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I. THE BEHAVIOURAL RULES MODEL OF
COLLECTIVE MOTION IN OPEN SPACE

The Behavioural Rules Model introduced by Couzin et al.
in [1], is a collective motion model based on metric interac-
tions between particles, able to display coherent motion in
open three dimensional space. The model consists of N in-
dividuals {p1, p2, ..., pN}, each characterized by its position ci,
and velocity vi with constant speed v = |vi|. At every time step
each particle pi updates its direction of motion according to
the orientation and position of all other particles within three
non-overlapping behavioural zones around pi. These zones,
depicted in Fig.S1, are: (A) the repulsion zone (zor), defined
as a spherical neighborhood of radius rr centered at pi where
particles repel each other to keep a minimum distance between
them. (B) The orientation zone (zoo), defined as a spherical
shell of width ∆ro = ro − rr, where pi aligns its direction
of motion with the average orientation of the particles within
this zone. (C) The attraction zone (zoa), defined as a spherical
shell of width ∆ra = ra − ro, where pi adjusts its direction of
motion to point towards the average position of the particles
in this zone.

Let us denote as di(t) the direction vector of particle pi at
time t, and define the repulsion, orientation and attraction vec-
tors associated to this particle, respectively, as

dr
i (t + ∆t) = −

nr
i (t)∑
j,i

ri j(t)
|ri j(t)|

, (S1a)

do
i (t + ∆t) =

no
i (t)∑
j=1

vi j(t)
|vi j(t)|

, (S1b)

da
i (t + ∆t) =

na
i (t)∑
j,i

ri j(t)
|ri j(t)|

(S1c)

where nr
i (t), n

o
i (t) and na

i (t) are the number of neighbors in
each behavioral zone at time t, ri j = (ci − c j)/|ci − c j| is the
unit vector from pi to its neighbor p j, and ∆t is the integration
step. These vector determine the interaction of particle pi with
all the particles within the corresponding behavioural zones.
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FIG. S1: Behavioural Rules Model. The interaction between
particles depends on which zone they are located. In the
repulsion zone (zor) particles repel each other in order to

keep a minimum distance between them. In the orientation
zone (zoo), particles align their direction of motion. In the
attraction zone (zoa) particles move towards the average

position of all the other particles in this zone.

The direction of pi is then updated according to the rules

di(t + ∆t) = dr
i (t + ∆t) if nr > 0, (S2a)

di(t + ∆t) = do
i (t + ∆t) if nr, na = 0, (S2b)

di(t + ∆t) = da
i (t + ∆t) if nr, no = 0, (S2c)

di(t + ∆t) =
1
2

[do
i (t + τ) + da

i (t + τ)]

if nr = 0 and no, na , 0. (S2d)

In the case that all the interactions add up to zero or no other
particles are detected within the behavioural zones, the parti-
cle does not modify its direction of motion, i.e.

di(t + ∆t) = vi(t). (S3)

Finally, to bring the Behavioural Rules Model and the one we
propose on a common ground, the introduction of the noise in
the system and the update of the positions and velocities of all
particles is done in the same manner as is described in Eq. 2
of the main text. The Behavioural Rules Model also consid-
ers a maximum turning rate θ∆t which defines the maximum
angle each particle can modify its direction of motion at every
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FIG. S2: Order parameter Ψ for the Behavioural Rules
Model in open space as a function of the orientation range

∆ro, for a system with N = 2000 and initial size L0 = 19. The
repulsion and attraction ranges rr and ∆ra were kept fixed at
the values rr = 1 and ∆ra = L0 = 19. It is apparent from this

figure that only when ∆ro ≈
3
2 L0 the order parameter Ψ

reaches values corresponding to ordered states: Ψ ≈ 1. The
value of the other parameters used to generate this data are

listed in Table S1.

