Antiviral activity of the mineralocorticoid receptor NR3C2 against Herpes simplex virus Type 1 (HSV-1) infection

Jürgen G. Haas¹, Julia Weber¹, Orland Gonzalez², Ralf Zimmer², and Samantha J. Griffiths^{1*}

¹Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, U.K.

²Institute for Informatics, Ludwig-Maximilians Universität München, 80333 München, Germany.

*To whom correspondence should be addressed: <u>samantha.griffiths@ed.ac.uk</u>

Supplemental Figures

Figure S1

Figure S1. Validation of the MC signalling pathway as anti-viral to HSV-1. (a) Validation of siRNA screen phenotypes by siRNA deconvolution. Constituent SMARTpool siRNAs were transfected individually (1-4), and as a reconstituted SMARTpool (SP) into 293T cells, and resultant replication slopes compared to the negative control (RSCF), positive control (ICP4) and the primary screen data (P). The replication phenotype was considered validated if 2 or more of the individual siRNAs gave the same, or better, replication slope. Error bars represent the standard error of the mean of three independent experiments done in triplicates. (b) RTqPCR confirmation of gene depletion. Gene depletion by siRNAs was confirmed in HeLa cells by RT-qPCR, normalised to the housekeeping gene hypoxanthine phosphoribosyltransferase 1 (HPRT), and relative % mRNA expression in comparison to mock-transfected cells calculated. Gene depletion of at least 60% was observed for all siRNAs tested. Error bars represent standard deviation of technical replicates from a representative experiment. (c) MR protein expression following gene overexpression or depletion. MR was overexpressed (plasmid transfection) or depleted (siRNA transfection) in HeLa cells before MR protein expression was detected by western blot and quantified in ImageStudio following Licor imaging. Band intensity signals ranged from 5,744-79,438 (actin) and 5,521-58,111 (MR). MR expression was normalised to actin. Presented blots and MR expression levels are representative of three experiments carried out in duplicates. Images have been cropped from larger gels for clarity and conciseness, presented as Fig. S6, but were run on the same blot and derived from the same experiment. (d) Co-expression of MC signalling pathway members synergistically inhibits HSV-1 replication. 293T cells transiently over-expressing constituent members of the MC signalling pathway alone or in combination were infected with HSV-1-eGFP at MOI 0.5 and replication monitored by GFP fluorescence. Slopes over the linear phase or replication were calculated and normalised to controls (pCR3-transfected cells). Error bars represent the standard error of the mean of at least three independent experiments, carried out in triplicates.

Figure S2

Figure S2. Expression of MR and MR-regulated genes in response to HSV-1 infection. (a) Activation of the HRE by mineralocorticoid and glucocorticoid ligands. HeLa cells were transfected with HRE-luc and stimulated with the synthetic glucocorticoid dexamethasone (1 μ M) or the mineral corticoid aldosterone (5 μ M) for 24 hr before activation of the HRE was determined by quantification of luciferase activity. Error bars represent the standard error of the mean of at least three experiments carried out in triplicates. (b) SGK1 expression increases at the protein level in response to HSV-1 infection. HeLa cells were infected with HSV-1 (MOI 1), and SGK1 detected by western blot in samples harvested at 0, 6, 12, 24, 36, and 48 h postinfection was normalised to actin at each time-point and expressed as a % of expression in uninfected cells (0 hr post-infection). Expression levels presented are representative of three experiments carried out in duplicates. (c) MR expression in response to HSV-1 infection when MR is depleted. HeLa cells were reverse-transfected with RSCF or MR-specific siRNA (50 nM) and, after 48 hr, were infected with HSV-1 (MOI 1). MR was detected by western blot at 0, 6, 12, 24, 36, and 48 h post-infection, was normalised to actin at each time-point and expressed as % expression in uninfected cells (0 hr post-infection). Expression levels are representative of two experiments carried out in duplicates. (d) SGK1 expression in response to HSV-1 infection when MR is depleted. HeLa cells were reverse-transfected with RSCF or MR-specific siRNA (50 nM) and, after 48 hr, cells were infected with HSV-1 (MOI 1). SGK1 was detected by western blot in samples harvested at 0, 6, 12, 24, 36, and 48 h post-infection, was normalised to actin at each time-point and expressed as % expression in uninfected cells (0 hr post-infection). Expression levels are representative of two experiments carried out in duplicates. (e) Transcriptional targets of the MR are largely pro-viral. HeLa cells were reversetransfected with siRNA SMARTpools against transcriptional targets of the MR and infected with HSV-1-eGFP (MOI 0.5) after 48 hr. Replication was monitored as GFP fluorescence over multiple rounds of replication and slopes over the linear phase were calculated and normalised to controls. Error bars represent the standard deviation of three experiments carried out in duplicates.

