariance matrix of the genotypes.

Proof. The law of total expectation applied to the result of Corollary 1 yields E(α̂|v) = µRv as desired. The
law of total covariance yields

cov(α̂|v) ≈ E (cov(α̂|β)|v) + cov (E(α̂|β)|v) (43)

=
R

N
+ cov(Rβ|v) (44)

=
R

N
+Rcov(β|v)R (45)

=
R

N
+ σ2R2 (46)

as desired.
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Supplementary Tables

Supplementary Table 1: Summary information about ChIP-seq annotations used in analyses.
v denotes annotation, M denotes the total number of SNPs in the reference panel, |v|0 denotes the number
of SNPs with non-zero values of v, and |v|2 denotes the 2-norm of v.

Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
HAIB SKNSHRA CTCF 0.880098 18646 0.19 13.20
BROAD NHA CTCF 0.869841 27912 0.28 12.68
HAIB A549 CTCFSC5916 0.866840 21517 0.22 12.73
UW NB4 CTCF 0.866150 25419 0.25 13.23
UW HRE CTCF 0.864149 28846 0.29 13.64
HAIB A549 CTCFSC5916 0.863801 21011 0.21 13.41
UTA HUVEC CTCF 0.861944 21000 0.21 14.18
BROAD HUVEC CTCF 0.859699 29576 0.30 12.68
UW HFF CTCF 0.859124 25034 0.25 11.61
UW RPTEC CTCF 0.858547 44995 0.45 17.53
BROAD HMEC CTCF 0.858372 27488 0.27 12.58
UW HASP CTCF 0.858100 29663 0.30 14.75
UW GM12878 CTCF 0.858056 25981 0.26 13.11
UW A549 CTCF 0.857446 35097 0.35 15.54
UW HFFMYC CTCF 0.857241 38004 0.38 14.93
UTA GM12878 CTCF 0.856204 24907 0.25 15.67
UW GM06990 CTCF 0.855834 33120 0.33 14.51
UW HMF CTCF 0.854815 35825 0.36 16.13
UW HCFAA CTCF 0.854650 26214 0.26 13.36
UW GM12874 CTCF 0.854489 24822 0.25 12.73
UW HEK293 CTCF 0.854351 31140 0.31 15.48
UTA HEPG2 CTCF 0.853428 17547 0.18 13.62
UW MCF7 CTCF 0.852776 40427 0.40 17.06
UW NHEK CTCF 0.852312 31784 0.32 13.27
HAIB H1HESC CTCFSC5916 0.852040 30644 0.31 18.33
UW HVMF CTCF 0.851735 33859 0.34 14.79
UW GM12875 CTCF 0.851254 26436 0.26 13.21
UW HCT116 CTCF 0.851195 36485 0.36 15.57
UW GM12865 CTCF 0.850843 29599 0.30 14.14
HAIB HEPG2 CTCFSC5916 0.850684 29285 0.29 17.25
UW HRPE CTCF 0.850296 33503 0.34 16.27
BROAD H1HESC CTCF 0.849116 47350 0.47 20.96
UW GM12872 CTCF 0.847288 34212 0.34 15.09
SYDH H1HESC RAD21 0.846410 35780 0.36 17.12
UW BE2C CTCF 0.846211 41476 0.41 15.80
UW HPF CTCF 0.845889 29441 0.29 14.13
UW NHLF CTCF 0.845237 24971 0.25 11.64
BROAD NHDFAD CTCF 0.844702 33708 0.34 14.84
UW SAEC CTCF 0.843178 27722 0.28 13.59
BROAD HSMMT CTCF 0.843109 39253 0.39 14.10
BROAD GM12878 CTCF 0.842508 39752 0.40 14.28
BROAD NHLF CTCF 0.842394 30215 0.30 12.99
UW HELAS3 CTCF 0.842036 24028 0.24 11.95
UW GM12864 CTCF 0.841830 33480 0.33 14.86
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
UW SKNSHRA CTCF 0.841702 26551 0.27 13.96
UW HCM CTCF 0.839966 42907 0.43 15.57
UTA GLIOBLA CTCF 0.839859 37388 0.37 18.58
UTA K562 CTCF 0.838050 27610 0.28 16.98
UW HUVEC CTCF 0.837666 23780 0.24 12.51
UW K562 CTCF 0.835751 30678 0.31 14.23
UW GM12873 CTCF 0.834805 36107 0.36 15.83
UW HMEC CTCF 0.834803 36092 0.36 14.96
BROAD HEPG2 CTCF 0.834631 36924 0.37 14.72
BROAD HSMM CTCF 0.833446 34415 0.34 15.13
UW HEPG2 CTCF 0.831350 31010 0.31 15.52
UW HPAF CTCF 0.830419 40688 0.41 16.57
UW AG09309 CTCF 0.830321 31862 0.32 13.56
BROAD HELAS3 CTCF 0.828969 49347 0.49 15.31
UW BJ CTCF 0.828852 32555 0.33 13.39
BROAD NHEK CTCF 0.828230 37413 0.37 14.19
UW HEE CTCF 0.828217 33823 0.34 13.55
UW HAC CTCF 0.828210 36662 0.37 13.83
UTA HELAS3 CTCF 0.828109 25915 0.26 16.07
UW AG04450 CTCF 0.827331 32761 0.33 13.88
UTA PROGFIB CTCF 0.826811 22840 0.23 14.38
HAIB ECC1 CTCFC 0.826438 15251 0.15 8.81
BROAD DND41 CTCF 0.824320 38541 0.39 13.81
HAIB H1HESC RAD21 0.823698 47411 0.47 22.20
SYDH IMR90 CTCFB 0.820777 26982 0.27 13.99
UW AG09319 CTCF 0.820556 33669 0.34 14.46
UW HBMEC CTCF 0.819613 41152 0.41 16.62
UW WI38 CTCF 0.819609 25725 0.26 10.62
UTA H1HESC CTCF 0.818739 22472 0.22 15.80
UTA A549 CTCF 0.817553 32700 0.33 17.81
UW AG10803 CTCF 0.817006 29517 0.30 13.69
BROAD OSTEOBL CTCF 0.816996 53644 0.54 16.04
UW HCPE CTCF 0.816798 42276 0.42 16.83
SYDH GM12878 CTCFSC15914C20 0.815991 30691 0.31 15.49
UTA MCF7 CTCF 0.815467 49073 0.49 22.63
BROAD K562 CTCF 0.815351 52427 0.52 15.60
UW WERIRB1 CTCF 0.815231 30972 0.31 15.58
UTA MCF7 CTCF 0.814259 37438 0.37 18.94
UW AOAF CTCF 0.810198 25402 0.25 12.89
UW CACO2 CTCF 0.808883 28146 0.28 12.68
UW AG04449 CTCF 0.808085 24368 0.24 14.42
SYDH K562 CTCFB 0.807922 34266 0.34 15.56
HAIB HEPG2 RAD21 0.806753 31414 0.31 14.66
UW NHDFNEO CTCF 0.805912 34150 0.34 13.07
UTA FIBROBL CTCF 0.802580 24917 0.25 14.54
HAIB K562 CTCFC 0.800330 29034 0.29 14.24
SYDH HEPG2 RAD21 0.795326 24061 0.24 10.74
SYDH GM12878 RAD21 0.793772 22165 0.22 9.93
UTA GM19240 CTCF 0.787095 24254 0.24 14.44
UTA GM19238 CTCF 0.784621 28109 0.28 15.19
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
UTA NHEK CTCF 0.782123 28029 0.28 15.70
HAIB T47D CTCFSC5916 0.780735 20119 0.20 9.44
UTA GM12891 CTCF 0.776692 23165 0.23 13.77
SYDH GM12878 SMC3AB9263 0.775055 22604 0.23 9.36
HAIB GM12878 RAD21 0.773313 19232 0.19 10.90
UTA MCF7 CTCF 0.771586 32289 0.32 17.54
SYDH IMR90 RAD21 0.771096 21035 0.21 10.62
UTA GM19239 CTCF 0.770649 21921 0.22 12.29
UTA GM12892 CTCF 0.764533 27003 0.27 14.40
SYDH K562 SMC3AB9263 0.764408 17833 0.18 8.29
HAIB K562 RAD21 0.762473 17349 0.17 10.54
