Supplementary Tables

Category	Parameter	Description
Assay	Type of assay	Competition with FP-TMR binding
	Target	Multiple active hydrolases in live S. aureus
	Primary measurement Key reagents	Fluorescence scan after SDS-PAGE analysis of probe-labeled lysate FP-TMR
	Assay protocol Additional comments	S. aureus ATCC3556 was plated out on TSAMg and grown for 48-72 hours. Cells were scraped off plates and resuspended in TSB at OD_{600} of 60-100. 0.5 μ L of each of 7 compounds of serine-reactive compound library (1 mM in DMSO) were pooled in a microtube and 46 μ L of the bacterial suspension were added. Samples were incubated at 37 °C, 300 rpm for 60 min and 1 μ L of FP-TMR (50 μ M stock in DMSO) was added. After 30 min incubation at 37 °C, samples were centrifuged and the supernatant discarded. Bacterial pellets were resuspended in 400 μ L ice-cold PBS/0.1% SDS, lysed by bead-beating and analyzed by SDS-PAGE.
Library	Library size	~500
	Library composition Source	Small molecules with serine-reactive electrophiles Bogyo Lab, Stanford University
	Additional comments	-
Screen	Format	12 microtubes per 96 well plate, multiplexed
	Concentration(s) tested	10 μM
	Plate controls	DMSO, Non-fluorescent probe analog FP-biotin
	Reagent/ compound dispensing system	Manual
	Detection instrument and software	Typhoon 9410 variable mode imager (TAMRA channel, λ_{ex} = 380, 580 BP filter) with Typhoon Scanner Control v 5.0 software
	Correction factors	-
	Normalization	-
	Additional comments	Individual compounds of active pools were rescreened. Compounds showing >50% competition with FP-TMR of at least one band were tested in dose-response (100 μ M – 160 nM)
Post-HTS analysis	Hit criteria	>90% inhibition of one hydrolase with no detectable activity against secondary targets at any concentration in the dose-response curve
	Hit rate	1.8%
	Additional assay(s)	-
	Confirmation of hit purity and structure	LC-MS
	Additional comments	-

Supplementary Table 1. Small molecule screening data

Gene	Previous annotation	Mw (DA), full length	strain NCTC8325 gene locus tag	strain Newman locus tag	strain USA300 locus tag
				¥	
gehA ²⁷	S. aureus lipase 1 (SAL1)	76675	SAOUHSC_03006	NWMN_2569	SAUSA300_2603
gehB ²⁷	S. aureus lipase 2 (SAL2)	76388	SAOUHSC_00300	NWMN_0262	SAUSA300_0320
fphA	Para-nitrobenzyl esterase	51969	SAOUHSC_02751	NWMN_2350	SAUSA300_2396
fphB	Acetyl esterase/lipase	36848	SAOUHSC_02844	NWMN_2434	SAUSA300_2473
fphC	Alpha/beta hydrolase	35256	SAOUHSC_01279	NWMN_1210	SAUSA300_1194
fphD	Alpha/beta hydrolase	33186	SAOUHSC_02448	NWMN_2092	SAUSA300_2148
fphE	Hydrolase family protein; H30 ^⁵	31006	SAOUHSC_02900	NWMN_2480	SAUSA300_2518
fphF	Putative tributyrin esterase	29096	SAOUHSC_02962	NWMN_2528	SAUSA300_2564
fphG	Alpha/beta hydrolase	28362	SAOUHSC_01912	NWMN_1683	SAUSA300_1733
	Carboxylesterase;				
fphH	E28°	28094	SAOUHSC_00802	NWMN_0784	SAUSA300_0763
fphl	Carboxylesterase	27443	SAOUHSC_00417	NWMN_0422	SAUSA300_0430
	Phospholipase/carboxylesterase				
fphJ	family protein	21783	SAOUHSC_02824	NWMN_2416	SAUSA300_2457