Figure S3

Figure S3. Modulation of HRE activation by the MR. (a) Co-expression of the MR with VP16 enhances activation of the HRE. The MR and VP16 were overexpressed in HeLa cells alone or together, with a HRE-luc reporter. After 24 hr, luciferase activity was measured and normalised to control transfected cells (pCR3). Error bars represent the standard error of the mean of four independent experiments carried out in triplicates. (b) Depletion of the MR reduces VP16-mediated activation of the HRE. HeLa cells were reverse-transfected with 20 nM control (RSCF) siRNA or a siRNA targeting the MR. The next day, cells were transfected with a HRE-luciferase reporter, and luciferase activity measured and normalised to control

transfected cells after 24 hr. Error bars represent the standard error of the mean of four independent experiments carried out in triplicates. (c) The viral IE promoter ICP4 is unaffected by co-expression of MR, VP16 and Oct1. The MR, VP16 and Oct1 were transfected into HeLa cells alone or in combinations with the ICP4-luciferase reporter. After 24 hr, luciferase activity was measured and normalised to control transfected cells (pCR3). Error bars represent the standard error of the mean of at least three independent experiments carried out in triplicates. Raw data is provided in **Table S8**.

Figure S4

a

b

С

Figure S4. Full-length western blot gel images. (a) Full-size gel used for cropped images presented in Fig. 5c, Fig. 7b and Fig. S5b. (b) Full-size gel used for cropped images presented in Fig. 5d. (c) Full-size gel used for cropped image presented in Fig. S2c.

Figure S5

Figure S5. Replication of HSV-1-eGFP strain C12 correlates with eGFP expression. (a) Correlation between plaque-forming units and GFP fluorescence. A range of genes were depleted in HeLa cells by siRNA knockdown, before infecting with HSV-1 C12 at MOI0.5. GFP fluorescence was measured over time, and supernatant harvested for quantification of viral titre by plaque assay. Plaque forming units (PFU/ml) were correlated with GFP fluorescence. (b) Confirmation of viral gene expression following infection with HSV-1-eGFP strain C12. HeLa cells were infected with HSV-1-eGFP strain C12 at MOI1, and cells harvested at 6, 12, 24, or 48 hr post-infection. Lysates were run on Western blot and stained for immediate-early (VP16) and early (gD) viral genes, with actin staining for semi-quantitation. Image has been cropped from a larger gel, presented as **Fig. S6**, for clarity and conciseness.

Supplemental Tables

		Mean Cell	Standard
Functional Family	Gene Symbol	Viability	Deviation
General Transcription Factors:	GTF2A2	1.00	0.03
	GTF2B	1.13	0.08
	GTF2E1	1.11	0.05
	GTF2E2	1.13	0.03
	GTF2F1	1.09	0.01
	GTF2F2	1.00	0.20
	GTF2H2	1.01	0.08
	GTF2H4	0.96	0.07
	GTF3A	1.09	0.12
	GTF3C1	1.11	0.13
	GTF3C2	0.97	0.00
	GTF3C3	0.87	0.07
	GTF3C4	0.94	0.01
	GTF3C5	1.05	0.02
Chromobox proteins:	CBX1	*0.68	0.36
*	CBX3	1.09	0.03
	CBX4	0.94	0.04
	CBX5	1.04	0.05
	CBX6	0.98	0.02
	CBX8	1.12	0.04
Homeobox proteins:	HOXA1	0.99	0.02
1	HOXA10	1.10	0.08
	HOXA11	1.06	0.15
	HOXA13	0.90	0.06
	HOXA2	0.93	0.10
	HOXA4	0.95	0.17
	HOXA5	0.95	0.10
	HOXA7	1.00	0.12
	HOXA9	1.11	0.03
	HOXB1	1.07	0.04
	HOXB13	1.02	0.11
	HOXB2	1.12	0.08
	HOXB3	1.22	0.03
	HOXB5	0.92	0.29
	HOXB6	0.96	0.34
	HOXB7	1.05	0.22
	HOXC10	0.97	0.25
	HOXC11	1.06	0.29
	HOXC13	1.01	0.25
	HOXC4	1.18	0.10
	HOXC5	0.96	0.10
	HOXC6	1.12	0.15
	HOXC9	1.25	0.06
	HOXD10	0.90	0.14
	HOXD11	1.02	0.12
	HOXD12	0.82	0.21
	HOXD13	1.00	0.14
	HOXD3	0.91	0.10
	HOXD4	1.11	0.11
	HOXD8	1.04	0.12