UW HL60 CTCF 0.760612 11834 0.12 6.43
SYDH HEPG2 MAFKAB50322 0.756003 36764 0.37 16.31
SYDH HEK293 POL2 0.750713 11423 0.11 2.57
HAIB SKNSHRA RAD21 0.748781 34221 0.34 14.81
UTA MCF7 CTCF 0.744677 33804 0.34 16.07
UTA A549 POL2 0.743474 13317 0.13 2.99
UTA MCF7 CTCF 0.737779 31703 0.32 15.80
SYDH HELAS3 RAD21 0.732822 23726 0.24 9.90
UTA GLIOBLA POL2 0.730622 12444 0.12 2.89
SYDH A549 RAD21 0.726374 15727 0.16 8.17
SYDH GM10847 POL2 0.725536 11162 0.11 2.82
SYDH K562 RAD21 0.719791 11216 0.11 5.92
UTA HUVEC POL2 0.710965 9848 0.10 2.62
SYDH GM18526 POL2 0.704244 15927 0.16 3.59
SYDH HELAS3 SMC3AB9263 0.703877 25410 0.25 9.28
SYDH MCF10AES CFOS 0.695666 52371 0.52 14.00
SYDH GM15510 POL2 0.692228 18641 0.19 3.92
SYDH GM12878 ZNF143166181AP 0.691695 16121 0.16 6.52
SYDH MCF10AES CFOS 0.689921 41778 0.42 11.91
SYDH HEPG2 SMC3AB9263 0.683574 21539 0.22 8.17
SYDH MCF10AES CFOS 0.678308 49334 0.49 12.33
SYDH MCF10AES CFOS 0.672546 37719 0.38 10.03
SYDH H1HESC ZNF143 0.665846 25229 0.25 8.50
SYDH GM18951 POL2 0.662339 23305 0.23 4.19
SYDH K562 NFYB 0.661296 9570 0.10 3.91
HAIB GM12878 GABP 0.660956 5625 0.06 2.43
HAIB ECC1 POL2 0.657365 19849 0.20 3.32
UTA MCF7 POL2 0.652882 18193 0.18 3.05
HAIB HEPG2 TAF1 0.650101 16181 0.16 2.94
SYDH K562 IRF1 0.649426 12976 0.13 3.16
SYDH K562 POL2 0.647737 16308 0.16 3.35
SYDH GM12892 POL2 0.645338 23295 0.23 4.12
SYDH HEPG2 MAFKSC477 0.643218 24770 0.25 9.07
UTA MCF7 POL2 0.642949 15229 0.15 2.94
SYDH NB4 POL2 0.641432 16158 0.16 3.31
SYDH K562 POL2 0.640277 15063 0.15 2.99
SYDH K562 POL2 0.635903 17161 0.17 3.22
SYDH K562 ZNF143 0.634772 23343 0.23 7.50
SYDH HEPG2 MAFFM8194 0.634067 25009 0.25 8.93
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
HAIB GM12878 ELF1SC631 0.631869 20946 0.21 5.37
HAIB H1HESC TAF1 0.627966 21837 0.22 3.08
HAIB HEPG2 GABP 0.627412 9290 0.09 3.07
SYDH HEPG2 CEBPB 0.625633 34970 0.35 14.15
SYDH K562 POL2 0.624054 15843 0.16 3.14
SYDH IMR90 MAFK 0.620883 25154 0.25 8.57
SYDH GM18505 POL2 0.618220 24625 0.25 3.97
UTA HELAS3 POL2 0.617348 19384 0.19 3.25
UTA PROGFIB POL2 0.617226 14761 0.15 2.91
SYDH GM19099 POL2 0.606235 22799 0.23 4.01
SYDH GM19193 POL2 0.604915 24050 0.24 3.91
SYDH K562 POL2 0.602457 15110 0.15 2.90
HAIB SKNSH TAF1 0.601160 11185 0.11 2.76
SYDH HCT116 POL2 0.598756 17455 0.17 2.72
SYDH PBDE POL2 0.596470 22492 0.22 3.29
HAIB K562 TAF1 0.594640 13400 0.13 3.11
UTA MCF7 POL2 0.587761 14677 0.15 2.73
SYDH MCF10AES POL2 0.581721 22034 0.22 3.45
BROAD K562 PLU1 0.578953 19126 0.19 2.78
SYDH IMR90 CEBPB 0.577892 44228 0.44 14.66
HAIB A549 CREB1SC240 0.576054 13155 0.13 3.07
UTA K562 POL2 0.575441 19966 0.20 3.30
HAIB GM12878 PU1 0.574256 27757 0.28 9.34
SYDH GM12878 POL2 0.573648 23803 0.24 3.93
UTA GM12878 POL2 0.572056 17552 0.18 3.00
HAIB GM12878 NRSF 0.568899 5888 0.06 3.82
BROAD K562 PHF8A301772A 0.566331 27457 0.27 2.88
SYDH RAJI POL2 0.564973 21621 0.22 3.36
SYDH HEPG2 POL2 0.563102 18212 0.18 2.71
HAIB K562 YY1 0.558414 10704 0.11 2.79
HAIB A549 POL2 0.555363 31308 0.31 3.68
HAIB A549 POL2 0.553825 29976 0.30 3.58
HAIB GM12878 YY1SC281 0.553334 26103 0.26 5.34
SYDH GM12878 POL2 0.552473 11117 0.11 2.41
HAIB GM12891 PU1 0.551608 28912 0.29 9.97
HAIB GM12878 TAF1 0.551273 12105 0.12 2.98
SYDH A549 CEBPB 0.551046 26389 0.26 9.72
SYDH HUVEC CFOS 0.550936 42775 0.43 7.57
HAIB A549 TAF1 0.550319 11038 0.11 2.08
HAIB GM12892 POL2 0.548292 23439 0.23 3.42
HAIB HELAS3 TAF1 0.547530 14406 0.14 2.81
HAIB HEPG2 POL24H8 0.547414 18782 0.19 3.01
SYDH HEPG2 JUND 0.545643 23439 0.23 5.68
SYDH HELAS3 HAE2F1 0.544870 9314 0.09 1.47
SYDH HELAS3 POL2 0.543185 29222 0.29 3.11
HAIB GM12892 TAF1 0.542027 8249 0.08 2.23
SYDH K562 MAZAB85725 0.541193 33691 0.34 6.34
SYDH MCF10AES POL2 0.541022 25900 0.26 3.53
SYDH H1HESC MAFK 0.540650 8262 0.08 2.09
HAIB A549 ETS1 0.539878 6635 0.07 2.60
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
SYDH GM12891 POL2 0.538971 24040 0.24 3.79
HAIB K562 GABP 0.535852 12143 0.12 3.59
HAIB K562 E2F6 0.535787 20429 0.20 2.89
HAIB HEPG2 YY1SC281 0.535256 17564 0.18 3.27
HAIB HCT116 POL24H8 0.534399 29439 0.29 4.18
SYDH HELAS3 ELK4 0.533836 6984 0.07 2.00
HAIB U87 NRSF 0.533645 10740 0.11 3.53
SYDH H1HESC TBP 0.533586 17933 0.18 3.13
SYDH GM12878 ELK112771 0.532557 5585 0.06 1.90
UTA H1HESC POL2 0.528904 15666 0.16 2.28
HAIB HEPG2 POL2 0.527603 26528 0.27 3.51
HAIB GM12878 PMLSC71910 0.523565 21007 0.21 3.16
HAIB HEPG2 NRSF 0.522989 11697 0.12 3.82
HAIB K562 ELF1SC631 0.521651 20676 0.21 5.35
SYDH GM12878 NFYB 0.521437 14633 0.15 3.58
HAIB GM12891 TAF1 0.520083 10825 0.11 2.70
HAIB HUVEC POL2 0.519612 24168 0.24 3.11
HAIB A549 ELF1 0.516848 8792 0.09 2.24
HAIB PFSK1 FOXP2 0.514938 15908 0.16 2.79
SYDH MCF10AES E2F4 0.514526 12559 0.13 2.58
SYDH HELAS3 NFYA 0.513807 5483 0.05 1.98
SYDH K562 HMGN3 0.513410 18241 0.18 2.26
SYDH HELAS3 NFYB 0.512540 6653 0.07 2.22
SYDH HUVEC CJUN 0.510520 20080 0.20 4.26
HAIB HUVEC POL24H8 0.509722 35149 0.35 4.72
HAIB HEPG2 ELF1SC631 0.509441 13489 0.13 3.73
SYDH K562 MAFKAB50322 0.508412 13001 0.13 3.37
HAIB GM12891 POL2 0.505543 17852 0.18 2.78
SYDH H1HESC USF2 0.503572 5202 0.05 2.27
HAIB H1HESC GABP 0.501419 5292 0.05 1.53
SYDH K562 E2F4 0.500739 7900 0.08 1.74