Supplementary Table 2. List of serine hydrolases identified by LC/LC-MS/MS analysis

Supplementary Table 3. Bioinformatic analyses of FphB protein sequence

Tool	Result	
SignalP	No signal peptide	
Secretome P2.0	Not secreted	
psortb v 3.0	Localization scores:	
	Cytoplasmic 7.50;	
	Cytoplasmic membrane 1.15	
	Extracellular 0.73	
	Cell wall 0.62	
Phobius	N-terminus cleaved after amino acid 18	
Signal3L-2.0	Cleave site after amino acid 18 (Score=1). Input	
	sequence does not include a	
	signal peptide, but may include a N-terminal	
	transmembrance helix (TMH).	
MemBrain	N-terminal signal peptide: not detected;	
	Predicted Transmembrane Helix (TMH): #1 TMH:	
	7-18 (possible half-TMH)	
TmPred	STRONGLY preferred model: N-terminus inside, 1	
	strong transmembrane helices	
	from amino acid 5 - 20, total score : 1004	

Strain	Description	Reference/Source
S. aureus ATCC3556	Restriction-deficient mutant derived from strain NCTC 8325, MSSA, biofilm-forming	- 52,53
S. aureus strain Newman	Wild-type clinical osteomyelitis isolate	54
S. aureus strain Newman-	WT Newman strain with GFP plasmid	Plasmid in ⁵¹ .This work.
	pCM29; Cm	This work
NWMN_SAL1:: $\phi N \Sigma$ (NWMN 2569:: $\phi N \Sigma$)	NWMN_2569 (SAL1); Ery ^R , Linc ^R	i nis work
NWMN_SAL2:: <i>φN∑</i> (NWMN_0262:: <i>φN∑</i>)	Transposon insertion mutant in NWMN_0262 (<i>lip2</i> , SAL2)); homolog to SAUSA300_0320, SAOUHSC00300 Ery ^R , Linc ^R	This work
NWMN_fphA:: <i>φN∑</i> (NWMN_2350:: <i>φN∑</i>)	Transposon insertion mutant in NWMN_2350 (<i>fphA/pnbA</i>); homolog to SAUSA300_2396, SAOUHSC_02751; Ery ^R , Linc ^R	This work
NWMN_fphB:: <i>φN∑</i> (NWMN_2434 <i>::φN∑</i>)	Transposon insertion mutant in NWMN_2434 (<i>fphB</i>); homolog to SAOUHSC_02844, SAUSA300_2473 Ery ^R , Linc ^R	This work
NWMN_fphC:: <i>φN∑</i> (NWMN_1210 <i>::φN∑</i>)	Transposon insertion mutant in NWMN_1210 (<i>fph</i> C); homolog to SAUSA300_1194, SAOUHSC_01279 Ery ^R , Linc ^R	This work
NWMN_fphD:: <i>φN∑</i> (NWMN_2092 <i>::φN∑</i>)	Transposon insertion mutant in NWMN_2092 (<i>fph</i> D); homolog to SAUSA300_2148, SOUHSC_02448 Ery ^R , Linc ^R	This work
NWMN_ <i>fph</i> E∷ <i>φN∑</i> (WMN_2480 <i>∷φN∑</i>)	Transposon insertion mutant in NWMN_2480 (<i>fph</i> E); homolog to SAUSA300_2518, SAOUHSC_02900 Ery ^R , Linc ^R	This work
NWMN_fphF∷φN∑ (NWMN_2528∷φN∑)	Transposon insertion mutant in NWMN_2528 (<i>fph</i> F/ <i>est</i> A); homolog to SAUSA300_2564, SAOUHSC_02962; Ery ^R , Linc ^R	This work
NWMN_fphG:: <i>φN∑</i> (NWMN_1683 <i>::φN∑</i>)	Transposon insertion mutant in NWMN_1683 (<i>fph</i> G); homolog to SAUSA300_1733, SOUHSC_01912 Ery ^R , Linc ^R	This work
NWMN_fphH:: <i>φN∑</i> (NWMN_0784 <i>::φN∑</i>)	Transposon insertion mutant in NWMN_0784 (<i>fph</i> H); homolog to SAUSA300_0763, SAOUHSC_00802 Ery ^R , Linc ^R	This work
NWMN_0169∷ <i>φN∑</i>	Transposon insertion mutant in NWMN_0169; homolog to SAUSA300_0227 Ery ^R , Linc ^R	This work
NWMN_2379∷ <i>φN∑</i>	Transposon insertion mutant in NWMN_2379; homolog to SAUSA300_2424 and SOUHSC02783 Ery ^R , Linc ^R	This work