	HOXD9	1.02	0.12
Steroid hormone receptors:	NR0B1	1.10	0.04
	NR0B2	1.08	0.01
	NR1D1	0.91	0.15
	NR1D2	0.82	0.15
	NR1H2	0.83	0.15
	NR1H3	1.01	0.03
	NR1H4	1.04	0.06
	NR1I2	1.05	0.01
	NR1I3	1.08	0.03
	NR2C1	1.13	0.03
	NR2C2	1.12	0.01
	NR2E1	1.29	0.06
	NR2E3	0.97	0.03
	NR2F1	1.07	0.06
	NR2F2	1.00	0.08
	NR2F6	1.02	0.07
	NR3C1	0.99	0.04
	NR3C2	1.15	0.07
	NR4A1	1.13	0.06
	NR4A2	0.93	0.05
	NR4A3	1.18	0.05
	NR5A1	1.13	0.06
	NR5A2	0.96	0.02
	NR6A1	1.04	0.03
Mineralocorticoid signalling pathway			
members:	FKBP4	1.00	0.04
	FKBP5	1.00	0.07
	HSP90AA1	1.22	0.09
	DYNC111	1.17	0.03
	DYNC1I2	0.88	0.09

Table S1. Effect of gene depletion on HeLa cell viability. *, cell viability falls below the 70% cut-off (0.7).

Gene Symbol siRNA 1 General Transcription Factors:

GAAACAGUCUUCAGGAGAG

GAAAUUGGUCGGUGUUUUA

GAACUUGGCCUAUGAAAUA

GACCAGAUACUAUUUGUAA

GCAAGAUGAUCAACGACAA

GAAAGAAGACGGAAAGCGA

GTF2A2

GTF2B

GTF2E1

GTF2E2

GTF2F1

GTF2F2

GTF2H2

GTF2H4

GTF3A

GTF3C1

GTF3C2

GTF3C3

GTF3C4

GTF3C5

Chromobox proteins:

siRNA 2

GCGAUAAUGUGUGGACUUU

ACAAUCAGACAGUCCUAUA

UAACAUGGAUGACCAAGAA

GCAUGACCAGCGAGGAUUA

GAGAACACGUCCUACUACA

UAGUCAAGGUUCCUAAAUA

siRNA 3

GAGGUGACAGAACUUAUUA GCUAGAAACCAGUGUGGAU CAACCGGGCUUCCUUCAAA GCUUUAAGACUCAUAACGA GAAGAAGUACGGCAUCGUC CAUCAGAUAAGCUGUCAUU ACAUACAAGUCGAGAAGUA CUGAGGGUGUCCUGUAUAA GCAAUGAAACAAAGUCUCA GAACGGAGAACGAUAAAGC CUUCAAUGGUGCAAAGCUA GUCCGGAACUCAUCGACUA GAAUGGAACAGUCUAUACU CGAAUCCGUUGUGGAAUGA

CAGAAGAGAACCUGGAUUG UGAAGAAUUUGUCGUGGAA UGGAGUAUCUGGUGAAAUG AGAGAGAGCAGAGCAAUGA GGCCGAAUCCAUCAUCAAA UAACACGGACCAAGGCUUU

GACGACCGCUUCCUAGUGG UCACAGCCAACUUUAAUUU CAGCAAAUCCACUCCUCUA AAGAAGCGCGUGCCUUAUA GAGAACUGCUUACACCAAC CUACAUCGAGCCCAAGUUC CGGACUACCAGUUGCAUAA CAAAGGCGCCUGCGACAAG GCAACUACUACGUGGACUC UGAAACACAGGUCAAGAUU GAACCCACCAGGUCCCUUU GAGGGAGAUUGGGUUUAUA GGUAAAGCCCACCAGAAUG GGGCAGACUCCGCAGAUAU

siRNA 4

CUAAAUACGUACAGAUUCU ACAUAUAGCCCGUAAAGCU GGAGACAAGUUUAUCAAAU AGUACAACGUGAGAGAUAA GAAUACGUCGUUCGAGUUC AGUCAGUGCUCCUAGAGAA GCGAUCCAUCUAAUAUUUA GCUGUAGCUCUGUGGGUAA GACCAUUUGUUUGUGACUA **GUACAAGAGGCGUUACAUU** GAGCCCACUUCAAUGCUAU GCCCAAGUUUGUUUGAUAU GAUUGGACAUAUCUCAAAG ACUCCGAGGUCACAUUUGA

