Molecular Cell, Volume 72

Supplemental Information

Mode of Action of Kanglemycin A, an Ansamycin

Natural Product that Is Active against

Rifampicin-Resistant *Mycobacterium tuberculosis*

Hamed Mosaei, Vadim Molodtsov, Bernhard Kepplinger, John Harbottle, Christopher William Moon, Rose Elizabeth Jeeves, Lucia Ceccaroni, Yeonoh Shin, Stephanie Morton-Laing, Emma Claire Louise Marrs, Corinne Wills, William Clegg, Yulia Yuzenkova, John David Perry, Joanna Bacon, Jeff Errington, Nicholas Edward Ellis Allenby, Michael John Hall, Katsuhiko S. Murakami, and Nikolay Zenkin

Figure S1. *Related to Fig. 1B.* **A.** Mass spectrum of KglA showing peaks at 1004.3866, 1020.3632 and 1985.7900 Da, assigned as $[M+Na]^+ [M+K]^+$ and $[2M+Na]^+$ respectively. **B.** Crystallographically determined structure of KglA (from synchrotron data). Non-H atoms are labelled. **C.** 500 MHz ¹H NMR spectra of KglA in CDCl₃. **D.** 125 MHz ¹³C{¹H} NMR spectra of KglA in CDCl₃.

