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Supplementary Note 1. Comparison between ChRO-seq and
other chromatin-based RNA-seq assays

ChRO-seq draws its intellectual heritage from other run-on and sequencing assays
(Kwak et al. 2013; Core, Waterfall, and Lis 2008) and from assays that sequence RNA from a
chromatin fractionation, such as Nascent-seq (Khodor et al. 2011) and variations of mammalian
NET-seq (MNET-seq) (Mayer et al. 2015). Compared with other chromatin-based RNA-seq
assays, ChRO-seq includes a run-on reaction to incorporate an affinity tag that is specific to
engaged RNA polymerase. This design has a number of advantages compared with other
chromatin based assays. In particular, the biotin tag stringently selects for engaged and
transcriptionally competent RNA polymerase, allowing high-quality data even in cases where
there is significant contamination from cytoplasmic RNAs, and depleting for highly abundant
chromatin associated small RNAs. We expected these advantages to decreases the variability
of the assay and provide a higher confidence that each read represents engaged RNA
polymerase.

We used metagene plots that normalize gene length and compared the median profiles
obtained across annotated genes among all assays. Median ChRO-seq and leChRO-seq signal
across annotated genes was within the range of variation observed in PRO-seq data from the
same cell line, and differed to varying degrees compared to Nascent-seq and mNET-seq
(Supplementary Fig. 1a). Among these assays, Nascent-seq was the largest outlier. Nascent-
seq was depleted for signal associated with a paused Pol Il that was picked up by all other
assays, likely because of a stringent size selection of 200-300 bp after fragmentation that omits
short fragments associated with a paused RNA polymerase. Pol Il is known to continue
transcribing for 5-20 kb after polyadenylation cleavage before transcription termination and
these profiles are captured in PRO-seq data (Schwalb et al. 2016). PRO-seq and ChRO-seq
show extensive signal for transcription past the polyadenylation site, whereas the signal in both
Nascent-seq and mNET-seq drops quickly after the polyadenylation site. There may be a variety
of reasons for these differences, including size selection, computational filtering steps (Mayer et
al. 2015), and other factors.

In addition to differences in the average profile, mNET-seq has large numbers of reads
aligning to specific regions (or “spikes”) within the gene body that are not visible on the average
profiles (Supplementary Fig. 1b). Spikes are absent from ChRO-seq data, indicating that they
are not associated with transcriptionally competent RNA polymerase, or that polymerase is
sufficiently backtracked that signals are not detected in a run-on reaction.
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Supplementary Note 2: Intra-tumor heterogeneity

We evaluated the concordance of ChRO-seq by analyzing separate slabs of tissue
available from the same patient for the normal brain sample and GBM-88-04. In all cases,
ChRO-seq data produced reasonably concordant estimates of Pol Il both in the bodies and at
the 5 ends of annotated genes (Supplementary Fig. 4c-f). To evaluate intra-tumor
heterogeneity, we performed intraoperative MRI guided neuronavigation techniques to dissect
GBM-15-90 tissue from four tumor regions (Fig. 2b) corresponding to the inner mass with
necrotic center (core), an area deep within the tumor mass inferior to the necrotic area (deep), a
site proximal to the cortical surface superior to the necrotic site (cortex), and an actively
infiltrating area at the genu of the posterior corpus callosum (corpus). ChRO-seq libraries in the
four GBM regions tested were remarkably highly correlated, especially when compared to inter-
tumor heterogeneity (Fig. 2b). Transcription in the core was situated between the other three
parts of the tumor in a principal component analysis (PCA) (Supplementary Fig. 5), consistent
with a model in which the tumor originated within the core and grew outward radially.



Supplementary Note 3: Tumor microenvironment explains
enhancer differences between primary and in vitro tissue
cultures

Two models might explain differences in enhancer profiles between primary and cultured
GBM cells. Differences might reflect either evolutionary changes as cancer cells adapt to in vitro
tissue culture conditions, or differences in the cellular microenvironment between tissue culture
and primary tumors. To distinguish between these two models, we used TREs to cluster 20
primary GBMs, 3 PDXs, 8 normal brain tissues, 3 GBM cell lines, and 5 brain-related primary
cell types which were dissociated from the brain and grown in vitro for a limited number of
passages. This analysis supported two major clusters, one composed of normal brain and tumor
tissues grown in vivo and the other of cells grown in vitro (Fig. 3d, Supplementary Fig. 14).
Notably, PDX samples clustered with the primary brain samples, demonstrating that PDXs are a
reasonably accurate model for many of the transcriptional features associated with primary
tumors. That primary brain cells passaged for a limited duration in tissue culture clustered with
the GBM models strongly implicates the microenvironment in causing differences in the
enhancer landscape of cells.