GCCCACAGGUUGUCAUAUC AGUACUAGAUCGACGUGUA AGACCUGGAUGAACCCAUA UAGACAGGCGCGUGGUUAA GAUGUGCAUUUCUCUGUCA GCUCGCAGCCUUUGAGGAA

ACGAGAAGGCCGAGGAAUC GCAAAGAGUGGUCGGAAGA GCUCCUCUAACAUGUAUUU GACAAACGGAGGCGGAUAU CCGUAGAUAUUUCAGCUGA GCCCACACGCUCUGUUUGU GCAGGUACGGCUACGGCUA CGUAUUAUGUGAACGCGCU AGUCCAAGGCGACGGUGUU UCGACUGGAUGAAGGUUAA GUAUGCGGCUAACAAGUUC CAAGGAGUCGACAUUAAUU GCCACUAGCAACAGCAGUA GCGUAUACCCGCUACCAGA

CBX1 GCGCAAAGCUGAUUCUGAU CBX3 UCAGAAAGCUGGCAAAGAA CBX4 GCAAGAAGCACCACCAGUA CBX5 GGAUUGCCCUGAGCUAAUU CBX6 GAAAGGGACGCAUCGAGUA CBX8 GGAAAGGACGCAUGGAAUA Homeobox proteins:

HOXA1 GAUUACAACUUUCCAGUCG HOXA10 CCAACUGGCUCACGGCAAA HOXA11 UAACAGAGACCGUUUACAG HOXA13 GGGAAUACGCCACGAAUAA HOXA2 GGAGCUGGCCUAAACAAUG HOXA4 GCAAGGAGCCCGUGGUGUA HOXA5 CAUAAGUCAUGACAACAUA HOXA7 GAAAGAGCAUAAGGACGAA HOXA9 GCGCCGACGCCGCGGAUGA HOXB1 GCUACGGGCCUUCUCAGUA HOXB13 GAACAGCGCUACCCCUUAA HOXB2 CGAGUUCCCUUGGAUGAAA HOXB3 CCAAGAAGCGCCCAAAUUA HOXB5 GCUCUUACGGCUACAAUUA

AGACUGACGUGUACUUUAA GGAAUGAUGCGCCACCUUU GCUCAGCUCUGGUACUUUA GAACCGAGUACACCUACAA GAAACAAGGGCAAGGCUUA CCAUAAAGAGGAAAUACUA GAAGGUCUCUUGCGAUUGU GACCGAAACCGGAGAGUGA UCUGUGGGAUUCAUUAUAU CGACUGGCUUGGGACAAUA GAUGUUACUUCUGCUAUUA GAAUGUUACCUGCACUAUA GAAGUGUAGUUGCAGCUUA CGACUGGAUUAAGAGGUUA GCAGAUGUUCUACCAGUUA GCAAGCAUACGUCAAUGUA GGAAGGGAUUCUCAGAUGA AGAAUUGAUUGAAGCGUUU

GCUGGUCGCCCAAAUAUAA CAAGUGGAAUAUCUACUGA ACACAGAUCCGCCACAUGA GGACGUGACCUCAAACUUU

GAACUUCAGUGCGCCUUAC GCAAAGCCUCGCCGGAGAA GCGUCUACAUUAACAAAGA GCGGACAAGUACAUGGAUA GGAUUUGACUGAGAGACAA AAGAUGCGAUCCUCCAAUU GCAGAAGGAGGAUUGAAAU GUUCCGGGCUUAUACAAUG GCGGAUGAGCUGAGCGUUG GGAGAUGCCUCAGACCAGU CCACUGAGUUUGCCUUCUA GCCUUUAGCCGUUCGCUUA AGGCAAACGUCCAAGCUGA UGAGGAAGCUUCACAUCAG

HOXB6 CGGACCCGCUGAGACAUUA HOXB7 GAACAAACUUCUUGUGCGU HOXC10 GAGAUUAGCAAGACCAUUA HOXC11 CAACGUGUAUAUCAACAAA HOXC13 GCAAGAAACGCGUGCCCUA HOXC4 CUACAUCGAUCCGAAAUUU HOXC5 GGAUUGGACUUAAGCAUCA HOXC6 CUAUGGAUCUAAUUCCUUU HOXC9 GCUCAUCUCUCACGACAAU HOXD10 CGAAUAGAGCAACCUGUUA HOXD11 GAGAAGAGCAGCAGCGCAG HOXD12 CCGAAGAGCAGGCUAAGUU HOXD13 GAACCUAUCUGAGAGACAA HOXD3 CGACAGAACUCCAAGCAGA HOXD4 UGAAAUCGCUCACACCCUG HOXD8 CCGAAGGCCUGACAAAUUA HOXD9 GAAUUCCUCUUCAACAUGU Steroid hormone receptors:

NR0B1 CAGCAUGGAUGAUAUGAUG NR0B2 GAAUAUGCCUGCCUGAAAG NR1D1 GCAUGGACGCAGUGGGCGA NR1D2 GAAGAAUGAUCGAAUAGAU NR1H2 CUAAGCAAGUGCCUGGUUU NR1H3 GAACAGAUCCGCCUGAAGA NR1H4 CAAGUGACCUCGACAACAA NR1I2 GAUGGACGCUCAGAUGAAA NR1I3 CCUCUUCGCUACACAAUUG NR2C1 GGAAGGAAGUGUACACCUA NR2C2 CUGAUGAGCUCCAACAUAA NR2E1 GAUCAUAUCUGAAAUACAG NR2E3 GAGAAGCUCCUUUGUGAUA NR2F1 GAAACUCUCAUCCGCGAUA NR2F2 GUACCUGUCCGGAUAUAUU NR2F6 CGACGCCUGUGGCCUCUCA NR3C1 GAUAAGACCAUGAGUAUUG NR3C2 GCAAACAGAUGAUCCAAGU NR4A1 GAAGGAAGUUGUCCGAACA NR4A2 CCACGUGACUUUCAACAAU

CGGAUGAAUUCGUGCAACA GCGCCAAGGAGCAGAGGGA GAGAAUGUCUGCUGCAUGU GCGCUGCCCUUAUUCGAAA GUGACGACCUGUCCUCUAG GCAAGCAACCCAUAGUCUA CCAAUAUCCCUGCCUAUAA AAGCCAGUAUCCAGAUUUA GUGCCGGACUGUAGCGAUU GAGAUCAGUAAGAGCGUUA GAGCGCAGCCAGCAUGUAC UCUCAAAGCGGCCAAGUAU ACACCAAACUGCAGCUUAA GCGCGCAGCUGGUGGAAUU ACACGGACCUGACGACCUU AAUCAGAGCUCGUCUCCUU CCAAAUACCAGACGCUUGA

CUGCUGAGAUUCAUCAAUG GGAAUAUGCCUGCCUGAAA GGGCAUGUCUCGAGACGCU GAACAUGGAGCAAUAUAAU GCUAACAGCGGCUCAAGAA GAGUUUGCCUUGCUCAUUG GAAAGAAUUCGAAAUAGUG CAACCUACAUGUUCAAAGG GAACAGUUUGUGCAGUUUA GAGCACAUCUUCAAACUAC CAACCUAAGUGAAUCUUUG CAAGACUGCUUUCAGAUAU GAAGCACUAUGGCAUCUAU UCUCAUCCGCGAUAUGUUA CCAACCAGCCGACGAGAUU CAGCCGGUGUCCGAACUGA GGACAGAUGUACCACUAUG CAGCUAAGAUUUAUCAGAA CGGCUACACAGGAGAGUUU ACAUUCAGAUGCACAACUA

UGACGGAGAGGCAGAUCAA ACUUGGCGGCCGAGAGUAA GCAAAGUGAGUUUCCCUGA GCAAGUGGCACCAUCGGAA GCAAAUCGAAAGCGCCUCA GGACAUUACCAGGUUAUAA CUACGUAGCCAAUUCAUUC GACAUGCUCUCAAACUGCA GACACGCGCUACAUGCGGA UUAUAUACCUCAAGUAGAC CGUCUGACUUCGCUAGCAA CUACAGAGCGGGCUAUGUG GAACGAGUAUGCCAUUAAC GGAGAGAGCUGCGAGGACA GGUCAUGAGUUCGUAUAUG UUACGGAUACGAUAACUUA GAGUUCGCCUCGUGUAGUU

ACAGAUUCAUCGAACUUAA CGUAGCCGCUGCCUAUGUA CGGCAGGGCAACUCAAAGA GAGGAGCUCUUGGCCUUUA AGGCGAGGGUGUCCAGCUA UGACUUUGCUAAACAGCUA CAACAGACUCUUCUACAUU CAGGAGCAAUUCGCCAUUA UUAAUGCGCUGACUUGUGA GGAUCAAAGGAUUGUAUUA GAAGACACCUACCGAUUGG GUUAGAUGCUACUGAAUUU GAAGGAUCCUGAGCACGUA GGAACUUAACUUACACAUG ACUCGUACCUGUCCGGAUA CAACCGUGACUGCCAGAUC GAGGACAGAUGUACCACUA GGUAUCCGGUCUUAGAAUA UCGAGGACUUCCAGGUGUA GGACAAGCGUCGCCGGAAU GCGCAGGACAAGAGCGUGU GAGAGUAACUUCCGGAUCU CGGAUAACGAAGCGAAAGA CGGGAAAUCCUCUGCUGUA AGGAAUACGCGGCUAGCAA CGUAUUUGAUGGACUCUAA UGACCAAACUGCACAUGAG CCUAUGAUCCAGUGAGGCA GGGCCCAUCAGUAACUAUU AAACCCAAGAGUACAAUAA CAACCGUCGUCCUGCCAGA GGAGUUGGAGAACGAAUUC GGACAUGUGCGUCUACCGA GCAACUUCGUCGAGUCCAU CAACUACACCGGUGGGGAA AGGCCGAGCUGGUACAAUA GCUACGAGGUGGCCAGGAU