			-	-			-
Atom	δα			1 _H	1		¹³ C- ¹ H (HMBC)
no.	υc	δ _H	Protons	Multiplicity	J (Hz)	¹ H- ¹ H (COSY)	
25	42.1	2.54	1	d	16.8	2.66 (35)	1 18 (27) 1 22 (28)
33	45.1	2.66	1	d	16.8	2.54 (35)	1.10 (37), 1.25 (30)
36	172.0	-	-	-	-	-	2.54 (35), 2.66 (35)
34	40.4	-	-	-	-	-	2.54 (35), 2.66 (35), 1.18 (37), 1.23 (38)
38	24.6	1.23	3	s	-	-	2.54 (35), 2.66 (35)
37	25.7	1.18	3	s	-	-	2.54 (35), 2.66 (35)
33	176.0	-	-	-	-	-	2.54 (35), 2.66 (35), 1.18 (37), 1.23 (38), 5.07 (31)
31	67.7	5.07	1	"q"	6.4	1.09 (32)	3.70 (21), 1.09 (32), 5.83 (19)
32	19.3	1.09	3	d	6.4	5.07 (31)	5.07 (31), 2.17 (20)
20	52.4	2.17	1	"t"	9.7	5.83 (19), 3.70 (21)	5.97 (18), 5.83 (19), 5.07 (31), 3.70 (21), 3.52 (OH), 1.87 - 1.81 (22)
19	133.6	5.83	1	dd	15.6, 9.7	5.97 (18), 2.17 (20)	6.17 (17), 5.97 (18), 5.07 (31), 3.70 (21), 2.17 (20), 2.06 (30)
18	127.9	5.97	1	dd	15.9, 6.2	6.17 (17), 5.83 (19)	5.83 (19), 2.17 (20), 2.06 (30)
17	129.6	6.17	1	"dt"	6.2, 1.3	5.97 (18), 2.06 (30)	5.97 (18), 5.83 (19), 2.06 (30)
16	132.5	-		-	-	-	5.97 (18), 5.83 (19), 2.06 (30)
30	20.5	2.06	3	S	-	6.17 (17)	6.17 (17)
15	171.0	-		-	-	-	8.35 (NH), 6.17 (17), 2.06 (30)
21	68.5	3.70	1	d	10.1	2.17 (20)	5.83 (19), 5.07 (31), 3.52 (OH), 2.86 (23), 2.17 (20), 1.87 – 1.81 (22), 0.95 (39)
22	33.5	1 87-1 81 (overlan 45)	2 ^[a]	m		0.95 (39)	2 86 (23) 2 17 (20) 0 95 (39)
39	12.4	0.95	-	d	7.0	1 87 – 1 81 (22)	3 70 (21) 2 86 (23) 1 87 - 1 81 (22)
23	78.5	2.86	1	d	10.3	1.60 (24)	4 39 (25) 3 70 (21) 1 87 - 1 81 (22) 1 60 (24) 0 95 (39) 0 70 (40)
24	36.6	1.60	1	m	10.5	2 86 (23) 0 70 (40) 4 39 (25)	2 86 (23), 0.70 (40) 1 87 – 1 81 (22)
40	8.0	0.70	2	d	67	1 60 (24)	A 39 (25) 2 86 (23) 1 60 (24)
	0.5	0.70	5	u	0.7	1.00 (14)	3 86 (27) 2 86 (23) 2 06 (30) 0 70 (40) 0 39 (43)
25	73.7	4.39	1	d	9.9	2.13-2.08 (26), 1.60 (24)	5.80 (27), 2.80 (23), 2.80 (30), 8.70 (40), 8.59 (43)
41	173.6	-	-	-	-	-	4.39 (25), 2.03 (42)
42	21.3	2.03	3	S	-	-	-
26	36.7	2.13-2.08	1	m	-	0.39 (43), 4.39 (25), 3.86 (27)	5.14 (28), 4.39 (25), 3.86 (27), 0.39 (43)
43	12.9	0.39	3	d	7.2	2.13-2.08 (26)	4.39 (25), 3.86 (27), 2.13-2.08 (26)
27	80.9	3.86	1	dd	9.1, 3.0	5.14 (28), 2.13-2.08 (26)	6.37 (29), 4. 66 (44), 4.39 (25), 2.13-2.08 (26), 0.39 (43)
28	112.8	5.14 (overlap 47)	2	dd	12.8, 9.1	3.86 (27), 6.37 (29)	6.37 (29), 3.86 (27),), 2.13-2.08 (26)
29	145.8	6.37	1	d	12.8	5.14 (28)	5.14 (28), 3.86 (27), 1.68 (13), 0.39 (43)
44	96.8	4.66	1	dd	8.9, 3.3	1.87 – 1.81 (45), 2.22 (45)	4.11 (46), 3.86 (27), 3.37 (49), 2.22 (45), 1.87 - 1.81 (45)
49	70.0	3.37	1	"dq"	9.0, 6.2	1.28 (50), 3.63 (48)	4.87 (47), 4.66 (44), 4.11 (46), 1.28 (50)
48	75.5	3.63	1	dd	9.0, 5.2	3.37 (49), 4.11 (46)	5.13 (47), 4.87 (47), 3.37 (49), 2.22 (45), 1.28 (50)
47	94.9	5.13 (overlap 28)	2	"s"	-	-	3 63 (48)
	54.5	4.87	1	"s"	-	-	3.03 (40)
46	74.3	4.11	1	"td"	4.8, 2.8	1.87 – 1.81 (45), 2.22 (45), 3.63 (48)	5.13 (47), 4.87 (47), 4.66 (44), 3.63 (48), 2.22 (45)
45	33.0	2.22	1	"dt"	14.5, 2.4	1.87 – 1.81 (45), 4.11 (46), 4.66 (44)	4 66 (44)
	55.0	1.87-1.81 (overlap 22)	2 ^[a]	m	-	2.22 (45), 4.11 (46), 4.66 (44)	4.00 (44)
50	18.3	1.28	3	d	6.2	3.37 (49)	3.63 (48), 3.37 (49)
13	23.1	1.68	3	S	-	-	-
12	109.3	-	-	-	-	-	6.37 (29), 1.68 (13)
11	193.5	-	-	-	-	-	1.68 (13)
6	171.4	-	-	-	-	-	2.34 (14)
14	7.3	2.34	3	S	-	-	-
7	116.4	-	-	-	-	-	2.34 (14)
5	111.3	-	-	-	-	-	2.34 (14)
8	166.9	-	-	-	-	-	2.34 (14)
9	110.9	-	-	-	-	-	2.34 (14)
10	131.5	-	-	-	-	-	7.80 (3), 2.34 (14)
1/4	185.3	-	-	-	-	-	8.35 (NH), 7.80 (3)
1/4	184.3	-	-	-	-	-	8.34 (NH)
2	140.4	-	-	-	-	-	7.80 (3)
3	116.7	7.80	1	s	-	-	8.35 (NH)
NH	-	8.35	1	-	-	-	-
Ar-OH	-	12.60	1	-	-	-	-
OH (21)	-	3.52	1	-	-	-	-

Table S1. *Related to Fig. 1B*. Assignment of the ¹H and ¹³C NMR data of KglA

^[a]The integration of the signals in the 1.87 - 1.81 ppm region corresponded to 3 protons. 2 of these protons are assigned as C⁴⁵-H and C²²-H. It is possible that the remaining signal corresponds to an OH.

Figure S2. *Related to Fig.* **2. A**. The chemical structure of Kanglemycin A (KglA). The four oxygen atoms forming hydrogen bonds with the RIF-binding pocket of RNAP are marked by red circles. **B**. Conformations of KglA and RIF in the RIF-binding pocket of *T. thermophilus* RNAP. KglA (red) and RIF (grey) are shown as stick models; the KglA's *ansa*-bridge C20 and C27 side chains are shown in yellow and labeled; the C3 side chain of RIF is labeled. **C.** Sequence alignment spanning the RIF resistance-determining regions (RRDRs) in the β subunit (RpoB) of RNAPs from *M. tuberculosis* H37RV (MTB), *M. smegmatis* (MSM), *E. coli* and *T. thermophilus* (Tth). Amino acid residues involved in the KglA interaction (Fig. 2) and also having mutations to generate the RIF-resistant RNAPs (Figs. 1 and 3) investigated in this study are indicated by asterisks.