Supplementary Table 4. Bacterial strains used in this study

USA300 LAC	Wild-type USA300 Los Angeles County	55
	(LAC) clone; multilocus sequence type	
	8, SCCmec type IV cured of antibiotic	
	resistance plasmid	
SAUSA300 0227. φNΣ	Transposon insertion mutant in	Nebraska Transposon Mutant
	SAUSA300 0227 Frv ^R Linc ^R	Library
SALISA300 0320 ANS	Transposon insertion mutant in	Nebraska Transposon Mutant
0A00A00_0020	SAUSA300_0320 [°] Frv ^R Linc ^R	Library
SALISA300 0763.4ND	Transposon insertion mutant in	Nebraska Transposon Mutant
5Αθ5Α300_0705ψι ζ	SAUSA300 0763 [·] Erv ^R Linc ^R	l ibrary
SALISA300 1194. ANS	Transposon insertion mutant in	Nebraska Transposon Mutant
0A00A000_1104	SAUSA300 1194; Frv ^R , Linc ^R	Library
SAUSA300 1733. MV	Transposon insertion mutant in	Nebraska Transposon Mutant
0A00A000_1100	SAUSA300 1733 [·] Frv ^R Linc ^R	Library
SAUSA300 2148. MV	Transposon insertion mutant in	Nebraska Transposon Mutant
	SAUSA300 2148 Frv ^R Linc ^R	Library
SAUSA300 2396. MNS	Transposon insertion mutant in	Nebraska Transposon Mutant
	SAUSA300 2396: Erv ^R . Linc ^R	Library
SAUSA300 2424φNΣ	Transposon insertion mutant in	Nebraska Transposon Mutant
	SAUSA300 2424; Erv ^R , Linc ^R	Library
	······································	
SAUSA300_2473 <i>∷φN∑</i>	Transposon insertion mutant in	Nebraska Transposon Mutant
	SAUSA300_2473; Ery ^r , Linc ^r	Library
SAUSA300_2518 <i>∷φN∑</i>	Transposon insertion mutant in	Nebraska Transposon Mutant
	SAUSA300_2518; Ery ^r , Linc ^r	Library
SAUSA300_2603 <i>∷φN∑</i>	Transposon insertion mutant in	Nebraska Transposon Mutant
	SAUSA300_2473; Ery ^r , Linc ^r	Library
S. epidermidis	Wild-type strain	From Elizabeth Joyce, UCSF
1 managutaganag 104026	LIE LIE of ultra and primar 1 /2	56
L. MONOCYLOGENES 104035	amplified in A from DUL 1020 (104028	
рмР4 (іпіАТТ-ТТОРО)		
	GFP)	
H pylori C27MA	MDCK adapted strain from C27 wild	57
TI. Pylon GZTNIA	type (isolated from patient with pentic	
	ulcer disese)	
E coli K12 (MG1655)	$F_{-}\lambda^{-}$ rnh-1	Coli Genetic Stock Center at
	ו-ווקו, א, ו	Yale University
S typhimurium SI 1344	Wild-type strain	60
	wind-type strain	

REFERENCES

- Pang, Y. Y. *et al.* agr-Dependent interactions of *Staphylococcus aureus* USA300 with human polymorphonuclear neutrophils. *J Innate Immun* 2, 546-559, doi:10.1159/000319855 (2010).
- Gross, M., Cramton, S. E., Gotz, F. & Peschel, A. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. *Infect Immun* 69, 3423-3426, doi:10.1128/IAI.69.5.3423-3426.2001 (2001).