time step. We performed numerical simulations in open space
for the Couzin model described above using different values
of ∆ro while keeping ∆ra, rr and the noise intensity η fixed,
and starting from random initial conditions. The sizes of the
different behavioural zones were defined relative to the initial
system size L0, which is defined by the initial density ρ0 by
L0 = 3

√
N/ρ0. The parameters used in the numerical simu-

lations are listed in Table S1. As depicted in Fig.S2, for the
system to be able to reach ordered states both the zoo and zoa
must be each comparable to the system size L0. Moreover,
the total interaction region (Rtot = rr + ∆ro + ∆ra) for each
particle must be considerably larger than L0. This leads to the
situation where essentially all particles in the system interact
with all other ones, which is in clear contrast with the model
we propose here, where just a few long-range interactions are
needed to reach ordered and cohesive states in open space.

II. PARAMETER VALUES

Tables S2 and S3 summarize the values of the parameters
used in the numerical simulations of the different models de-
scribed in the text (unless otherwise stated). In what follows
we will refer to the standard Vicsek model as SVM, and to the
flocking model with short-range and long-range interactions
moving in open space as FMSLRI.

III. NOISE INDUCED ORDER-DISORDER TRANSITION
IN THE FMSRLI

The objective of this work is to characterize the effect of
long-range interactions on the separation of the particles due

Behavioural Rules Model

N Number of particles 2000
L0 Initial size of the flock 19
rr Radius of the repulsion

zone
1.0 ≈ 0.05L0

∆ro/L0 Size of the orientation zone
relative to system size

[0.1, 2.0]

∆ra/L0 Size of the attraction zone
relative to system size

1.0

η Noise Intensity 0.15
ρ0 Initial density 0.3
v0 Speed of the particles 1.0
θ Maximum turning rate 360◦

t∞ Maximum computing time 105

TABLE S1: Parameters used in the numerical simulations of
the Behavioural Rules Model.

Standard Vicsek Model (2D and 3D)

N Number of particles 4096
η Noise intensity 0.15
v0 Particle speed 1.0
∆t Integration step 1.0
t∞ Maximum time to compute

trajectories
106

r0 Metric interaction range 2v0∆t
ρ0 Initial density 0.3
L0 Initial size of the box d

√
N/ρ0

TABLE S2: Parameters used in the numerical simulations of
the SVM.The initial density ρ0 and initial box size L0 were

used for the SVM in open space (without boundaries). In this
case, N particles with random orientations were initially
placed in a box of size L0. After that, the particles moved

without boundaries. In the definition of L0, d is the
dimensionality of the space.

to their motion in open space. However, it is important to
mention that a noise-driven order-disorder phase transition
also exists in this case for both metric and topological short-
range interactions, as Fig. S3 shows. Therefore, introducing
long-range interactions does not only keep the flock together
in open space, but allows the system to undergo the familiar
order-disorder transition observed in the Viscek model with
boundaries, which otherwise would not exist. In the numer-
ical simulations presented in the text, we used the constant
value η = 0.15 for the noise intensity, which in all cases cor-
responds to the ordered phase (see Fig. S3).
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Flocking model with short-range and long-range
interactions in open space (2D and 3D)

N Number of particles 4096
η Noise intensity 0.15
v0 Particle speed 1.0
∆t Integration step 1.0
t∞ Maximum time to compute

trajectories
106

ω Relative weight between short-
range and long-range interactions

0.5

αl Number of first topological
neighbors

6

r0 Metric interaction range 2v0∆t
ρ0 Initial density 0.3

TABLE S3: Parameters used in the numerical simulations of
the FMSLRI.

(a) (b)

FIG. S3: Order-disorder transition in the FMSRLI driven by
the noise intensity η for systems with N = 4096 particles and

fixed initial density ρ0 = 0.3. (a) Metric short-range
interactions and long-range connectivity κ = 0.25, 0.5, 1.0.

(b) Topological short-range interactions and long-range
connectivity κ = 0.0125, 0.025, 0.05.