D. Amino acid residues of the β subunit of RNAPs involved in the KglA and initiating NTP (iNTP) interactions. **E.** Involvement of KglA-specific interaction with β R143 in KglA activity. Error bars are ±SD. The brackets contain calculated IC50±SE. IC₅₀ of KglA for double mutant was beyond our measurement limit.

Table S2. Oligonucleotides used in the study.

Oligonucleotides		
D516V (GAC =>GTC)	This paper	N/A
rpoB D516V d: GCT GTC TCA GTT TAT GGT CCA GAA CAA CCC GCT G		
rpoB_D516V_r: CAG CGG GTT GTT CTG GAC CAT AAA CTG AGA CAG C		
\$531L (TCC =>TTG)	This paper	N/A
rpoB S531 d: AAA CGT CGT ATC TTG GCA CTC GGC CC		
rpoB S531 r: GGG CCG AGT GCC AAG ATA CGA CGT TT		
H526P (CAC =>CCG)	This paper	N/A
rpoB H526Y d: CTG AGA TTA CGC CGA AAC GTC GTA T		
rpoB H526Y r: ATA CGA CGT TTC GGC GTA ATC TCA G		
H526Y (CAC =>TAC)	This paper	
rpoB H526Y d: CTG AGA TTA CGT ACA AAC GTC GTA T		
rpoB H526Y r: ATA CGA CGT TTG TAC GTA ATC TCA G		
1572F (ATC =>TTC)	This paper	N/A
rpoB 1572 d: CAT CGG TCT GTT CAA CTC TCT GTC CG	- 1 - 1 -	
rpoB I572 r: CGG ACA GAG AGT TGA ACA GAC CGA TG		
	This paper	N/A
rpoB Q513L d: CCA GCC AGC TGT CTC TGT TTA TGG ACC		
rpoB_Q513L_r: GGT CCA TAA ACA GAG ACA GCT GGC TGG		
D516Y (GAC =>TAC)	This paper	N/A
TPOB D516Y d: GCT GTC TCA GTT TAT GTA TCA GAA CAA CCC GCT G	····· P ··P ··	
rpoB_D516Y_r: CAG CGG GTT GTT CTG ATA CAT AAA CTG AGA CAG C		
H526R (CAC =>CGC)	This paper	N/A
rpoB H526R d: CTG AGA TTA CGC GCA AAC GTC GTC G	e paper	
rpoB_H526R_r: CGA CGA CGT TTG CGC GTA ATC TCA G		
D516V (GAC =>GTC)	This paper	N/A
rpoB_D516V_d: GCT GTC TCA GTT TAT GGT CCA GAA CAA CCC GCT G	····· P ··P ··	
rpoB_D516V_r: CAG CGG GTT GTT CTG GAC CAT AAA CTG AGA CAG C		
S531L (TCC =>TTG)	This paper	N/A
rpoB S531 d: AAA CGT CGT ATC TTG GCA CTC GGC CC	- 1 - 1 -	-
rpoB_S531_r: GGG CCG AGT GCC AAG ATA CGA CGT TT		
H526P (CAC =>CCG)	This paper	N/A
rpoB H526Y d: CTG AGA TTA CGC CGA AAC GTC GTA T	····· P ··P ··	
rpoB_H526Y_r: ATA CGA CGT TTC GGC GTA ATC TCA G		
H526Y (CAC =>TAC)	This paper	N/A
rpoB H526Y d: CTG AGA TTA CGT ACA AAC GTC GTA T	- 1 - 1 -	-
rpoB_H526Y_r: ATA CGA CGT TTG TAC GTA ATC TCA G		
1572F (ATC =>TTC)	This paper	N/A
rpoB 1572F d: CAT CGG TCT GTT CAA CTC TCT GTC CG	- 1 - 1 -	-
rpoB I572F r: CGG ACA GAG AGT TGA ACA GAC CGA TG		
R143A (CGT=>GCT)	This paper	N/A
rpoB R143A d: TGT TAT CAA CGG TAC TGA GGC TGT TAT CGT TTC CCA	F - F	
ĠĊŢĠ		
rpoB R143A r: CAG CTG GGA AAC GAT AAC AGC CTC AGT ACC GTT GAT		
AACA		
pyrG non-template: TAT AAT GGG AGC TGG CTC TGA TGC AGG	Murakami	N/A
pyrG template: CCT GCA TCA GAG CCC AAA ATA C	et al., 2017	