SYDH K562 MAFF 0.499311 17035 0.17 4.41
SYDH IMR90 POL2 0.499139 21099 0.21 2.57
HAIB H1HESC USF1 0.498243 16631 0.17 6.39
HAIB K562 MAX 0.494249 42934 0.43 5.98
SYDH HELAS3 POL2S2 0.492278 14434 0.14 2.32
HAIB H1HESC NRSF 0.491469 8454 0.08 5.74
SYDH HELAS3 MAZAB85725 0.489070 16019 0.16 2.24
HAIB HELAS3 NRSF 0.488734 6360 0.06 4.97
HAIB GM12891 YY1SC281 0.487772 11490 0.11 2.73
HAIB HEPG2 SIN3AK20 0.487522 17653 0.18 2.53
HAIB HELAS3 POL2 0.487393 28715 0.29 3.64
HAIB K562 POL2 0.486825 36854 0.37 3.37
SYDH HEPG2 MAX 0.486481 11059 0.11 1.92
HAIB GM12878 SP1 0.486260 15317 0.15 3.48
SYDH HEPG2 POL2 0.484689 20477 0.20 2.83
HAIB GM12892 POL24H8 0.483645 20500 0.21 2.59
HAIB K562 ETS1 0.483398 10444 0.10 2.37
SYDH GM12878 MAZAB85725 0.483322 22411 0.22 3.16
SYDH HELAS3 CJUN 0.478779 16492 0.16 2.98
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
SYDH K562 CFOS 0.478299 5481 0.05 2.17
SYDH HEPG2 MXI1 0.477728 21106 0.21 3.26
HAIB H1HESC POL2 0.476246 26239 0.26 2.59
SYDH K562 CEBPB 0.474134 28505 0.29 9.12
HAIB U87 POL24H8 0.473137 23582 0.24 3.29
SYDH K562 MAX 0.471849 29516 0.30 4.86
HAIB A549 GABP 0.471447 13855 0.14 3.02
SYDH HELAS3 CHD2 0.471053 19320 0.19 3.33
SYDH K562 E2F6 0.470723 16483 0.16 2.33
HAIB GM12878 EGR1 0.468941 10841 0.11 2.08
SYDH HUVEC MAX 0.466519 6425 0.06 1.93
HAIB GM12878 RUNX3SC101553 0.466113 56840 0.57 8.61
HAIB GM12878 USF1 0.465793 7272 0.07 2.57
HAIB K562 USF1 0.464692 12871 0.13 4.61
BROAD K562 RBBP5A300109A 0.463994 20083 0.20 1.84
SYDH K562 TBP 0.463143 17767 0.18 3.22
HAIB K562 SIN3AK20 0.463116 8897 0.09 1.77
SYDH K562 CMYC 0.462873 32161 0.32 5.06
SYDH A549 MAX 0.461439 9266 0.09 1.72
SYDH HELAS3 MAX 0.458337 29171 0.29 4.12
HAIB HEPG2 USF1 0.457588 12887 0.13 3.90
SYDH K562 CCNT2 0.456697 21697 0.22 2.94
SYDH GM12878 MXI1 0.456679 19923 0.20 2.77
HAIB GM12892 YY1 0.456003 12740 0.13 2.83
HAIB GM12891 POL24H8 0.455418 17929 0.18 2.50
SYDH HELAS3 CEBPB 0.450802 39105 0.39 7.92
SYDH NB4 MAX 0.449059 28193 0.28 4.72
SYDH HEPG2 TBP 0.448004 13778 0.14 2.88
HAIB HCT116 YY1SC281 0.447206 9601 0.10 2.36
UTA MCF7 CMYC 0.446932 17429 0.17 2.52
SYDH K562 CMYC 0.446684 26346 0.26 3.95
HAIB SKNSHRA YY1SC281 0.445929 13128 0.13 2.71
HAIB H1HESC YY1SC281 0.445242 15591 0.16 2.65
SYDH HELAS3 JUND 0.444612 22640 0.23 4.23
SYDH HEPG2 MAZAB85725 0.444409 12934 0.13 1.88
UTA MCF7 CMYC 0.443654 24235 0.24 3.51
HAIB A549 USF1 0.441291 7881 0.08 2.59
SYDH HEPG2 CJUN 0.440671 8890 0.09 1.91
HAIB SKNSHRA USF1SC8983 0.439829 12682 0.13 3.64
SYDH GM12878 MAX 0.439437 14531 0.15 2.21
HAIB K562 POL24H8 0.438629 19971 0.20 3.52
HAIB PFSK1 NRSF 0.435981 9928 0.10 4.63
SYDH H1HESC SIN3ANB6001263 0.433869 26283 0.26 2.93
UTA HEPG2 POL2 0.432243 21612 0.22 2.23
HAIB A549 FOSL2 0.430795 23494 0.24 3.95
HAIB SKNSH POL24H8 0.427949 22879 0.23 3.35
SYDH HUVEC POL2 0.427119 11883 0.12 1.94
HAIB K562 YY1 0.426097 19380 0.19 3.54
UCHICAGO K562 EFOS 0.425453 6855 0.07 1.91
SYDH H1HESC CHD2 0.424343 6252 0.06 1.25
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
SYDH MCF7 HAE2F1 0.423359 27514 0.28 2.20
HAIB K562 SP1 0.422803 6215 0.06 1.58
SYDH K562 JUND 0.420900 30409 0.30 5.93
SYDH HELAS3 ZNF143 0.420784 5406 0.05 2.13
HAIB A549 YY1C 0.420411 11293 0.11 2.20
SYDH GM12878 POL2S2 0.420026 12996 0.13 1.84
HAIB GM12878 POL2 0.419133 48007 0.48 3.33
HAIB PFSK1 TAF1 0.415078 6236 0.06 1.35
HAIB K562 PU1 0.411073 15386 0.15 4.70
SYDH GM12878 CHD2AB68301 0.410210 16016 0.16 2.63
SYDH NB4 CMYC 0.406744 23774 0.24 3.73
HAIB H1HESC TAF7SC101167 0.406696 10442 0.10 1.54
SYDH H1HESC CEBPB 0.405410 11800 0.12 3.73
SYDH MCF10AES STAT3 0.404351 33486 0.33 5.08
HAIB GM12878 POL24H8 0.402366 31663 0.32 2.85
HAIB SKNSH NRSF 0.401931 7233 0.07 3.71
HAIB K562 ZBTB7ASC34508 0.399912 19683 0.20 2.16
HAIB K562 EGR1 0.399163 24881 0.25 3.28
SYDH MCF10AES STAT3 0.398512 29538 0.30 4.81
SYDH K562 CHD2AB68301 0.398431 7834 0.08 2.01
HAIB SKNMC POL24H8 0.393543 21485 0.21 2.96
HAIB H1HESC POL24H8 0.391510 19419 0.19 1.99
HAIB K562 CTCFLSC98982 0.391258 5891 0.06 2.85
SYDH MCF10AES STAT3 0.388008 31591 0.32 4.98
HAIB A549 USF1 0.387810 6778 0.07 1.84
HAIB HEPG2 FOXA1SC6553 0.386906 33656 0.34 5.34
SYDH MCF10AES STAT3 0.385338 25848 0.26 4.56
HAIB SKNSH NRSF 0.385146 14169 0.14 3.45
SYDH GM12891 NFKB 0.383466 29206 0.29 4.56
HAIB H1HESC SP1 0.380258 12393 0.12 2.05
SYDH MCF10AES CMYC 0.379656 27000 0.27 4.33
SYDH HEPG2 CEBPB 0.379397 11572 0.12 4.10
HAIB K562 NRSF 0.379106 9598 0.10 4.30
SYDH GM12878 USF2 0.377835 6661 0.07 2.16
SYDH HELAS3 TBP 0.376722 17555 0.18 3.06
UTA K562 CMYC 0.372061 5833 0.06 1.68
HAIB K562 ATF3 0.371010 10360 0.10 2.78
SYDH HELAS3 MXI1AF4185 0.368398 12174 0.12 1.83
HAIB HEPG2 FOSL2 0.367104 16407 0.16 3.44
SYDH K562 CMYC 0.366773 21209 0.21 3.20
SYDH HELAS3 MAFK 0.366364 9993 0.10 1.82
SYDH HELAS3 P300SC584SC584 0.364830 18694 0.19 2.54
HAIB HEPG2 SP1 0.364172 21711 0.22 3.58
HAIB K562 PMLSC71910 0.362038 18655 0.19 2.75
HAIB K562 FOSL1SC183 0.359258 6436 0.06 2.20
HAIB GM12878 BCL11A 0.358333 12360 0.12 2.80
SYDH GM12878 SIN3ANB6001263 0.356799 13694 0.14 1.61
SYDH K562 CJUN 0.354626 5656 0.06 1.98
SYDH GM12878 TBP 0.353883 15238 0.15 2.78
HAIB HEPG2 FOXA1SC101058 0.353734 29596 0.30 4.83