- 53. Wu, J. A., Kusuma, C., Mond, J. J. & Kokai-Kun, J. F. Lysostaphin disrupts *Staphylococcus aureus* and *Staphylococcus epidermidis* biofilms on artificial surfaces. *Antimicrob Agents Chemother* **47**, 3407-3414 (2003).
- 54. Duthie, E. S. & Lorenz, L. L. Staphylococcal coagulase; mode of action and antigenicity.
 J Gen Microbiol 6, 95-107, doi:10.1099/00221287-6-1-2-95 (1952).
- Arsic, B., Zhu, Y., Heinrichs, D. E. & McGavin, M. J. Induction of the staphylococcal proteolytic cascade by antimicrobial fatty acids in community acquired methicillin resistant *Staphylococcus aureus*. *PLoS One* 7, e45952, doi:10.1371/journal.pone.0045952 (2012).
- Pentecost, M., Kumaran, J., Ghosh, P. & Amieva, M. R. Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion. *PLoS Pathog* 6, e1000900, doi:10.1371/journal.ppat.1000900 (2010).
- 57. Amieva, M. R. *et al.* Disruption of the epithelial apical-junctional complex by *Helicobacter pylori* CagA. *Science* **300**, 1430-1434, doi:10.1126/science.1081919 (2003).
- 58. Sanman, L. E. *et al.* Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. *Elife* **5**, e13663, doi:10.7554/eLife.13663 (2016).

Primer pair	Sequence (5'-3')	Application
SAUSA300_0227-F and R	F: TGACAGTCATCTTAGCCTCT	PCR confirmation of
	R: AGCGTTTACAAATAAAGCGTGT	SAUSA300_0227::
		$\phi N\Sigma$ and successful
		generation of
		NWMN_0169 <i>::φNΣ</i>
SAUSA300_0320-F and R	F: TCAACACCACAACTAAAAGTGTT	PCR confirmation of
	R: GCCTGTCCCTTTAGTTTTCGC	SAUSA300_0320::
		$\phi N\Sigma$ and successful
		generation of
		NWMN_0262 <i>∷φN∑</i>
SAUSA300_0763-F and R	F: AAGTATGCAAAGGGAGCGTT	PCR confirmation of
	R: TCATTATGCCCCTCCTTTCT	SAUSA300_0763 <i>::φ</i> N
		Σ
		and successful
		generation of
		NWMN_0748 <i>::φN∑</i>

