
1 THE CLUST METHOD

1 The Clust Method

Clust is an automatic cluster extraction method that can be applied to a single gene expression
dataset or multiple datasets to extract the clusters of co-expressed genes. If a multiple datasets are
considered, a cluster of co-expressed genes is defined as a set of genes which are co-expressed with
each other in all of those datasets. This document describes the technical details of clust.

1.1 Clust workflow overview

Figure 1: The automatic workflow of clust

Figure 1 shows the workflow of clust. After clust receives the raw dataset(s), it pre-processes them
by filtering, summarisation, and normalisation. Then, a large number of seed clusters are produced
by the Bi-CoPaM method (binarisation of consensus partition matrices). The M-N scatter plots
technique is thereafter applied to select an elite subset of these seed clusters. Finally, a cluster
optimisation and completion algorithm is employed to exploit the information in the elite seed
clusters in order to produce the final largest, tightest, and non-overlapping clusters of co-expressed
genes. Algorithm 1 shows the top-level clust procedure, and the next section defines the variables
and symbols that are used throughout this document.

Algorithm 1 Clust

1: procedure Clust(X, CM={KM}, K=4:2:20, ∆=0:0.1:1, t=1.0, sc=11, Q3s=2.0)
2: X = Preprocess(X)
3: Rseed = Bicopam(X, CM , K, ∆)
4: (Relite, MND) = MN(X, Rseed, t, sc)
5: Rfinal = Optimise(X, Relite, MND , sc, Q3s)
6: Return Rfinal

7: end procedure

1



1.2 Definition of variables and symbols 1 THE CLUST METHOD

1.2 Definition of variables and symbols

This section lists the variables and symbols that are used throughout the description of the steps
of clust. Few other symbols are used locally in some steps of clust and are defined where they are
used.

Table 1: Definition of variables and symbols

Symbol Description

X Set of datasets {X l, l ∈1:L}
X l The lth dataset, which is a matrix of (Ng genes × Dl dimen-

sions)

CM List of base clustering methods; default: {k-means}. Other
possible methods include SOMs and HC.

t Tightness parameter; default: 1; tighter clusters: t > 1; wider
clusters: 0 < t < 1

sc Size of the smallest allowed cluster ∈ N+; default: 11

Q3s Number of 3rd quartiles for the optimisation threshold ∈ R+;
default: 2.0

l, d, g, s, k, δ, and c Indices always used to refer to a dataset (l), a condition (d),
a gene (g), a cluster (s), number of clusters in a set of clus-
ters (k), a binarisation parameter (δ) value, and a clustering
method (c), respectively

L Number of datasets

Dl Number of conditions (dimensions) in the lth dataset

Ng Total number of genes in the dataset(s)

K Set of k values {k1 ... kNk} for base clustering methods (de-
fault: {4, 6, 8, ... , 20})

Nk Number of k values

Nc Number of base clustering methods (e.g. k-means)

∆ Set of δ values

xlg A vector of the gene expression values of the gth gene in the
lth dataset across its Dl conditions

xlg,d The gene expression of gth gene at the dth condition of the lth

dataset

R A set of clusters (e.g. clustering result). This is a matrix in
which columns represent clusters (Ng genes × k clusters)

rg,s An element of a set of of clusters (R) which represents the
membership of the gth gene in the sth cluster. If this clustering
result is fuzzy, rg,s ∈ [0, 1], and if it is binary, rg,s ∈ 0, 1

Rseed, Relite, and Rfinal Sets of seed clusters, elite clusters, and final clusters, respec-
tively. Each has the structure of R

MND List of the M-N distances of the clusters in Relite

MNDs M-N distance of the sth cluster ∈ [0,
√

1 + t2]