IV. DYNAMICS OF THE FLOCKING MODEL IN TWO
DIMENSIONS.

In the main text we presented results in 3D. However, nu-
merical simulations were also performed in 2D. The short-
range interactions were implemented both metrically and
topologically. As for the 3D case, we chose values of the ini-
tial density ρ0 and noise intensity η that correspond to the or-
dered phase of the standard Vicsek model in 2D with periodic
boundary conditions.

In two dimensions, the model consists of N self-propelled
particles {p1, p2, . . . , pN} characterized by its position rn and
velocity vn = v0eiθn(t), expressed as a complex number to em-
phasize its direction θn(t), and the speed of all the particles,
‖vn(t)‖ = v0 is kept cosntant at all times.

The evolution of the system is given by the simultaneous
update of the directions and positions of all the particles in the

(a) (b)

FIG. S4: Order-disorder phase transition for systems with
N = 4096 particles, fixed noise intensity η = 0.15 and initial
density ρ0 = 0.3. (a) Ψ as a function of the density ρ for the

2D SVM. (b) Ψ as a function of the long-range connectivity κ
for the 2D FMSLRI. Metric and topological short-range

interactions correspond to circles and triangles, respectively.

system according to the rules

θi (t + ∆t) = ω ang [Vi(t)]
+ (1 − ω) ang [Υi(t)] + η ξi(t), (S4a)

vi (t + ∆t) = v0 eiθi(t+∆t), (S4b)
ri (t + ∆t) = ri(t) + vi (t + ∆t) ∆t, (S4c)

where the function ang[u] = θ for every vector u = u0eiθ.
The remaining parameters ω, η and the variable ξi(t) have the
same meaning as in the 3D case, and the results presented
corrsespond to ω = 1/2.

Fig.S4a shows the order parameter Ψ as a function of the
density ρ for the SVM in 2D with periodic boundary condi-
tions (black curve) and in open space (red dotted line). Again,
it can be seen that when the flock is moving in open space, it
cannot reach ordered states for any value of the particle den-
sity. Fig.S4b shows Ψ as a function of the average long-range
connectivity κ for the FMSLRI when the short-range interac-
tions are implemented metrically (black curve with circles)
and topologically (red curve with triangles). In both cases the
system is able to reach ordered states even for relatively small
values of κ.

Examples of particles’ trajectories for different values of
the mean long-range connectivity can be seen in Fig.S5a,
Fig.S5b and Fig.S5c for metric short-range interactions, and
in Fig.S6a, Fig.S6b and Fig.S6c for topological short-range
interactions. In both cases the trajectories show that the parti-
cles are organized in an ordered spatially localized group, able
to perform noise induced collective changes of direction.

As it is depicted in Fig.S4b, there is an order-disorder tran-
sition as a function of the mean long-range connectivity κ. It
is to be noted that the system is not able to reach an ordered
state in the absence of long-range interactions, even for den-
sities in the ordered phase of the Vicsek Model, and that very
few long-range interactions per particle are needed to achieve
and ordered state in unbounded collective motion.

The figures in Fig. S5 and Fig. S6 show typical trajectories
and characterize the expansion of the FMSLRI in 2D open
space with respect to the average long-range connectivity κ.
The behavior is completely analogous to the one presented
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in the main text, which corresponds to 3D open space. This
shows that long-range connections between just a small frac-
tion of particles suffice to generate ordered states and keep the
flock together for long periods of time, either in 2D or 3D and
with metric or topologic short-range interactions.

V. EXTENDED INERTIAL SPIN MODEL

To further test the generality of our results, we extended the
inertial spin model introduced in [2] by implementing long-
range interactions in a completely analogous way as we did
for the FMSLRI. The inertial spin model is also based on topo-
logic short-range interactions between the particles, but the
interaction rules are very different from the ones implemented
in the Vicsek model (or the FMSLRI).