Supplementary Table 5. Oligonucleotides used in this study

SAUSA300_1194-F and R	F: TGTCCTGTTTTAAGGGCATCA R: AGCAGTTGGCCCCACAATTA	PCR confirmation of SAUSA300_1194:: φN Σ and successful generation of NWMN_1210:: $\varphi N\Sigma$
SAUSA300_1733-F and R	F: ACCGATCCCTAATTCAACGCA R: ACTCGCACAACGGAGTTTCT	PCR confirmation of SAUSA300_1733:: φN Σ and successful generation of NWMN_1683:: $\varphi N\Sigma$
SAUSA300_2148-F and R	F: ACGACTTAGACATTTTATGGAAACT R: TGTATTCAAAATCAACTAAAGGACA	PCR confirmation of SAUSA300_2148:: φN Σ and successful generation of NWMN_2092:: $\varphi N \Sigma$
SAUSA300_2396-F and R	F: AGCTCGTCTGATTCAGTCACAA R: GCACGCCTGCTATCAAATTCA	PCR confirmation of SAUSA300_2396:: φN Σ and successful generation of NWMN_2350:: $\varphi N\Sigma$
SAUSA300_2424-F and R	F: TCGAACTTGTTTCTTCAGAGT R: AAATAATTTTTCGCTTTAGTTGTAA	PCR confirmation of SAUSA300_2424:: φN Σ and successful generation of NWMN 2379:: $\varphi N \Sigma$
SAUSA300_2473-F and R	F: ACTCTGATAATCACTTTAGCAAGTA R: TCAGCATGGTACAGTAGAACT	PCRconfirmationofSAUSA300_2473:: φN Σ andsuccessfulgenerationofofNWMN_2434:: $\varphi N \Sigma$
SAUSA300_2518-F and R	F: TGAACTGGGTTTAACAGATGAAGA R: AAGCTTGGTCAGCCATCAAA	PCR confirmation of SAUSA300_2518:: φN Σ and successful generation of NWMN_2480:: $\varphi N\Sigma$
SAUSA300_2603-F and R	F: TGACTTTCCGCCAGCTTCTT R: GGATGGTCATTATGAGTGCTTGG	PCR confirmation of SAUSA300_2564:: φN Σ and successful generation of NWMN_2569:: $\varphi N \Sigma$
SAOUHSC02844_Fw_Bam HI	ACGA <u>GGATCC</u> CGTAAAAAATGGTCTACACT	Forward primer for SAOUHSC02844 cloning with BamHI site
SAOUHSC02844_Rv_Xhol	GTTT <u>CTCGAGTTAGTTAATAATA</u> TTTTTCACTT GG	Reverse primer for SAOUHSC02844 cloning with Xhol site

Supplementary Figures

Supplementary Figure 1. Competitive activity-based protein profiling screen for inhibitors of serine hydrolases in *S. aureus*. a) SDS-PAGE gel images of samples of *S. aureus*.

ATCC35556 grown on TSBMg Agar, suspended in TSB at ~OD₆₀₀ = 50 - 100, pre-incubated with mixtures of 7 library compounds (at 10 μ M each) for 60 min, and then labeled with FP-TMR (1 uM) for 30 min. Samples were lysed, separated on an SDS-gel and TMR-fluorescence imaged using a flatbed laser scanner. Exemplary data are shown from two primary screening plates. b) SDS-PAGE images of competition profiles of the indicated hit molecules after deconvolution from the pools of 7 compounds. Images show 14 individual screening hit compounds tested in dose-response for competition with FP-TMR labeling (1 µM) to evaluate potency and selectivity. Colored arrowheads indicate consistently observed serine hydrolase activities. Lower panels show quantification of FP-TMR-labeling intensities for hydrolase bands 1 (green), 2 (red: FphB), 3 (orange) and 4 (blue: FphF) in competition with the indicated compounds. Band intensities after compound pretreatment were normalized to the corresponding intensities achieved under control conditions (vehicle treatment). Band quantification was done using Image Studio Lite V 5.2.5. For JCP251 and JCP678 the experiment was performed twice with similar results, for all other compounds these doseresponse curves were recorded once as part of the hit validation procedure.

SA-HRP blot

Supplementary Figure 2. Competition labeling of JCP251 and JCP678 with FP-biotin. a) Schematic representation of MS-based serine hydrolase profiling and target identification using FP-biotin. b) Image of an anti-biotin affinity blot of an SDS-PAGE gel containing samples of *S. aureus* ATCC35556 pretreated with the indicated inhibitors at the specified concentrations or vehicle control before labeling with FP-biotin (5 μ M). Red arrowhead and box indicate the primary target of JCP251, blue arrowhead and box indicate the primary target of JCP251, blue arrowhead and box indicate the primary target of JCP678. The experiment was performed twice with similar results.

recombinant FphB

Supplementary Figure 3. Purification, ABP-labeling and functional characterization of recombinant FphB. a) Predicted protein domain overview of recombinant FphB. b) SDS-PAGE analysis of purified rFphB protein, visualized by Coomassie staining. c) SDS-PAGE analysis (TMR-scan in upper panel and silver stain as loading control in lower panel) of rFphB labeled with JCP251-bdpTMR after pre-incubation with different concentrations of JCP251. The experiments were repeated twice with similar results.