2



1.3 Seed cluster production (The Bi-CoPaM method) 1 THE CLUST METHOD

1.3 Seed cluster production (The Bi-CoPaM method)

The Bi-CoPaM (binarisation of consensus partition matrices) method (Algorithm 2) is used to
produce a large pool of seed clusters. Given a fixed number of clusters (k value), a set of datasets
(X), a set of base clustering methods (CM ), Bi-CoPaM applies each one of the base clustering
methods to each one of the datasets to produce multiple partitions (clustering results). Then,
a consensus fuzzy consensus clustering result (FCR) is calculated from these different clustering
results. In FCR, each gene is assigned to each one of the k clusters with a fuzzy membership value
∈ [0, 1], where 1.0 means it fully belongs to that cluster, 0.0 means it does not belong to it at
all, and a value between 0.0 and 1.0 means it partially belongs. Finally, FCR is binarised by the
difference threshold binarisation (DTB) algorithm to produce a binary consensus result (BCR) in
which membership values are strictly either 1.0 (belongs) or 0.0 (does not belong). Note that the
DTB binarisation algorithm requires setting a tuning parameter δ ∈ [0.0, 1.0].

Thus, given a fixed k value and a fixed δ value, the Bi-CoPaM produces k consensus clusters,
which we call seed clusters. In order to explore the space of k and δ values, the Bi-CoPaM produces
different versions of seed clusters at every parameter pair (k, δ) taken from a given set of k values
(K) and a given set of δ values (∆). By default, K = {4, 6, 8, ..., 20} and ∆ = {0.0, 0.1, ..., 1.0}.
The pool of seed clusters eventually produced by Bi-CoPaM (Rseed) therefore includes all of the
individual seed clusters produced at all of these (k, δ) parameter pairs.

Algorithm 2 Bi-CoPaM: seed cluster production

1: procedure Bicopam(X, CM={KM}, K=4:2:20, ∆=0:0.1:1)
2: Rseed = ()
3: for each k value in K do
4: for each dataset X l in X do
5: for each clustering method CM c in CM do
6: Rl,ck = Apply(CM c, X l, k)
7: end for
8: end for
9: FCRk = FindConsensus(Rk)

10: for each δ in ∆ do
11: BCRδk = Binarise(FCRk, δ)
12: Rseed = ConcatenateColumns(Rseed, BCRδk)
13: end for
14: end for
15: Return Rseed

16: end procedure
. Rl,ck : (Ng×k) matrix; result of applying the cth method to the lth dataset at k

. Rk ≡ {Rl,ck | ∀l∀c}: L×C different clustering results at the given k value
. FCRk: fuzzy consensus result at k; (Ng×k) matrix

. FCRk[g, s] ∈ [0, 1]: fuzzy membership of the gth gene in the sth cluster
. BCRδk: binary consensus result at k and δ; (Ng×k) matrix

. BCRδk[g, s] ∈ {0, 1}: binary membership of the gth gene in the sth cluster
. Rseed: horizontal concatenation of BCRδk matrices ∀k ∈ K, ∀δ ∈ ∆

3



1.3 Seed cluster production (The Bi-CoPaM method) 1 THE CLUST METHOD

1.3.1 Calculating the consensus fuzzy result FCR

Algorithm 3 is the algorithm which is used by the Bi-CoPaM to calculate the fuzzy consensus result
((FCR)) from a set of base clustering results R. Calculating FCR from a set of clustering results
R = {R1...RNr} is done by straightforward averaging of these results. For example, if a gene is
assigned to a cluster in 70% of the base clustering results and to another cluster in 30% of the
results, it will have the membership value of 0.7 in the former cluster and 0.3 in the latter cluster.
However, as per the nature of clustering algorithms, if there are two clustering results for the same
dataset, it is not guarranteed that the sth cluster from in the first result corresponds to the sth

cluster in the second result. Therefore, the k clusters in each one of these clustering results must
be relabelled (re-ordered) so that the sth cluster in any of the results Rr corresponds to the sth

cluster in each one of the other results {R1...RNr}.
Relabelling (reordering) the clusters in a clustering result R to correspond to the clusters in a

reference clustering result Rref is done by following a min-min approach. Pairwise distances are
calculated between every pair of clusters in those two clustering results. Then, the two clusters in
the best matching pair (the one with the minimum distance) are mapped to each other. After that,
these already-mapped clusters are eliminated from the matrix of pairwise distances allowing for the
same step to be applied in the following iteration in order to select the second best matching pair.
This iterative approach runs until all k clusters in R are mapped/aligned to the k clusters in Rref .