Supplementary Note 4. Comparison between regulatory
programs and molecular subtypes

We asked how the stem, immune, and differentiated regulatory programs relate to
previously described molecular subtypes in GBM. We used ChRO-seq signal to identify 6,775
TREs that were differentially transcribed in 2-3 primary GBMs most characteristic of each
molecular subtype relative to samples representing the other three subtypes (p < 0.01, DESeq2;
Supplementary Table 4). We compared subtype-biased TREs with those in the stem, immune,
and differentiated regulatory program. TREs upregulated in mesenchymal GBMs were enriched
6-fold in the immune regulatory program (p < 1e-10, Fisher’'s exact test; Fig. 4c), consistent with
the mesenchymal subtype having higher numbers of tumor infiltrating immune cells(Bhat et al.
2013; Q. Wang et al. 2017). TREs up-regulated in neural and proneural GBMs were enriched in
signatures in the stem-like program (Fig. 4c). Nevertheless, TREs in the stem, immune, and
differentiated regulatory programs did not always correlate with molecular subtype. For
instance, two of the neural tumors in our cohort had a substantial immune regulatory program,
and several mesenchymal tumors were strongly enriched for a stem-like program (Fig. 4a).
Thus, the three regulatory programs discovered on the basis of rare enhancer fingerprints were
distinct from previously reported subtypes, motivating correlations between these clusters and
clinical outcomes once larger cohorts of tumors are analyzed using ChRO-seq.
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Supplementary Note 5: Validation of motifs and target genes
contributing to subtype heterogeneity

To validate motifs and predicted target genes, we used the expectation that genes which
share a common transcription factor should have expression levels that are more highly
correlated with one another across tumors. We analyzed an independent RNA-seq dataset from
a cohort of 174 primary GBMs(Brennan et al. 2013). Among the 304 transcription factors
enriched in any subtype we noted a significantly stronger correlation between putative target
genes for 235 (77%) compared with randomly selected genes matched for similar subtype
specificity (Fig. 5¢; Supplementary Fig. 24a). Furthermore, in two cases (NF-kB and STAT1),
we found PRO-seq or RNA-seq data following activation of a signaling pathway targeting that
transcription factor(Luo et al. 2014; Chuong, Elde, and Feschotte 2016). Despite both published
experiments occurring in a different cell type and environmental context, we nevertheless found
predicted targets to be 3.0-fold (NF-kB; p < 3.0e-21, Fisher’s exact test) and 6.9-fold (STAT1, p
= 1.9e-11, Fisher’s exact test) enriched in genes responding in these experiments. Finally, as
expected, changes in transcription of TREs correlated with nearby genes, and were strongest
for the nearest 1-2 genes from each TRE (Supplementary Fig. 22). Moreover these changes in
the nearest two genes explained many of the markers defined in microarray studies(Verhaak et
al. 2010) (Supplementary Fig. 23). Thus we have identified transcription factors contributing to
major GBM expression subtypes, and a set of putative target genes of each transcription factor.
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Supplementary Note 6: Description of the dREG-HD method

Overview. We trained an epsilon-support vector regression (SVR) model that maps PRO-seq,
GRO-seq, or ChRO-seq data to smoothed DNase-I-seq intensity values. Because dREG
reliably identifies the location of transcribed TRESs that are enriched for DHSs(Danko et al.
2015), with its primary limitation being poor resolution, we limited the training and validation set
to dREG sites. The SVR was trained to impute DNase-I| values of the positions of interest based
on its input PRO-seq data. The trained SVR can then be used to predict DNase-I-seq signal
intensities in any cell type for which PRO-seq data is available. To identify the location of
transcribed DNase-I hypersensitive sites (DHSs) we developed a heuristic method to identify
local maxima in imputed DNase I-seq data. A detailed description of these tools is provided in
the following sections. The source code for the R package of dREG-HD is available from
https://github.com/Danko-Lab/dREG.HD.qit.

Training the dREG-HD support vector regression model. PRO-seq data was normalized by the
number of mapped reads and was summarized as a feature vector consisting of 1800 bp
surrounding each site of interest. In total, 113,568 sites were selected, and were divided into
80% for training and 20% for validation. Parameters for the feature vector (e.g., window size)
were selected by maximizing the Pearson correlation coefficients between the imputed and
experimental DNase-| score over the holdout validation set used during model training
(Supplementary table 4). We fit an epsilon-support vector regression model using the Rgtsvm
R package(Z. Wang et al. 2017).

