Supplement Material

Inorganic polyphosphate amplifies HMGB1-mediated von Willebrand factor release and platelet string formation on endothelial cells

Indranil Biswas, Sumith R. Panicker, Xiaofeng Cai, Padmaja Mehta-D'souza, and Alireza R Rezaie¹

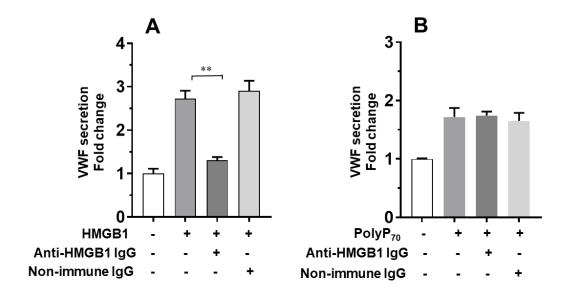
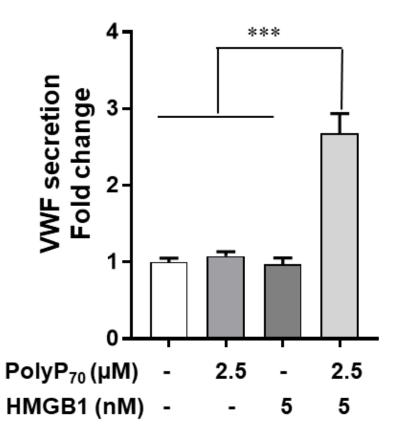



Figure IS- Analysis of polyP₇₀-mediated VWF release by EA.hy926 cells in the absence and presence of an anti-HMGB1 neutralizing antibody. EA.hy926 cells were pretreated with anti-HMGB1 monoclonal antibody (10 μ g/mL) or non-immune IgG (10 μ g/mL) for 30 min followed by treatment with (A) HMGB1 (40 nM) for 16h. HMGB1-induced VWF release was measured using a Sandwich ELISA as described in Materials and methods. (B) The same as (A) except that cells were pretreated with anti-HMGB1 monoclonal antibody (10 μ g/mL) or non-immune IgG (10 μ g/mL) for 30 min followed by treatment with polyP₇₀ (50 μ M) for 16h. polyP₇₀-induced VWF release was measured using a Sandwich ELISA as described in Materials and methods. All results are shown as means ± SD of three independent experiments. Statistical significance was analyzed by one way ANOVA with Bonferroni post test. **p<0.01.

Figure IIS- VWF measurement by Sandwich ELISA- Primary human umbilical vein endothelial cells (HUVECs, Invitrogen) were treated with polyP₇₀ (2.5 μ M, 4h) HMGB1 (2.5 nM, 16h) or with their combination (16h) and VWF release was measured using a Sandwich ELISA as described under Materials and methods. All results are shown as means \pm SD of three independent experiments. Statistical significance was analyzed by one way ANOVA with Bonferroni post test. ***p<0.005.