In practice, as shown in Algorithm 3, FCR is initially assigned the values of the first clustering
result R1. Then, the second clustering result R2 is relabelled against this initial version of FCR,
and is merged with it by an element-by-element averaging to form an updated FCR. This process
iterates over all of the clustering results, one-by-one, to relabel each of them against the current
version of FCR and to update FCR accordingly. In fact, the order in which these clustering results
are taken affects the result of this algorithm, where those taken first influence the final result more.
Therefore, the Nr clustering results {R1...RNr} are first reordered in an ascending order based on
the average mean-squared error (MSE) values of their clusters. MSE values, as explained in the
following section, evaluate the dispersion within clusters, and thus lower MSE values reflect tighter
(better) clusters. This reordering of the clustering results guarantees that better results are merged
earlier in FCR and are therefore more influential over the final result.

4



1.3 Seed cluster production (The Bi-CoPaM method) 1 THE CLUST METHOD

Algorithm 3 Find the consensus of a set of partitions

1: procedure FindConsensus(R)
2: ReorderMSE(R)
3: FCR = R1

4: for r from 2 to Nr do
5: Rr∗ = Relabel(FCR, Rr)

6: FCR =
(r − 1)× FCR +Rr∗

r
7: end for
8: Return FCR
9: end procedure

. R: set of clustering results with the same number of clusters (k)
. R: {Rr | r ∈1:Nr; Nr: number of clustering results in R}
. Rr: rth clustering result; (Ng genes × k clusters) matrix

. Rr[g, s] ∈ [0, 1]: membership of the gth gene in the sth cluster in the rth clustering result
. Rr∗: relabelled version of Rr; (Ng genes × k clusters) matrix

. ReorderMSE: reorder {R1...RNr} in an ascending way based on their mean MSE values

10: procedure Relabel(Rref , R)
11: D = pdist(Rref , R)
12: max distance = max(D)
13: R∗ = emptymatrix(Ng×k)
14: for i from 1 to k do
15: (m,n) = argmin(D) . m & n are the row & the column of the minimum value in D
16: R∗[nth column] = R[mth column]
17: D[mth row] = max distance
18: D[nth column] = max distance
19: end for
20: Return R∗

21: end procedure
. Rref : reference clustering result; (Ng genes × k clusters) matrix

. R: clustering result to be relabelled based on Rref ; (Ng genes × k clusters) matrix
. R∗: relabelled version of R; (Ng genes × k clusters) matrix

. pdist: function to find the pairwise distance between the columns of two matrices
. D: (k×k) matrix of pairwise distances between the k clusters in Rref and R

1.3.2 The DTB binarisation algorithm

Algorithm 4 describes the DTB binarisation algorithm. This algorithm transforms every fuzzy
membership value (∈ [0.0, 1.0]) in the fuzzy consensus result matrix (FCR) into a binary membership
value (either fully belongs (1) or does not belong at all (0)). The algorithm performs this in a gene-
by-gene manner, where each gene is represented by a row in the FCR matrix. Given the fuzzy
membership values of a given gene in all of the clusters, it is assigned to the cluster in which it
has its highest fuzzy membership only if it is larger than its second highest membership with a
difference of δ or more. On the other hand, if the highest two membership values of that gene