Supplementary Figure 4. Labelling of FphB throughout various growth stages in culture. a) SDS-PAGE images of S. aureus ATCC35556 cells grown in liquid culture during exponential $(OD_{600} 0.22 - 1.6)$ and stationary phase $(OD_{600} = 5.9)$ to the indicated OD_{600} and then labeled for 30 min with FP-TMR (1 μ M) or JCP251-bdpTMR (100 nM). Samples were lysed and analyzed by SDS-PAGE followed by detection of TMR-fluorescence by scanning of the gel with a flatbed laser scanner. Red arrowheads indicate FphB. # indicates loading was normalized to the cell density of the most dilute sample ($OD_{600}=0.22$). * For $OD_{600}=59$, the stationary phase culture was concentrated 10-fold. The red arrow indicates FphB. Note that the protein runs faster in the gel when labeled with JCP251-bT compared to FP-TMR. This experiment was performed once. b) SDS-PAGE fluorescence scan of indicated S. aureus transposon mutant strains labeled with JCP251-bT. Full gel image corresponding to Fig. 3d. c) SDS-PAGE fluorescence scan images of S. aureus Newman WT and fphB:: $\phi N\Sigma$ labeled as live cells or in lysate with FP-TMR or JCP251-bT. Cells were grown to mid-exponential phase and either labeled with probe as live cells or alternatively, cells were lysed and fractionated before soluble and insoluble lysate fractions were labeled with probe at the indicated concentrations. The experiment was performed twice with similar results.

а

d

Silver stain

RAW cells only

RAW cells after phagocytosis of *S. aureus* ATCC 35556

Supplementary Figure 5. Selectivity of JCP251-bdpTMR labeling. a) Phylogenetic tree showing the closest homologs of FphB in various prokaryotic and eukaryotic organisms. Homologous proteins were identified by blastp search. No homologs were found for *Homo sapiens*, *P. aeruginosa*, *H. pylori* and *Propionibacterium acnes*. Sequences were subjected to Clustal Omega Multiple Sequence Alignment and a phylogenetic tree generated using iTOL. Values between tree branches and organism names indicate % identity values compared to *S. aureus* FphB. b) Image of the silver stained SDS-PAGE gel from Fig. 2E showing bacterial pathogen lysates after labeling with fluorescent ABPs FP-TMR and JCP251-bdpTMR c) SDS-

PAGE gel of samples of peripheral mononuclear cells (PMN) purified from human blood, cells or the murine macrophage RAW cell line alone or co-cultured with *S. aureus* ATCC3556 60 min before labeling with 100 nM JCP251-bT. Samples were lysed and analyzed by SDS-PAGE and probe fluorescence visualized by scanning of the gel with a flatbed laser scanner (left) or total protein visualized by Silver stain (right). d) Confocal micrographs of RAW cells alone (left) and after phagocytosis of *S. aureus* ATCC35566 (right), labeled with 100 nM JCP251-bT. Blue: DAPI, Yellow: JCP251-bT labeling. Scale bar: 10 µm. All experiments were repeated twice with similar results.

Supplementary Figure 6. Stimulatory activity of eukaryotic cell components on FphB activity.