Continued on next page
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
HAIB HEPG2 CEBPBSC150 0.348724 9795 0.10 3.67
HAIB A549 NRSF 0.348252 12999 0.13 3.65
HAIB GM12878 BATF 0.347600 18755 0.19 3.78
HAIB A549 USF1 0.347257 8140 0.08 2.22
BROAD H1HESC RBBP5A300109A 0.343881 25833 0.26 1.35
HAIB GM12892 PAX5C20 0.343844 8182 0.08 1.34
BROAD K562 POL2B 0.341811 15495 0.15 1.86
HAIB GM12878 NFICSC81335 0.341187 33737 0.34 3.76
SYDH HELAS3 RFX5200401194 0.341053 15994 0.16 2.36
HAIB GM12878 IRF4SC6059 0.340861 14517 0.15 2.83
HAIB GM12878 POU2F2 0.336826 18566 0.19 2.97
HAIB HEPG2 FOXA2SC6554 0.336085 27428 0.27 4.48
HAIB SKNSH SIN3AK20 0.336066 13855 0.14 1.95
HAIB GM12878 ATF2SC81188 0.335843 26054 0.26 3.55
SYDH HELAS3 USF2 0.329562 8429 0.08 1.85
SYDH HELAS3 E2F1 0.328842 5081 0.05 0.74
SYDH MCF10AES CMYC 0.327448 19677 0.20 2.88
HAIB HEPG2 HNF4ASC8987 0.325563 13192 0.13 3.15
SYDH K562 UBTFSAB1404509 0.325086 14930 0.15 1.59
UCHICAGO K562 EJUND 0.323401 26489 0.26 3.49
UTA GM12878 CMYC 0.322020 5627 0.06 0.63
BROAD K562 SAP3039731 0.320382 11693 0.12 1.16
SYDH K562 CMYC 0.318111 11312 0.11 2.06
HAIB H1HESC EGR1 0.317297 7071 0.07 0.68
HAIB K562 CEBPBSC150 0.311232 18052 0.18 3.71
HAIB H1HESC SIN3AK20 0.310984 7354 0.07 1.48
SYDH GM15510 NFKB 0.309530 13887 0.14 2.14
BROAD K562 HDAC1SC6298 0.308889 15009 0.15 1.08
SYDH GM19099 NFKB 0.308646 6705 0.07 1.71
HAIB GM12878 FOXM1SC502 0.307947 26561 0.27 2.91
HAIB PANC1 POL24H8 0.306956 11954 0.12 1.43
HAIB HEPG2 HNF4GSC6558 0.305644 14815 0.15 2.92
HAIB HEPG2 JUND 0.305335 14409 0.14 2.61
SYDH K562 TAL1SC12984 0.304212 18090 0.18 4.50
HAIB HEPG2 CEBPDSC636 0.303716 8698 0.09 1.82
SYDH K562 CORESTSC30189 0.303011 28293 0.28 3.98
SYDH K562 BHLHE40NB100 0.301552 19955 0.20 2.77
HAIB GM12878 EBF1SC137065 0.301285 24230 0.24 3.43
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See Excel file