5



1.4 Elite seed cluster selection (The M-N scatter plots technique) 1 THE CLUST METHOD

are closer to each other than δ, it is assumed that there is no sufficient evidence for this gene to
be exclusively included in a particular cluster, and is therefore not assigned to any of the clusters.
The parameter δ ∈ [0.0, 1.0] is a tuning parameter which controls the strictness of binarisation.
The tightest (most strict) results are obtained at δ = 1.0 where a gene is assigned to a cluster
only if its fuzzy membership in it is 1.0 and is 0.0 in all other clusters. The least strict results
are obtained at δ = 0.0 where every gene is assigned to the cluster in which it has its highest
membership value regardless of its other membership values. In the latter case, ties may happen
between clusters competing over a gene, the case in which a gene is assigned to all of these equally
competing clusters in the binarised result.

Algorithm 4 Difference threshold binarisation (DTB) algorithm

1: procedure Binarise(FCR, δ)
2: BCR = zerosmatrix(Ng×k) . Initialise BCR with zeros
3: for g from 1 to Ng do
4: top cluster index = argmax(FCR[gth row])
5: top cluster membership = max(FCR[gth row])
6: second top cluster membership = secondmax(FCR[gth row])
7: if (top cluster membership - second top cluster membership) ≥ δ) then
8: BCR[g, top cluster index] = 1
9: else

10: Skip to next gene . Gene is not assigned to any cluster
11: end if
12: end for
13: Return BCR
14: end procedure

. FCR: fuzzy consensus result; (Ng genes × k clusters) matrix
. BCR: binary consensus result; (Ng genes × k clusters) matrix

1.4 Elite seed cluster selection (The M-N scatter plots technique)

Algorithm 5 describes the M-N scatter plots technique which selects an elite set of non-overlapping
clusters out of the large set of seed clusters generated by the Bi-CoPaM method under varying
parameter values. Each seed cluster (s) is evaluated using two metrics:

1. M∗s ∈ [0.0, t]: measures the dispersion as a scaled value of the mean-squared error (MSE)
of the genes in that cluster. In the case of multiple datasets, the MSE is first calculated for
the cluster s based on each one of the L datasets (M1

s ...M
L
s ). Then, the maximum of these

values is considered as the representative MSE of the cluster (Ms). As larger MSE values
indicate higher dispersion, and therefore less tight clusters, considering the maximum in this
case means that the quality of the cluster here is limited by its worst performance across the
datasets. The final M∗s values are calculated for all clusters after that by linearly transforming
all Ms values to the range [0.0, t]. Better clusters have smaller M∗s values.

6



1.4 Elite seed cluster selection (The M-N scatter plots technique) 1 THE CLUST METHOD

2. N∗s ∈ [0.0, 1.0]: measures the size of the cluster. This is the number of genes in the cluster
after being transformed to the logarithmic scale first and then to the [0.0, 1.0] range. Better
clusters have larger N∗s values.

Better clusters are those with smaller dispersion while including more genes, and therefore are
those which minimise M∗s and maximise N∗s . If all clusters are scattered as points on a 2D plot
whose horizontal axis is M∗s and whose vertical axis is N∗s , better clusters will be those closer to
the top left corner of the plot with the coordinates (0.0, 1.0). So, the single-value metric which
reflects the quality of a cluster s according to this algorithm is its distance from the top left corner
of the M-N plot. This distance is called the M-N distance (MNDs), and better clusters have smaller
MNDs values.

Clearly, the M-N scatter plot has the shape of a (1.0×t) rectangle. Indeed, varying the parameter
t changes the weight with which the horizontal dimension M∗s affects the result compared with the
vertical dimension N∗s . Higher t values favour tighter (less dispersed) clusters while compensating
the size of the cluster while smaller t values have an opposite effect. The default value of t is 1.0.