GAACGUGGCGCUCCUGUAC GCCAUUCUCUACGCACUUC GGGCGAACGGUGCAGGAGA UAAACAACAUGCACUCUGA GAAGAAGAUUCGGAAACAG CAAGGGAGCGCACUACAUC GAACCAUACUCGCAAUACA GCUCAUAGGUUCUUGUUCC GUGGAAAUCUGUCACAUCG UCUCAGCGAUUCACAUGUA GCGCCAAGCAACUCAUAUU CAAUGUAUCUCUAUGAAGU GAAGCUCCUUUGUGAUAUG GCAAACUGCUGCUGCGACU GGCCGUAUAUGGCAAUUCA GUACUGCCGUCUCAAGAAG GAACUUCCCUGGUCGAACA GACCUAGUCUUUAAUGAAG GGACAGAGCAGCUGCCCAA CCACCUUGCUUGUACCAAA

NR4A3	CAAAGAAGAUCAGACAUUA	GAAGUUGUCCGUACAGAUA	CGGAAUACACCACGGAGAU	CCUCCAAUCUGCAUGAUGA
NR5A1	GAUUUGAAGUUCCUGAAUA	GGAGCGAGCUGCUGGUGUU	GGAGGUGGCCGACCAGAUG	CAACGUGCCUGAGCUCAUC
NR5A2	CCAAACAUAUGGCCACUUU	UCAGAGAACUUAAGGUUGA	GGAUCCAUCUUCCUGGUUA	CAUAAUGGGCUAUUCAUAU
NR6A1 Mineralocorticoi	CAACGAACCUGUCUCAUUU d signalling pathway members:	GAAGAACUACACAGAUUUA	GAAGAUGGAUACGCUGUGA	CCGAGGACCUGGAACCAUU
FKBP4	GAGCAGACCUUUAUGUAUU	CGAAAGAGCUAAAUAUCGA	GAAGUUGAGUUGAUGAAAG	GAAGAGAUCACCGGCGUAA
FKBP5	GGACGUGGUUGUCGAUUUG	GCUAGGACAUUUCAACAGA	CGACAUCAAUCAGCUAUAU	CAGACAAACUUGGGUUCUA
HSP90AA1	GCAGAUAUCUCUAUGAUUG	GAAGUGAUCUAUAUGAUUG	UAUAAGAGCUUGACCAAUG	GGAUCUCCCUCUAAACAUA
DYNC1I1	GGAAAUUCGUGCUAACAGA	CAAGGGAAGUAGUGUCCUA	GACAAUCGCAGUCAUCGAA	CGGGAGACGUCAAUAACUU
DYNC1I2	GUAAAGCUUUGGACAACUA	GAUGUUAUGUGGUCACCUA	GCAUUUCUGUGGAGGGUAA	GGGAUAACCGUAGCAAUAA

Table S2. siRNA sequences.

Gene	Forward ^a	Reverse ^a	UPL
symbol			Number ^b
HPRT	TGACCTTGATTTATTTTGCATACC	CGAGCAAGACGTTCAGTCCT	73
NR3C2	TTTTCTTCAAAAGAGCAGTGGA	GGACAATTCTTTCGTCGAATCT	SYBR
NR3C1	TCCCTGGTCGAACAGTTTTT	GCTGGATGGAGGAGAGCTTA	45
FKBP4	CGGGAGAAGAAGCTCTATGC	GGTCTCCTGAGGAAGCCTCT	SYBR
HSP90AA1	GTCCTGTGCGGTCACTTAGC	AAAGGCGAACGTCTCAACC	SYBR
DYNC111	CTGCAGTGGGACACAGACC	TTTGACACGCCCAGTTTATG	SYBR
DYNC1I2	GCATGGGGAGATTGGATTTA	ATGGGTCCATCTCACACGAT	15
SGK1	TCCTAGACTACATTAATGGTGGAGAGT	ATAGAAACGAGCCCGTGGTT	38
IFN-β	CTTTGCTATTTTCAGACAAGATTC	GCCAGGAGGTTCTCAACAAT	25
Mx1	GAAAGAGGCGAAGCGAGAG	CCGTGACACTGGGATTCCT	67
ICP4	ATGGGGTGGCTCCAGAAC	CTGCCGGTGATGAAGGAG	38
UL23	CAACAAAAAGCCACGGAAGT	CGTCTATATAAACCCGCAGTAGC	1
gC	GAGGGTCAGCCGTTCAAG	AACTCCACGGGGTTACGC	70

Table S3. Primer sequences for RT-qPCR. Primer:probe assays were designed in the Assay

Design Center at http://www.universalprobelibrary.com and purchased from Roche.