Supplementary Table 2: Numerical results for Figure 1. We list all P-values used for the simulations
of a) no enrichment, b) unsigned enrichment, and c) directional effects of minor alleles, with and without the
5-MAF-bin signed background model. Simulation details are described in the Methods, and the statistical
method is described in the “Overview of methods” section and the Methods.

See Excel file

Supplementary Table 3: Numerical results for Figure 2. We list a) estimated power, with standard
errors, for both methods analyzed in Figure 2a, b) mean estimate of rf , with standard error, for all values
of rf simulated, together with quantiles of the sampling distribution of our estimator. Simulation details are
described in the Methods, and the statistical method is described in the “Overview of methods” section and
the Methods.

See Excel file

Supplementary Table 4: List of traits analyzed in BLUEPRINT/NTR analysis. We list the set
of traits analyzed in the BLUEPRINT/NTR analysis, with number of typed SNPs for each trait.

See Excel file

Supplementary Table 5: Details of results of BLUEPRINT/NTR analysis. We list a) the set
of 409 significant associations at per-trait FDR< 5% for the BLUEPRINT gene expression analysis, with
laboratory, cell line, and TF listed for each significant annotation, along with estimated rf , P-value, and
whether the TF is known to be activating; b) the set of 18 significant associations at per-trait FDR < 5%
for the NTR gene expression analysis; c) the side-by-side comparison of z-scores from the BLUEPRINT
neutrophil expression analysis and the NTR analysis; d) the set of 286 significant associations at per-trait
FDR < 5% for the BLUEPRINT H3K4me1 analysis; and e) the set of 359 significant associations at per-trait
FDR < 5% for the BLUEPRINT H3K27ac analysis. Note that because the QTL summary statistics analyzed
here are processed in a way that places different SNPs on different scales, the relative values of rf in these
results are interpretable but the absolute magnitudes are not. GWAS data are described in Supplementary
Table 4, and the statistical method and multiple comparisons adjustments are described in the “Overview of
methods” section and the Methods.
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Supplementary Table 6: List of GTEx traits analyzed. We list the set of GTEx traits analyzed, with
number of typed SNPs and average sample size for each trait.

See Excel file

Supplementary Table 7: Results of GTEx analysis. We list a) the set of 2,330 significant associations
at per-trait FDR< 5% for the GTEx gene expression analysis, with laboratory, cell line, and TF listed
for each significant annotation, along with estimated rf and P-value; and b) the same information for the
subset of results whose significance did not decrease in the conditional analysis. Note that because the QTL
summary statistics analyzed here are processed in a way that places different SNPs on different scales, the
relative values of rf in these results are interpretable but the absolute magnitudes are not. GWAS data are
described in Supplementary Table 6, and the statistical method and multiple comparisons adjustments are
described in the “Overview of methods” section and the Methods.

See Excel file

Supplementary Table 8: List of diseases and complex traits analyzed. We list the set of diseases
and complex traits analyzed, with sample size, number of typed SNPs, and estimated SNP-heritability for
each trait.

See Excel file

Supplementary Table 9: Results of SLDP analysis of 46 diseases and complex traits. We list a)
the set of 77 significant associations at per-trait FDR< 5% for the TF annotations, with laboratory, cell line,
and transcription factor listed for each significant annotation, along with estimated rf and P-value; b) the set
of 4 significant associations at per-trait FDR < 5% for the alternate set of 382 annotations defined using the
same set of SNPs with non-zero effects but with the directionality of effect determined by minor allele coding
rather than predicted TF binding, for SNPs in the bottom quintile of the MAF spectrum; c) quantification
of unsigned heritability explained by signed enrichments reported in (a). Specifically: because r2f for an
annotation can never exceed the total proportion of heritability explained by the SNPs with nonzero values
of the annotation, we computed for each association the ratio of estimated r2f to the proportion of SNPs with
nonzero values of the annotation. We found that in some cases the signed signal was not only non-trivially
different from zero but also substantial enough to imply an unsigned enrichment. GWAS data are described
in Supplementary Table 8, and the statistical method and multiple comparisons adjustments are described
in the “Overview of methods” section and the Methods.
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Supplementary Table 10: Results of enrichment analysis of signed LD profile regression dis-
ease/complex trait results. We list significant gene-set enrichments for the 77 significant signed LD
profile regression associations to diseases and complex traits. For (a) each of the top significant enrichments
listed in Table 1 and (b) all of the significant enrichments at per-stratum FDR< 5%, we list: details of the
annotation and phenotype underlying the signed LD profile regression result, the full name of the enriched
gene set, the enrichment, the average signed LD profile covariance among LD blocks containing genes in the
set (with standard error), the average signed LD profile covariance among LD block not containing genes
in the set (with standard error), a p-value generated by permuting LD blocks, and a q-value calculated
among the tests conducted for each signed LD profile result within each MSigDB database. GWAS data are
described in Supplementary Table 8, gene set data are described in the Methods, and the statistical method
and multiple comparisons adjustments are described in the “Overview of methods” section and the Methods.