After finding the MNDs value for all clusters, the cluster with the smallest MNDs value is
selected as the first and best elite seed cluster. After that, all of the seed clusters which have
genes shared with that selected seed cluster are eliminated. The same steps are repeated over
the remaining seed clusters. That is, to select the cluster with the minimum MNDs and then
to eliminate the clusters that share genes with it. The process is repeated until no seed clusters
remain. Each of these iterations identifies a single elite seed cluster. It can be clearly seen that
this iterative process produces a list of elite seed clusters in order of quality. Finally, if any selected
clusters are smaller than the pre-specified smallest cluster size (sc), they are eliminated.

7



1.4 Elite seed cluster selection (The M-N scatter plots technique) 1 THE CLUST METHOD

Algorithm 5 M-N plots selection

1: procedure MN(X, Rseed, t=1.0, sc=11)
2: for each cluster s in Rseed do
3: for each dataset X l in X do

4: M l
s =

1

Dl ×Ns
∑

xl
g,∀g∈Cs

||xlg − zls||2

5: end for
6: Ms = max

∀l

(
M l
s

)
7: end for
8: for each cluster s in Rseed do

9: M∗s = t×

(
Ms −min

∀s

(
Ms

)
max
∀s

(
Ms

)
−min
∀s

(
Ms

))

10: N∗s =
log (Ns)

max
(

log (Ns)
)

11: end for

12: MNDs =

√
M∗s

2 + (1−N∗s )
2

13: EliteClusters = ()

14: RemainingSeedClusters = 1:k̂
15: i=1
16: while RemainingSeedClusters is not empty do
17: bestcluster = arg min

∀s∈RemainingSeedClusters
(MNDs)

18: EliteClusters[i] = bestcluster
19: Remove(RemainingSeedClusters, bestcluster)
20: SimilarClusters = {s|(clusters ∩ clusterbestcluster ) 6= ∅}
21: Remove(RemainingSeedClusters, SimilarClusters)
22: i = i+ 1
23: end while
24: Relite = Rseed[columns: EliteClusters]
25: RemoveSmallClusters(Relite, sc) . Remove clusters with less than sc genes
26: Return (Relite, MND)
27: end procedure

. M l
s: MSE value of the sth cluster based on the lth dataset

. Ms: Summarised MSE value of the sth cluster based on all datasets
. M∗s ∈ [0, t]: Scaled MSE value of the sth

. Ns: number of genes in the sth cluster
. N∗s ∈ [0, 1]: scaled log number of genes in the sth cluster

. Cs ⊂ (1 : Ng): set of indices of the genes in the sth cluster
. xlg: vector of gene expression values of the gth gene in the lth dataset

. zls: average gene expression values of the genes in the sth cluster in the lth dataset

8



1.5 Cluster optimisation and completion 1 THE CLUST METHOD

1.5 Cluster optimisation and completion

This step of the clust aims at addressing some of the defects that can be found in the selected elite
seed clusters (Algorithm 6). In particular, three issues are addressed by this algorithm:

1. False positives: These are genes that are included in clusters but they do not fit well within
their profiles. For instance, outliers are among false-positives.

2. False negatives: These are genes which fit well within some cluster’s profile but are not
included in it.

3. Profiles’ overlap: These are genes which fit well within the profiles of two or more clusters
at the same time. In reality, each of these genes might be included in one or none of these
clusters, but it fits within the other cluster(s).

Addressing these issues collectively is done by following this rationale:

1. The elite seed clusters are ordered based on their MND values. So split them into “good
clusters” and the “rest of the clusters” by the “largest-weighted-gap” technique (described
below).

2. From the “good clusters”, empirically learn the accepted dispersion of gene expression values
from their mean by using the “modified one-tailed Tukey’s method” (described below).

3. Go back to all elite seed clusters and consider their average profiles as skeletons for the final
optimised clusters.

4. Temporarily define the boundaries of the final clusters as their average profiles ± the max-
imum accepted dispersion. These average profiles and accepted dispersion values have been
empirically learnt in the steps above.