^{*a*}Primer sequences are 5' to 3'.

^bUPL number, probe number from the Roche human Universal Probe Library. SYBR, qPCR

carried out with SYBR green reagents.

		0	0.25	0.5	1	3	5	10
Exp 1	RSCF	174	176	193	206	286	275	298
P		172	165	200	188	369	389	208
		145	160	229	204	346	802	376
	MR	100	107	90	108	138	144	133
		165	107	73	108	149	136	102
		102	163	87	113	177	181	144
Exp 2	RSCF	255	313	963	527	604	520	491
1		150	469	374	373	634	550	461
		253	361	323	511	338	342	531
	MR	181	228	379	448	396	364	474
		160	332	238	301	409	349	403
		233	265	249	250	407	446	392
Exp 3	RSCF	188	243	385	457	753	548	477
		182	171	393	817	644	713	678
		237	359	326	485	568	695	597
	MR	162	389	309	316	583	384	502
		170	198	467	445	764	906	614
		173	328	360	552	830	805	636
Exp 4	RSCF	260	218	393	494	426	418	408
		353	233	297	335	475	587	380
		316	347	383	456	600	405	572
	MR	310	305	246	278	391	290	288
		293	275	275	298	384	265	414
		301	384	254	296	314	391	347
Exp 5	RSCF	346	394	-	364	352	468	
		239	253	-	286	390	469	
		274	312	-	416	543	477	
	MR	291	291	-	300	479	209	
		234	249	-	246	216	374	
- F (DOOD	213	272	-	243	225	206	
Exp 6	RSCF	145		1219	1269		4021	
		186		619	2278		5207	
	MD	149		108/	2643		0982	
	MK	125		120	2065		5357 5297	
		1/1		1228	12/1		5287	
F 7	DCCE	185	2(1(5202	2150	1020	2500	002
Exp /	KSCF	241	2616	5292 2591	61/1 52(0	1239	3398	993
		221	2010	2262	5260 8070	43/	2180	905
	MD	242	2410	2660	6202	594	2423	913
	MR	242	2419	3000	202	284 276	25/1	11/1
		100	167	1333	203	210	210 171	615
	GP	214	10/	176	100	212	4/4	172
	UK	214 220	220	1/0 210	198	213 224	100	1/3
		246	220	219 185	255	206	500	171
		240	2 4 2	100	233	∠00	590	1/1

Table S4. Raw luciferase data for Fig. 5a. Raw luminescence data for activation of HRE-luc by HSV-1 at increasing multiplicities of infection, in control RSCF siRNA, MR-specific or GR-specific siRNA. Values represent raw relative luminescent units from seven independent experiments carried out in triplicate. Exp, experiment.

	pCR3	VP16	ICP4	ICP22	ICP27	ICP0
Exp 1	953	4947	3227	310	88	435
	1317	11524	4771	330	105	505
	572	4480	4481	617	749	501
Exp 2	569	1866	1784	134	211	358
	340	2575	2668	1211	274	532
	669	2436	3802	1101	1267	450
Exp 3	284	2634	2443	894	220	384
	463	2105	3009	964	292	365
	353	3393	4660	991	1267	359
Exp 4	1380	2032	626	780	104	
	1105	1939	612	1021	90	
	1260	2277	869	874	85	

Table S5. Raw luciferase data for Fig. 6a. Activation of HRE-luc reporter by HSV-1 transcription factors. Values represent raw relative luminescent units from four independent experiments carried out in triplicate. Exp, experiment.