See Excel file

Supplementary Table 11: Numerical results for Figure 6. For each result in the figure, we list i)
the numerical values used to make the plot of α̂ against Rv, ii) the association summary statistics used to
make the Manhattan plot, and iii) the numerical results underlying the two displayed gene-set enrichments.
GWAS data are described in Supplementary Table 8, gene set data are described in the Methods, and the
statistical method and multiple comparisons adjustments are described in the “Overview of methods” section
and the Methods.

See Excel file

Supplementary Table 12: Numerical results for Figure 7. For each result in the figure, we list i)
the numerical values used to make the plot of α̂ against Rv, ii) the association summary statistics used to
make the Manhattan plot, and iii) the numerical results underlying the two displayed gene-set enrichments.
GWAS data are described in Supplementary Table 8, gene set data are described in the Methods, and the
statistical method and multiple comparisons adjustments are described in the “Overview of methods” section
and the Methods.

SNP P(in causal set) Causal post. prob. Z

rs10189857 0.25 1 8.0933
rs356991 0.128176 0.512705 6.03
rs168565 0.0366951 0.14678 5.9928
rs6545816 0.154972 0.619888 5.4231
rs6545817 0.0950247 0.380099 5.3862
rs243071 0.25 1 -5.2992

Supplementary Table 13: Fine mapping of EDU signal at BCL11A locus. We list the six SNPs
in the 95% credible set when running the CAVIAR method with the parameter c = 4. rs10189857 is an
intronic SNP in the BCL11A gene. (Results with c = 2 and c = 3 were similar.) GWAS data are described
in Supplementary Table 8.
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Cistrome ID cell type/line position on chr12 (kb) TSS body reference

35517 OCI-Ly1 (B lymph) 67552.542-67552.694 Hatzi et al.102
35517 OCI-Ly1 (B lymph) 67561.828-67561.989 * Hatzi et al.102
35517 OCI-Ly1 (B lymph) 67562.145-67562.414 * * Hatzi et al.102
35517 OCI-Ly1 (B lymph) 67563.131-67563.598 * * Hatzi et al.102
35517 OCI-Ly1 (B lymph) 67644.691-67644.898 Hatzi et al.102
35517 OCI-Ly1 (B lymph) 67645.077-67645.307 Hatzi et al.102
52774 T lymphocyte 67562.240-67562.531 * * Hatzi et al.102
52774 T lymphocyte 67562.729-67562.889 * * Hatzi et al.102
52303 T lymphocyte 67561.830-67561.976 * Hatzi et al.102
52303 T lymphocyte 67562.145-67562.304 * Hatzi et al.102
52303 T lymphocyte 67563.760-67563.957 * * Hatzi et al.102
35085 B lymphocyte 67554.235-67554.385 Huang et al.103
35085 B lymphocyte 67562.163-67562.501 * * Huang et al.103
35085 B lymphocyte 67563.134-67563.543 * * Huang et al.103
35085 B lymphocyte 67563.826-67564.064 * * Huang et al.103
35085 B lymphocyte 67644.751-67645.243 Huang et al.103
1958 B JURL-MK1 (myeloid) 67561.844-67562.437 * * Hurtz et al.104
1958 B JURL-MK1 (myeloid) 67562.740-67562.886 * * Hurtz et al.104
1958 B JURL-MK1 (myeloid) 67563.293-67563.487 * * Hurtz et al.104
1958 B JURL-MK1 (myeloid) 67644.723-67644.898 Hurtz et al.104
39572 B OCI-Ly1 (B lymph) 67562.242-67562.397 * Swaminathan et al.105
39572 B OCI-Ly1 (B lymph) 67563.257-67563.556 * * Swaminathan et al.105

Supplementary Table 14: BCL6 ChIP-seq peaks within 10kb of the CTCF gene body in publicly available
ChIP-seq data processed by the cistrome database. Peaks located within 2kb of the CTCF TSS and located
within the CTCF gene body are indicated. Raw data were found using the Cistrome data browser.106

See Excel file

Supplementary Table 15: Numerical results for Supplementary Figure 9. For each result in the
figure, we list i) the numerical values used to make the plot of α̂ against Rv, ii) the association summary
statistics used to make the Manhattan plot, and iii) the numerical results underlying the two displayed gene-
set enrichments. GWAS data are described in Supplementary Table 8, gene set data are described in the
Methods, and the statistical method and multiple comparisons adjustments are described in the “Overview
of methods” section and the Methods.
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Cistrome ID cell type/line position on chr12 (kb) TSS body reference

63463 K562 (myeloid) 67561.047-67561.370 * Davis et al.28
63463 K562 (myeloid) 67644.456-67644.877 Davis et al.28
64734 GM12878 (LCL) 67566.529-67566.998 * Davis et al.28
64734 GM12878 (LCL) 67644.381-67644.827 Davis et al.28
64919 K562 (myeloid) 67561.765-67562.191 * Davis et al.28
64919 K562 (myeloid) 67601.114-67601.351 * Davis et al.28
64919 K562 (myeloid) 67644.587-67644.893 Davis et al.28
64735 GM12878 (LCL) 67561.943-67562.241 * Davis et al.28
64735 GM12878 (LCL) 67566.547-67567.093 * Davis et al.28
64735 GM12878 (LCL) 67644.406-67644.874 Davis et al.28
73238 B cell precursor 67562.052-67562.249 * Schjerven et al.29
57640 Nalm6 (B cell precursor) 67552.499-67552.751 Song et al.107

Supplementary Table 16: IKZF1 ChIP-seq peaks within 10kb of the CTCF gene body
(chr16:67562.406kb-67639.185kb) in publicly available ChIP-seq data processed by the cistrome database.
Peaks located within 2kb of the CTCF TSS and located within the CTCF gene body are indicated. Raw
data were found using the Cistrome data browser.106

See Excel file

Supplementary Table 17: Results of signed LD profile regression using DeepSEA-based anno-
tations. We list significant results at per-trait FDR< 5% for (a) the BLUEPRINT blood molecular traits,
(b) the NTR whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and complex traits an-
alyzed. For each significant annotation, we list TF name, laboratory, and cell line, along with estimated rf
and P-value. The number of significant results identified by these 382 annotations was BLUEPRINT: 810;
NTR: 0; GTEx: 1298; complex traits: 7. GWAS data are described in Supplementary Table 8, and the
statistical method and multiple comparisons adjustments are described in the “Overview of methods” section
and the Methods.