5. Update the boundaries of the final clusters by resolving any overlaps between any two defined
cluster-boundaries by the algorithm described below.

6. Ignore the original assignment of genes to clusters, and freshly map all genes in the data that
fully fit within any of the defined clusters’ boundaries to them. This defines the final cluster
membership.

As can be seen, this optimisation algorithm considers all of the previous steps that produced
elite seed clusters as an exercise to empirically learn the shapes of the gene expression profiles that
exist in the data as well as the acceptable dispersion around these shapes. Once such empirically
derived cluster-boundaries are identified, genes are assigned to them.

It can also be seen that this approach takes care of the three aforementioned issues. False
positives (outliers) will not be included in the final clusters because they will not fit within the
boundaries that were learnt empirically. Importantly, the technique used to learn the maximum
acceptable dispersion, and therefore the boundaries, is robust to outliers (see the modified one-
tailed Tukey’s method described below). As for false-negatives, the algorithm includes all genes

9



1.5 Cluster optimisation and completion 1 THE CLUST METHOD

that fit well within the boundaries of the clusters in them by a brute force iteration over all genes.
This guarantees that no gene which fits well within a cluster, compared to the other genes in
that cluster, will be missed. Finally, the boundaries are guaranteed not to overlap by the overlap-
resolving method described below, and this addresses the third issue.

Algorithm 6 Cluster optimisation and completion

1: procedure Optimise(X, Relite, MND , sc=11, Q3s=2.0)
2: GoodClusters = LargestWeightedGap(MND)
3: for each dataset X l in X do
4: for each gene g in 1:Ng do
5: s = the cluster to which the gene g belongs
6: if (s ∈ GoodClusters) and (zls is not an all-zeros vector) then
7: elg = |xlg − zls|, where gene g ∈ sth cluster
8: else
9: Remove elg from El

10: end if
11: end for
12: q3l = Columnwise3rdQuartile(El)
13: emaxl = Q3s × q3l

14: for each cluster s in 1:kelite do
15: lowerls = zls - emaxl

16: upperls = zls + emaxl

17: end for
18: end for
19: (Lower, Upper) = ResolveOverlaps(Lower, Upper)

20: Rfinal ≡ (Ng × kelite) matrix; rfinalg,s =

{
1, lowerls,d ≤ xlg,d ≤ upperls,d ∀l ∀d
0, otherwise

21: RemoveSmallClusters(Rfinal, sc) . Remove clusters with less than sc genes
22: Return Rfinal

23: end procedure
. Relite are in an ascending order based on their M-N distances (MND)

. GoodClusters: a list of indices of the “good clusters”

1.5.1 Largest-weighted-gap technique

The elite seed clusters are ordered based on their MND values. So, the ordered MND values are
used to split the clusters into “good clusters” and the “rest of the clusters”. The largest-weighted-
gap technique calculates the gaps (the differences) between every two consecutive clusters’ MND
values. The gaps are then weighted such that the last gap, which is the one between the last and
the next-to-last clusters, has zero weight, and the weights increase with natural numbers for earlier
gaps. Then, the clusters before the largest weighted gap are defined as the “good clusters”.

10



1.5 Cluster optimisation and completion 1 THE CLUST METHOD

Algorithm 7 Finding “good clusters”: Largest-weighted-gap technique

1: procedure LargestWeightedGap(MND)
2: gaps = MND2:kelite - MND1:(kelite−1)
3: wgaps = gaps×

(
(kelite − 1) : 1

)
4: GoodClusters = 1:argmax(wgaps)
5: Return GoodClusters
6: end procedure

. kelite: number of elite clusters; this is equal to the length of MND
. MNDa:b: a subset of MND from the ath element to the bth, inclusively

1.5.2 Modified one-tailed Tukey’s method

This is a method to identify the maximum accepted dispersion of gene expression values from
their average empirically based on the genes in the “good clusters”. This maximum dispersion
is defined independently for each dimension (condition) in each dataset, and is calculated as the
absolute difference from the mean at that dimension. Given the dth condition in the lth dataset,
dispersion values e are calculated for all of the genes in all of the “good clusters”. The 3rd quartile
of these e values is identified after that (q3), and the maximum accepted dispersion is calculated
as emax = Q3s × q3, where Q3s is a used-defined parameter with the default value of 2.0.