							E 2			F 1		
	Exp 1			Exp 2			Exp 3			Exp 4		
	pCR3	VP16	ICP4	pCR3	VP16	ICP4	pCR3	VP16	ICP4	pCR3	VP16	ICP4
AP1	693	296	102	390	935	1054	353	514	1868	713	304	2581
	901	272	128	473	771	1319	276	591	1814	757	316	2614
	837	180	132	523	796	3066	469	986	1407	956	411	2197
NF-KB	11575	6133	22173	11630	21543	26677	11070	10928	18567	24590	9426	21675
	11514	4074	15634	10224	14179	24352	11292	10339	15833	24095	8225	29099
	13140	3060	11542	14269	17880	25848	12091	16312	16510	38397	9741	36032
IFN-B	204	129	319	328	405	3960	258	273	2920	449	283	2053
	78	87	239	223	231	3062	199	279	2235	287	118	2467
	39	131	444	310	294	3440	183	200	3469	286	144	2368
ISRE	957	762	1028	553	1236	755	315	784	779	642	461	312
	879	885	1205	411	1007	944	347	564	745	606	565	214
	696	723	1215	497	1203	658	394	592	617	604	529	175
HRE	953	4947	3227	569	1866	1784	284	2634	2443	1380	2032	626
	1317	11524	4771	340	2575	2668	463	2105	3009	1105	1939	612
	572	4480	4481	669	2436	3802	353	3393	4660	1260	2277	869

Table S6. Raw luciferase data for Fig. 6b. Activation of a panel of luciferase promote element reporters by the HSV-1 transcription factors VP16 and ICP4. Values represent raw relative luminescent units from four independent experiments carried out in triplicate. Exp, experiment.

	pCR3				Oct1		VP16	VP16 + Oct1
	pCR3	MR	VP16	Oct1	MR	VP16	MR	MR
Exp1	5469	7534	18374	13754	13680	44880	21343	37927
	4812	3858	10260	7689	9403	37975	15599	34082
	6084	6062	16765	16801	20993	35679	19473	54627
Exp2	6645	5877	17364	6182	4093	13112	10658	10959
	6201	3672	11717	2899	3982	13663	19978	10823
	9145	7806	15113	9183	7058	24129	17570	14489
Exp3	2651	769	5889	725	2354	6993	8191	24511
	3190	860	8129	2219	3017	15060	14506	23614
	2024	675	9232	1194	3165	12621	9617	18430

Table S7. Raw luciferase data for Fig. 6c. Synergistic activation of HRE-luc by MR, VP16 and Oct1. Values represent raw relative luminescent units from three independent experiments carried out in triplicate. Exp, experiment number.

pCR3				Oct1		VP16	VP16 + Oct1
pCR3	MR	VP16	Oct1	MR	VP16	MR	MR
177104	176303	876966	250747	359638	1098582	920930	949946
239365	270227	879860	208415	225185	900390	1364260	1459285
214645	286086	1181493	282201	323592	1151878	1371966	1197649
182679	319510	1086427	326996	377673	871172	701504	1008858
307526	306324	649425	214876	162659	486951	812683	549475
286017	409813	1109041	343582	416750	1136559	1003496	1365851
44250	29084	207561	29153	32917	270245	349980	604934
69114	26785	247782	24287	22218	122779	205906	220848
75883	38175	240338	12218	44997	212367	338951	358058
	pCR3 pCR3 177104 239365 214645 182679 307526 286017 44250 69114 75883	pCR3pCR3MR177104176303239365270227214645286086182679319510307526306324286017409813442502908469114267857588338175	pCR3VP16pCR3MRVP16177104176303876966239365270227879860214645286086118149318267931951010864273075263063246494252860174098131109041442502908420756169114267852477827588338175240338	pCR3 pCR3MRVP16Oct1177104176303876966250747239365270227879860208415214645286086118149328220118267931951010864273269963075263063246494252148762860174098131109041343582442502908420756129153691142678524778224287758833817524033812218	pCR3Oct1pCR3MRVP16Oct1MR177104176303876966250747359638239365270227879860208415225185214645286086118149328220132359218267931951010864273269963776733075263063246494252148761626592860174098131109041343582416750442502908420756129153329176911426785247782242872221875883381752403381221844997	pCR3Oct1Oct1pCR3MRVP16Oct1MRVP16177104176303876966250747359638109858223936527022787986020841522518590039021464528608611814932822013235921151878182679319510108642732699637767387117230752630632464942521487616265948695128601740981311090413435824167501136559442502908420756129153329172702456911426785247782242872221812277975883381752403381221844997212367	pCR3Oct1VP16pCR3MRVP16Oct1MRVP16MR177104176303876966250747359638109858292093023936527022787986020841522518590039013642602146452860861181493282201323592115187813719661826793195101086427326996377673871172701504307526306324649425214876162659486951812683286017409813110904134358241675011365591003496442502908420756129153329172702453499806911426785247782242872221812277920590675883381752403381221844997212367338951

Table S8. Raw luciferase data for Fig. S3c. Synergistic activation of ICP4-luc by MR, VP16 and Oct1. Values represent raw relative luminescent units from three independent experiments carried out in triplicate. Exp, experiment number.