Graphs show JCP251-bT labeling profile S. aureus cells in response to different stimuli (gel images) and guantification of FphB intensities. FphB bands are highlighted in red boxes. a) S. aureus ATCC35556 was incubated for 90 min at indicated CFUs in the presence or absence of RAW cells (1E5), labelled with 100 nM JCP251-bT. Gel corresponds to data shown in Fig. 4a. b) S. aureus ATCC35556 (1E7 CFU) was grown in the presence of full RAW cell lysate or the insoluble and soluble fractions after ultracentrifugation (each equivalent to 1E5 cells) prior to JCP251-bT labeling (Gel corresponds to data shown in Fig. 4b) c) Left: FphB band intensity after S. aureus ATCC35556 (1E7 CFU) were grown in the presence of RAW cells (1E5), RAW cells pretreated with 10 µM Cytochalasin D to block phagocytosis, or RAW cell lysate (equivalent of 1E5 cells) prior to JCP251-bT labeling. Graph shows means ± SD of three independent biological samples. Statistical significance was tested using unpaired, two-tailed Student's t-test. Right: Corresponding full gel image. d) S. aureus ATCC35556 were treated with heat-inactivated or untreated soluble/insoluble lysate fractions after ultracentrifugation prior to JCP251-bT labeling. Gel corresponds to data shown in Fig. 4c. e) Left: FphB band intensity after S. aureus Newman (1E7 CFU) was grown in the presence of live or PFA-fixed RAW cells prior to JCP251-bT labeling. Graph shows means ± SD of two (ctrl) or three (stimulations) independent biological samples. Right: Corresponding full gel image. f) Left: FphB band intensity after S. aureus Newman (1E7 CFU) were grown in the presence or absence of RAW cell lysate. After stimulation, some samples were spun down and the supernatant and cell pellet analyzed separately by SDS-PAGE analysis. Graph shows means ± SD of two independent biological samples. Right: Corresponding full gel image. g) S. aureus Newman WT or $fphB::\Phi N\Sigma$ mutant were incubated with PFA-fixed RAW cells, HEK cells, HepG2 cells, 10% Fetaplex[™] Animal Serum Complex (FAS) or 10% FAS after chloroform extraction prior to labeling with JCP251-bT labeling. Gel corresponds to data shown in Fig. 4d. All experiments were repeated twice with similar results.

Supplementary Figure 7. Flow cytometry analysis of JCP251-bT labeling of *S. aureus*. FACS scatter plot showing the region used for gating of samples (dashed red line). a) FCS-A vs. SSC-A. Gate P1 includes bacterial cells. b) Histogram of events in the P1 gate depicting bT-fluorescence against cell count of the unstained *S. aureus* Newman WT control sample. The JCP251-bT+-gate used for analysis in Fig. 3B was set accordingly. c-f) Histograms showing bT-fluorescence of c) strain Newman WT d) strain Newman WT after preincubation with 200 nM JCP251, e) strain Newman *fphB*:: ϕ N Σ (Newman2434) and f) strain Newman *fphE*:: ϕ N Σ (Newman2480) labeled with 10 nM JCP251-bT. g) Plot of mean bT-fluorescence intensities \pm SD of all cells in the P1 gate in arbitrary units from three biologically independent samples. The experiment was repeated twice with similar results.

Supplementary Figure 8. Confocal micrographs of *S. aureus* Newman-GFP. Confocal micrographs of a *S. aureus* Newman-GFP expressing strain labeled with 10 nM JCP251-bT after pretreatment with 200 nM JCP251 or vehicle during exponential growth. GFP-fluorescence: green, bT-fluorescence: magenta. Scale bar: 1 μ m. The experiment was repeated twice with similar results.

Supplementary Figure 9. Effects of loss of FphE activity on infectivity *in vivo.* a) Plots of total CFU recovered from indicated organs of BALB/c mice 96 hours after intravenous infection with *S. aureus* Newman WT or *fphE*:: ϕ N Σ . Graphs show pooled data (median ± interquartile range, WT:n=9, *fphE*:: ϕ N Σ . n=10) from 2 independent experiments. Significance was tested by two-sided Mann-Whitney test: *p<0.05. c) % Weight loss of BALB/c mice at different times post i.v. infection with *S. aureus* Newman WT, *fphB*:: ϕ N Σ or *fphE*:: ϕ N Σ mutant. Graph shows pooled data (means ± SD) from 2 independent experiments (WT, *fphB*:: ϕ N Σ : n=9, *fphE*:: ϕ N Σ : n=10).