The parameter Q3s > 0 defines how many 3rd quartiles far from the mean are accepted. Thus,
higher values of Q3s allow for less tight clusters to be formed, while smaller values force clusters to
be tighter. All values beyond Q3s × q3 are considered as outliers.

Having calculated the maximum allowed dispersion values emax for each dimension (d) in each
dataset (l), the upper and the lower boundaries of the clusters are defined as their average profiles
± these emax values. Based on that, a gene is said to fit within a cluster’s profile if its expression
values are between the upper and the lower boundaries of that cluster at every condition of every
dataset. If it fails to fulfill this criterion even at a single condition, the gene is not said to fit within
this cluster.

1.5.3 Resolve overlaps among clusters’ boundaries

The clusters’ upper and lower boundaries are investigated for any overlaps, which are then elim-
inated as shown in Algorithm 8. An overlap between two clusters exists if their boundaries are
defined in way that makes it possible for some gene expression profile to fully fit within both of
them. This only applies if the overlap appears across all of the conditions in all of the datasets.

The problem is resolved by eliminating the overlap between the two clusters at a single condition
by redefining the boundaries of one of the two clusters therein. The condition (dimension) to be
fixed in this case is the one with the smallest overlap because it will result in minimum interference.
Moreover, as the clusters are ordered based on their original MND values, the cluster to be modified
in this case is the cluster which is latter in order. This makes such interference has a smaller effect
over better clusters. Finally, the boundary update is simply done by redefining the overlapping
boundary at the chosen condition of the chosen cluster to be just outside the boundaries of the
other cluster at that condition.

11



1.5 Cluster optimisation and completion 1 THE CLUST METHOD

Algorithm 8 Resolve overlaps between clusters’ boundaries

1: procedure ResolveOverlaps(Lower, Upper)
2: for s1 in 1:kelite do
3: for s2 in 1:kelite do
4: if s1 ≥ s2 then Skip to next iteration end if
5: v ov = 0 . Value of the smallest overlap
6: l ov = -1 . Dataset of the smallest overlap
7: d ov = -1 . Dimension of the smallest overlap
8: t ov = -1 . Type of the smallest overlap ∈ {-1, 0, 1, 2}
9: for l in 1:L do

10: for d in 1:Dl do
11: if (upperls1,d > lowerls2,d and upperls1,d ≤ upperls2,d) then

12: if lowerls1,d < lowerls2,d then

13: ov = upperls1,d - lowerls2,d
14: if (t ov == -1 or ov < v ov) then
15: t ov = 0
16: v ov = ov
17: l ov = l
18: d ov = d
19: end if
20: end if
21: else if (upperls2,d > lowerls1,d and upperls2,d ≤ upperls1,d) then

22: if lowerls2,d < lowerls1,d then

23: ov = upperls2,d - lowerls1,d
24: if (t ov == -1 or ov < v ov) then
25: t ov = 1
26: v ov = ov
27: l ov = l
28: d ov = d
29: end if
30: end if
31: else t ov = 2; Skip to next iteration
32: end if
33: end for
34: if (t ov == 2) then Skip to next iteration end if
35: end for
36: if (t ov == −1) then lower0s2,0 = 1; upper0s2,0 = 0

37: else if (t ov == 0) then lowerl ovs2,d ov = upperl ovs1,d ov + ε

38: else if (t ov == 1) then upperl ovs2,d ov = lowerl ovs1,d ov − ε
39: end if
40: end for
41: end for
42: Return (Lower, Upper)
43: end procedure

12