The inertial spin model, as it is presented in [2], consists
of N particles {p1, p2, . . . , pN}, characterized by its position
ri, velocity vi (with the same speed ‖vi‖ = v0 for all parti-
cles), and a generalized momentum variable si, referred to as
the spin of the particle. This last variable is related to the in-
stantaneous curvature of the particle’s trajectory and serves as
the intermediary of the interactions between particles through
which they modify their direction of motion. Each particle
pi interacts with its first αl neighbors (topologic short-range
interactions), which constitute its local neighborhood Ui(t).
In order to extend this model and include long-range interac-
tions, we randomly choose κi particles out of the N − αl par-
ticles remaining outside the local neighborhood Ui(t), where
κi is a random number drawn from a Poisson distribution with
average κ. This set of κi particles constitute the long-range
neighborhood Li(t) of particle pi. Assigning a long-range
neighborhood to each particle in the system generates a ran-
dom network of long-range interactions with average degree
κ.

Once each particle has been provided with a local neighbor-
hood Ui(t) and a long-range neighborhood Li(t), the temporal
evolution of the system is given by the simultaneous update
of the positions and velocities of all the particles according to
the rules

dvi(t)
dt

=
1
χ

si(t) × vi(t) (S5a)

dsi(t)
dt

= vi(t) ×
{ J
v2

0

[
Vi(t) + Υi(t)

]
−
η

v2
0

dvi

dt
+

ξi

v0

}
(S5b)

dri(t)
dt

= vi(t), (S5c)

where Vi and Υi are respectively the short-range and long-
range signals defined in Eq.1 of the main text. The parameter
χ is a generalized momentum of inertia, η represents a fric-
tion coefficient, and J is the strength of the alignment force
between neighbors. The random vector ξ represents noise in
the system with correlation

〈ξi(t) · ξk(t)〉 = (2d) η Tδi jδ(t − t′) (S6)

where T plays the role of a generalized temperature. From
Eq.S5 it can be seen that we are introducing short and long-
range interactions at equal footing. This does not need to be
the case and, as in the FMSLRI, a weight factor ω between
short and long-range interactions can be introduced (as in Eq.2
of the main text), which would give more relevance to one
type of interaction versus the other. Nonetheless, for simplic-
ity we have considered again ω = 1/2.

It is not our objective here to give a comprehensive descrip-
tion of the parameters of the inertial spin model as they can
be consulted in [2]. However, it is important to mention that
the system can operate in two different dynamical regimes de-
pending on the values of the parameters. The first one is the
overdamped regime, in which the information each particle
receives about the orientation of the other particles decays ex-
ponentially with distance. In this case, perturbations in the
orientation of the particles do not propagate across the sys-
tem, preventing the system from performing collective turns.
The other dynamical regime is the underdamped regime, in
which the information about the orientation of the particles
decays linearly with distance. In this case perturbations in the
orientation of the particles can propagate across the system,
producing collective turns. Here we present numerical sim-
ulations of the extended inertial spin model (i.e. the model
in which long-range interactions have been introduced) in the
underdamped regime. The values of the parameters we used
are listed in Table S4.

Extended Inertial Spin Model

N Number of particles 512
χ Generalized momentum of

inertia
1.25

η Friction coefficient 1.5
J Strength of the alignment

force
0.8

T Generalized Temperature 0.01
κl Number of first topological

neighbors
6

ρ0 Initial density 0.3
v0 Speed of the particles 0.1
∆t Integration step v0

√
J/χ

t∞ Maximum computing time 106

TABLE S4: Parameters used in the numerical simulations of
the extended inertial spin model.

Figs. S7a, b and c show typical trajectories of the extended
internal spin model (EISM) starting from random initial con-
ditions in open space for different values of the average long-
range connectivity κ. Again, when κ = 0, i.e. in the absence
of long-range interactions, the system is able neither to reach
ordered states nor to remain together (Fig.S7a). However,
even for very value as small as κ = 0.005 the flock moving
in open space can develop ordered states and remain together
for long periods of time (Fig.S7b). Increasing the value of κ
only makes the system more stable (Fig.S7c).