See Excel file

Supplementary Table 18: Results of signed LD profile regression using GTRD-based annota-
tions. We list significant results at per-trait FDR< 5% for (a) the BLUEPRINT blood molecular traits, (b)
the NTR whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and complex traits analyzed.
For each significant annotation, we list the GTRD TF name, along with estimated rf and P-value. The
number of significant results identified by these 149 annotations was BLUEPRINT: 313; NTR: 27; GTEx:
242; complex traits: 7. GWAS data are described in Supplementary Table 8, and the statistical method and
multiple comparisons adjustments are described in the “Overview of methods” section and the Methods.
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Supplementary Table 19: Results of signed LD profile regression using HOCOMOCO motif-
based annotations. We list significant results at per-trait FDR< 5% for (a) the BLUEPRINT blood
molecular traits, (b) the NTR whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and
complex traits analyzed. For each significant annotation, we list the TF name together with the laboratory
and cell line of the ENCODE ChIP-seq track used to determine which SNPs to include in the annotation,
along with estimated rf and P-value. The number of significant results identified by these 276 annotations
was BLUEPRINT: 9; NTR: 0; GTEx: 298; complex traits: 103. GWAS data are described in Supplementary
Table 8, and the statistical method and multiple comparisons adjustments are described in the “Overview of
methods” section and the Methods.

Source (# annotations) Blood QTL GTEx Diseases/complex traits Total (per annotation)

Basset (382) 1072 2330 77 3479 (9.1)
DeepSEA (382) 810 1298 7 2115 (5.5)
GTRD (149) 350 242 7 589 (3.2)
HOCOMOCO (276) 9 298 103 410 (1.5)

Supplementary Table 20: For each source of annotations, we report the number of associations at per-
trait FDR< 5% obtained upon analysis of: the blood molecular QTL data, the GTEx eQTL data, the
disease/complex trait data, and all traits combined. To facilitate comparison across differently sized sets of
annotations, we additionally report the total number of results per annotation for each source of annotations.
GWAS data are described in Supplementary Table 8, and the statistical method and multiple comparisons
adjustments are described in the “Overview of methods” section and the Methods.

Trait TF (num) rf p q

Years of ed. BCL11A (1) 2.4% 3.9× 10−5 1.5× 10−2

Crohn’s POL2 (16) 5.3% 4.8× 10−5 1.5× 10−2

Anorexia SP1 (1) -8.9% 1.1× 10−4 4.0× 10−2

HDL FOS (1) 4.8% 1.2× 10−4 4.6× 10−2

Eczema CTCF (12) 2.7% 1.4× 10−4 3.4× 10−2

Crohn’s ELF1 (1) 4.9% 1.6× 10−4 1.5× 10−2

Lupus CTCF (35) -5.0% 3.6× 10−4 4.4× 10−2

Crohn’s TBP (2) 5.4% 4.9× 10−4 1.5× 10−2

Crohn’s E2F1 (1) 4.3% 6.4× 10−4 2.7× 10−2

Crohn’s TAF1 (4) 4.5% 9.2× 10−4 2.5× 10−2

Crohn’s IRF1 (1) 4.7% 9.8× 10−4 1.5× 10−2

Crohn’s ETS1 (1) 6.1% 1.4× 10−3 1.5× 10−2

Lupus RAD21 (1) -3.9% 4.4× 10−3 4.1× 10−2

Supplementary Table 21: Distinct TF-trait associations from analysis of diseases and complex
traits using signed LD profile regression. For each of 13 distinct TF-trait associations at per-trait
FDR < 5%, we report the associated trait, the associated TF and the total number of annotations for that
TF that produced a significant result, the estimate of the functional correlation rf , and the P-value for the
most significant annotation. GWAS data are described in Supplementary Table 8, and the statistical method
and multiple comparisons adjustments are described in the “Overview of methods” section and the Methods.
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Supplementary Figures

