Supplementary materials

The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD

Soderborg et al.

	Normal-weight	Obese	P value*
Energy (kcal)	2316.99 ± 267.02	2580.08 ± 187.65	0.451
Total fat (g)	91.29 ± 8.84	104.85 ± 12.05	0.399
Total carbohydrate (g)	286.50 ± 42.72	307.91 ± 18.48	0.662
Total protein (g)	93.58 ± 11.07	107.16 ± 9.31	0.384
Total dietary fiber (g)	23.24 ± 3.77	19.39 ± 1.87	0.408
Choline (mg)	351.66 ± 50.13	368.49 ± 51.29	0.822

Supplementary Table 1. Select maternal dietary macro- and micronutrients two-weeks postpartum

Results are expressed as mean \pm SEM. **P* value assessed by Student's *t*-test.

oupplementary rable 2. Torward and reverse sequences of primers used for qr or			
Gene Symbol	Forward Primer	Reverse Primer	
18S	TCCGATAACGAACGAGAC	CTAAGGGCATCACAGACC	
Abcb11	GACTTTCCACAGTGGCGTCT	TCACTCAACAACCCTACAGATG	
Cpt1a	GTCCCTCCAGCTGGCTTATC	CATGCGGCCAGTGGTGTCTA	
Cyp7a1	TGATCCTCTGGGCATCTCAAGCAA	AGCTCTTGGCCAGCACTCTGTAAT	
Cyp8b1	TTGCAAATGCTGCCTCAACC	TAACAGTCGCACACATGGCT	
Gapdh	GTGAAGGTCGGTGTGAACGGATTT	TGGCAACAATCTCCACTTTGCCAC	
Hnf4a	GGATATGGCCGACTACAGCG	AGATGGGGACGTGTCATTGC	
lfnb1	AACTCCACCAGCAGACAGTG	GGTACCTTTGCACCCTCCAG	
II10	GCTCTTGCACTACCAAAGCC	CTGCTGATCCTCATGCCAGT	
ll1b	GCCTTGGGCCTCAAAGGAAAGAAT	ATTGCTTGGGATCCACACTCTCCA	
<i>II6</i>	TCCATCCAGTTGCCTTCTTG	TTTCTCATTTCCACGATTTCCC	
Nr0b2	TCCTCTTCAACCCAGATGTGC	AGACTTCACACAGTGCCCAG	
Nr1h4	TGGCTGAATGTATGTATACAGGTTT	CAGCGTGCTGCTTCACATTT	
Ocln	TTGAACTGTGGATTGGCAGC	CAAGATAAGCGAACCTTGGCG	
Ppara	TGCCCTGAACATCGAGTGTCGAAT	TCGTACACCAGCTTCAGCCGAATA	
Pparg2	TTCGCTGATGCACTGCCTAT	GGAATGCGAGTGGTCTTCCA	
Slc10a1	GTCCTCAAGGCAGGCATGAT	ATCAGGGAGGAGGTAGCCAG	
Tjp1	GATGTTTATGCGGACGGTGG	CATTGCTGTGCTCTTAGCGG	
Tnf	TAGCCCACGTCGTAGCAAAC	ACAAGGTACAACCCATCGGC	
Xbp1s	CTGAGTCCGCAGCAGGTG	GGCAACAGTGTCAGAGTCCA	

Supplementary Table 2. Forward and reverse sequences of primers used for qPCR

В

Inf-NWMB

Inf-ObMB

Supplementary Figure 1. Increased bacterial outgrowth from livers of Inf-ObMB mice. A) Number of colony forming units (CFU) from liver homogenate on tryptic soy broth agar plates; n = 8 for both Inf-NWMB and Inf-ObMB. Data are presented as mean \pm SEM. B) Fresh livers from Inf-NWMB and Inf-ObMB mice plated on tryptic soy broth agar plates and grown overnight at 37°C.

Supplementary Figure 2. Individual BA measurements in liver (A, B) and feces (C, D) in Inf-NWMB and Inf-ObMB mice. n = 3 for Inf-NWMB, n = 4 for Inf-ObMB for liver; n = 3 per group for feces. Data are presented as mean \pm SEM. **P* <0.05 and ***P* <0.01 by Student's *t*-test.

Supplementary Figure 3. Individual scores of the modified Pediatric NAFLD Histological Score (PNHS) for A) Inf-NWMB and Inf-ObMB mice and B) Inf-NWMB WSD and Inf-ObMB WSD mice. n = 3 for Inf-NWMB, n = 7 for Inf-ObMB, n = 4 for Inf-NWMB WSD and Inf-ObMB WSD. Data are presented as mean \pm SEM. **P* <0.05 by two-tailed Mann-Whitney U test.

Supplementary Figure 4. Gating strategy for identifying resident and recruited liver macrophages.