5

Fig. S7d shows the order parameter Ψ as a function of κ for
the EISM moving in open space. This is the familiar phase-
transition curve driven by the average number of long-range
interactions per particle. Remarkably, the onset of ordered
states in this model begins for very low values of κ, about one
order of magnitud lower than for the FMSLRI discussed in the
main text.

Figs. S7e and f show the average distance between particles
〈∆d〉κ and to the first neighbor 〈∆dnn〉κ as functions of time for
increasing values of κ. Although asymptotically these quanti-
ties behave as t1/2, the diffusion coefficient rapidly decreases
several orders of magnitude as κ increases. Note that for rel-
atively large values of κ the curves for 〈∆d〉κ and 〈∆dnn〉κ re-
main flat during most of the computing time t∞ = 105.

We want to stress that the results obtained for the EISM
correspond to random initial conditions, i.e. both the posi-
tions and orientations of the particles were assigned randomly
at the beginning of the simulation. This is in contrast to the

simulations reported in [2] where the system was initialized in
an already ordered and localized state. Also, the noise inten-
sity we used here was considerably higher than the one used
in [2].

Our results show the ability of long-range interactions to
build up ordered states and delay the fracture of the system
for long times in unbounded space. Moreover, we have shown
that these features are not specific of a particular model, but
hold for different models such as the Vicsek model with met-
ric and topological short-range interactions and the inertial
spin model (which implements topological short-range inter-
actions). In all these cases the system cannot reach ordered
states in open space without long-range interactions between
some particles. Interestingly, in all the models presented here,
the fraction of particles with long-range interactions necessary
to reach develop ordered states and keep the flock together is
very small: only one long-range connection per 100 (or even
1000) particles.
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FIG. S5: Typical trajectories in 2D open space of the FMSLRI with N = 512 particles and different values of the average
long-range connectivity: (a) κ = 0, (b) κ = 1 and (c) κ = 5. In this figure the short-range interactions were implemented

metrically. Panels (d) and (e) show the average distance between particles 〈∆d(t)〉κ and between nearest neighbors 〈∆dnn(t)〉κ as
functions of time for different values of κ. The arrow indicates the direction of increasing κ in the interval [0.001, 20.0]. Note
that these distances behave asymptotically as t1/2 (red dashed line), indicating diffusive behavior. (f) Diffusion coefficients for
〈∆d(t)〉κ and 〈∆dnn(t)〉κ as functions of κ. Note the decrease in about one order of magnitude as κ varies from κ = 0.01 up to

κ = 1. The values of the other parameters used in the simulation are listed in Table S3.
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FIG. S6: Same type of plots as in Fig. S5 for the FMSLRI in 2D open space, but this time the short-range interactions were
implemented topologically (a) κ = 0, (b) κ = 0.05, (c) κ = 0.25 . The arrow indicates the direction of increasing κ in the interval

[10−5, 1.0].
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FIG. S7: Typical trajectories of the underdamped Extended Internal Spin Model (EISM) moving in open space for different
values of κ: (a) κ = 0, (b) κ = 0.005 and (c) κ = 0.075. The number of particles in these simulations was N = 512. Values for

the other parameters are listed in Table S4. (d) Order-disorder transition driven by the average long-range connectivity κ. Note
the onset of ordered states for values of κ as low as κ = 0.001. Panels (e) and (f) show the temporal evolution of the average
distances 〈∆d(t)〉κ and 〈∆dnn(t)〉κ (the arrows indicate the direction of increasing κ in the interval [0.0, 0.5]). Note that as κ

increases these curves become flatter and flatter, indicating an almost zero diffusion coefficient.
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