A B

Supplementary Figure 1: Per-annotation analyses of null calibration. (a) For each annotation, we
used the Simes test108 to assess the p-value threshold at which the Benjamini-Hochberg procedure would lead
to any rejections among 1000 simulated phenotypes with no unsigned enrichment or functional correlation,
and we visualized the resulting set of 382 p-values using a q-q plot. These p-values appear uniformly
distributed, as would be expected in the scenario of proper calibration. (b) For each annotation, we plot
the average χ2 statistic for that annotation across the 1000 null simulations containing confounding due to
genome-wide directional effects of minor alleles on disease risk, against the magnitude of that annotation’s
z-score for correlation with a 100%-heritable trait whose causal SNPs are exactly the bottom fifth of the MAF
spectrum with minor alleles always being trait-increasing. (Statistical significance of the trend is difficult to
assess because many annotations are correlated, inducing a complex dependence structure among the 382
points on the plot.) Simulation details are described in the Methods, and the statistical method is described
in the “Overview of methods” section and the Methods.
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Supplementary Figure 2: Relationship of annotations to minor alleles. For each annotation, we
computed the mean and standard deviation of the predicted effect of the minor allele among all SNPs with
non-zero values of the annotation. We then performed a chi-squared test for the mean being non-zero and
plotted − log10(p) against the mean for each annotation. The green intervals show the standard deviation,
in order to give a sense for the scale on which to interpret the mean-shift. The dotted gray line indicates the
threshold for FDR significance. 373 of the 382 annotations exceeded this threshold. The number of SNPs in
each annotation is specified in Supplementary Table 1.
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Supplementary Figure 3: Power comparison of signed LD profile regression to additional
methods. Power curves comparing signed LD profile regression using generalized least-squares (GLS; i.e.,
weighting) to both ordinary (i.e., unweighted) regression of the GWAS summary statistics on the signed
LD profile as well as to a naive method that simply regresses the GWAS summary statistics on the raw
annotation. (Left) power comparison with 19.5% of causal SNPs typed, (Right) power comparison with
only 9.75% of causal SNPs typed. The real phenotypes analyzed all have at most 11.9% of causal SNPs
typed. SLDP regression with default weights is the most powerful method in both regimes. Additionally,
the power of the naive method suffers when fewer SNPs are typed, while the power of SLDP regression is
far less sensitive to this change. Error bares indicate standard errors of power estimates. Simulation details
are described in the Methods, and the statistical method is described in the “Overview of methods” section
and the Methods.
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Supplementary Figure 4: Effect of sample size and heritability on power. Power of signed LD
profile regression as a function of (left) sample size, and (right) overall trait heritability, when proportion
of heritability explained by the signed effect is held constant. Error bars indicate standard errors of power
estimates. Simulation details are described in the Methods, and the statistical method is described in the
“Overview of methods” section and the Methods.
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Supplementary Figure 5: Effect of reference panel on power. Power of signed LD profile regression
as a function of effect size as measured by rf , with either a 1000G reference panel or a randomly chosen in-
sample reference panel of comparable size. Error bars indicate standard errors of power estimates. Simulation
details are described in the Methods, and the statistical method is described in the “Overview of methods”
section and the Methods.
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Supplementary Figure 6: Bias in estimation of additional estimands. Assessments of the bias of
signed LD profile regression with an out-of-sample reference panel in estimating µ, h2v, rf , and h2v/h2g. For
definitions of these quantities, see Supplementary Note. Blue box and whisker plots depict the sampling
distribution of the statistic, while the red dots indicate the estimated sample mean and the red error bars
indicate the standard error around this estimate. Simulation details are described in the Methods, and the
statistical method is described in the “Overview of methods” section and the Methods.
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Supplementary Figure 7: Comparison across tissues of expression levels of TFs identified by
signed LD profile regression in each tissue to expression levels of TFs not identified. For each
GTEx tissue in which we found significant TF expression associations, we plot the fraction of significant TFs
that are expressed (TPM>5, following ref.6) against the fraction of non-significant TFs that are expressed.
Points are colored in proportion to the number of significant results in each tissue. GTEx data are described in
Supplementary Table 6, the statistical method used to determine significant TF-expression associations and
multiple comparisons adjustments are described in the “Overview of methods” section and the Methods, and
the statistical method used to assess significance of the trend in this plot is described in the Supplementary
Note.
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Supplementary Figure 8: Distribution of covariance between GWAS summary statistics and
signed LD profile. For each of our twelve independent results, we plot, for a variety of thresholds t, the
fraction of the approximately 300 independent genomic blocks with |cov(α̂, Rv)| > t in which the covariance
is positive versus negative. There is an excess of blocks in which sign of the covariance matches the genome-
wide direction of effect. (We note that, as this figure illustrates, our results do not imply that the sign
of the covariance matches the genome-wide direction of effect in all blocks.) GWAS data are described in
Supplementary Table 8, and the statistical method and multiple comparisons adjustments are described in
the Methods.
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Supplementary Figure 9: Additional highlighted TF binding-complex trait associations. For
each of (a) CTCF-Lupus and (b) POL2-Crohn’s disease, we display plots of the marginal correlation α̂ of
SNP to trait versus the signed LD profile Rv of the annotation in question, with SNPs averaged in bins of
4,000 SNPs of similar Rv values and a larger bin around Rv=0; Manhattan plots of the trait GWAS signal
near the associated TF; and the top two significant MSigDB gene-set enrichments among the loci driving
the association, with error bars indicating standard errors. GWAS data are described in Supplementary
Table 8, gene set data are described in the Methods, and the statistical method and multiple comparisons
adjustments are described in the “Overview of methods” section and the Methods. Numerical results are
reported in Supplementary Table 12. IKZF1 ChIP-seq peaks at the CTCF promoter are presented in
Supplementary Table 16. LMPP: lymphoid-primed pluripotent progenitor; GMP: granulocyte-monocyte
precursor.
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Supplementary Figure 10: Comparison of signed LD profile regression using Basset to results
using DeepSEA. For each phenotype and each of the 382 ENCODE ChIP-seq tracks used in our main
analyses, we plot the SLDP z-score of the DeepSEA-derived annotation from that track on that phenotype
against SLDP z-scores of the Basset-derived annotation from that same track on that same phenotype. We
display separate plots for the four sets of phenotypes analyzed in the paper; red dots indicate significant
results from our main analyses using the Basset-derived annotations; correlations between the two sets of
z-scores are indicated on each plot. GWAS data are described in Supplementary Table 8, and the statistical
method and multiple comparisons adjustments are described in the “Overview of methods” section and the
Methods.
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Supplementary Figure 11: Comparison of Deepsea prediction accuracy to Basset prediction
accuracy. For each of the 691 ENCODE TF ChIP-seq tracks for which we had AUPRC information using
both Basset and DeepSEA, we plot the DeepSEA AUPRC for that track against the Basset AUPRC for that
track. The dashed line indicates y = x, and the solid lines indicate our QC threshold of AUPRC> 0.3.
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Supplementary Figure 12: Basset and Deepsea converge on biological signal. For each of the 382
ENCODE ChIP-seq tracks used in our main analyses, we plot (i) the correlation across SNPs between the
Basset-derived annotation for that track and the DeepSEA-derived annotation for that track, against (ii)
the correlation across phenotypes between the z-scores of the Basset-derived annotation for that track and
the z-scores of the DeepSEA-derived annotation for that track. The dashed line indicates y = x, and the
percentages indicate the fraction of annotations in which either (i)>(ii) or (i)<(ii). The fact that the vast
majority of annotations are more correlated when the correlation is measured across phenotypes indicates
that the signal that is shared between Basset and DeepSEA is strongly reflected in GWAS data.
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Supplementary Figure 13: Comparison of signed LD profile regression using Basset to results
using motifs from HOCOMOCO database. For each phenotype and each of the 276 ENCODE ChIP-
seq tracks used in our main analyses that had a corresponding motif in HOCOMOCO, we plot the SLDP
z-score of the HOCOMOCO-derived annotation from that track on that phenotype against SLDP z-scores
of the Basset-derived annotation from that same track on that same phenotype. We display separate plots
for the four sets of phenotypes analyzed in the paper; red dots indicate significant results from our main
analyses using the Basset-derived annotations; correlations between the two sets of z-scores are indicated
on each plot. GWAS data are described in Supplementary Table 8, and the statistical method and multiple
comparisons adjustments are described in the “Overview of methods” section and the Methods.
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Supplementary Figure 14: Basset and HOCOMOCO motifs converge weakly on biological
signal. For each of the 276 ENCODE ChIP-seq tracks used in our main analyses that had a corresponding
motif in HOCOMOCO, we plot (i) the correlation across SNPs between the Basset-derived annotation
for that track and the HOCOMOCO-derived annotation for that track, against (ii) the correlation across
phenotypes between the z-scores of the Basset-derived annotation for that track and the z-scores of the
HOCOMOCO-derived annotation for that track. The dashed line indicates y = x, and the percentages
indicate the fraction of annotations in which either (i)>(ii) or (i)<(ii). The majority of annotations are more
correlated when the correlation is measured across phenotypes, indicating that the signal that is shared
between Basset and HOCOMOCO is reflected in GWAS data. However, the trend is considerably weaker
than it is when Basset and DeepSEA are compared (see Supplementary Figure 12). GWAS data are described
in Supplementary Table 8, and the statistical method and multiple comparisons adjustments are described
in the “Overview of methods” section and the Methods.
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