We optimized several tuning parameters of the model during training. We tested various
kernels, including linear, Gaussian, and sigmoidal. Only the Gaussian kernel was able to
accurately impute the DNase-I profile. Experiments optimizing the window size and number of
windows revealed that feature vectors with the same total length but different step size result in
similar performance on the validation set, but certain combinations with fewer windows achieved
much less run time in practice. The feature vector we selected for dREG-HD used non-
overlapping windows of 60bp in size and 30 windows upstream and downstream of each site,
and resulted in near-maximal accuracy and short run times on real data. To make imputation
less sensitive to outliers, we scaled the normalized PRO-seq feature vector during imputation
such that its maximum value is within the 90th percentile of the training examples. This
adjustment makes the imputation less sensitive to outliers and improves the correlation and
FDR by 4% and 2%, respectively.

The optimized model achieved a log scale Pearson correlation with experimental DNase-| seq
data integrated over 80bp non-overlapping windows within dREG regions of 0.66 at sites held
out from the K562 dataset on which dREG-HD was trained and 0.60 in a GM12878 GRO-seq
dataset that was completely held out during model training and parameter optimization
(Supplementary Fig. 9).

Curve fitting and peak calling. The imputed DNase-| values were subjected to smoothing and
peak calling within each contiguous dREG region. To avoid effects on the edge of dREG
regions, we extended dREG sites by £200bp on each side before peak calling. We fit the
imputed DNase-I signal using smoothing cubic spline. We defined a parameter, the knots ratio,
to control the degree to which curve fitting smoothed the dREG-HD signal. The degree of
freedom (A) of curve fitting for each extended dREG region was controlled by knots ratio using
the following formula.

A=({number of bp in dREG peak} / {knots ratio}) + 3
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This formulation allowed the equivalent degrees of freedom to increase proportionally to the
length of the dREG peak size, but kept the value of the knots ratio higher than a cubic
polynomial.

Next we identified peaks in the imputed dREG-HD signal, defined as local maxima in the
smoothed imputed DNase-I-seq profiles. We identified peaks using a set of heuristics. First, we
identify local maxima in the dREG-HD signal by regions with a first order derivative of 0. The
peak is defined to span the entire region with a negative second order derivative. Because
dREG-HD is assumed to fit the shape of a Guassian, this approach constrains peaks to occur in
the region between +o for a Gaussian-shaped imputed DNase-I profile. We optimized curve
fitting and peak calling over two parameters: 1) knots ratio and 2) threshold on the absolute
height of a peak. Values of the two parameters were optimized over a grid to achieve a balance
between sensitivity and false discovery rate (FDR). We chose two separate parameter
combinations: one ‘relaxed’ set of peaks (knots ratio=397.4, and background threshold=0.02)
that optimizes for high sensitivity (sensitivity=0.94 @ 0.17 FDR), and one stringent condition
(knots ratio=1350 and background threshold=0.026) that optimizes for low FDR (sensitivity=0.79
@ 0.07FDR).

Validation metric and genome wide performance. We used genomic data in GM12878 and K562
cell lines to train and evaluate the performance of dREG-HD genome-wide. Specificity was
defined as the fraction of dREG-HD peaks calls that intersect with at least one of the following
sources of genomic data: Duke DNase-| peaks, UW DNase-I peaks, or GRO-cap HMM peaks.
Sensitivity was defined as the fraction of true positives, or sites supported by all three sources of
data that also overlapped with dREG. To avoid creating small peaks by an intersection
operation, all data was merged by first taking a union operation and then by finding sites that
are covered by all three data sources. All dREG-HD model training was performed on K562
data. Data from GM12878 was used as a complete holdout dataset that was not used during
model training or parameter optimization.

Metaplots for dREG and dREG-HD. Metaplots were generated using the bigWig package for R
with the default settings. This package used a subsampling approach to find the profile near a
typical site, similar to ref(Danko et al. 2013). Our approach samples 10% of the peaks without
replacement. We take the center of each dREG-HD site and sum up reads by windows of size
20bp for total of 2000 bp in each direction. The sampling procedure is repeated 1000 times, and
for each window the 25% quartile (bottom of gray interval), median (solid line), and 75% quartile
(top of tray interval) were calculated and displayed on the plot. Data from all plots were
generated by the ENCODE project(ENCODE Project Consortium 2012).
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Supplementary Note 7: Description of the dREG-HD method

We noted a systematic bias in the distribution of mutual information across query samples that
appeared to reflect data quality and sequencing depth in either ChRO-seq or DNase-I-seq data.
We devised a strategy to correct for this bias when clustering samples. Our strategy effectively
normalizes the mutual information of each query sample with respect to the sum of mutual
information for that query sample.

Among multiple samples normalizing the mutual information metric is more complicated. We
devised an approach that was used in Supplementary Fig. 14. We consider a square matrix
with rows and columns representing each sample. Each element in this matrix represents the
mutual information between a pair of samples. Our objective is to center the mutual information
across each row or column while preserving the rank order and range of mutual information. We
accomplished this using the following algorithm, which is similar to (Hastie et al. 2014), but
guarantees symmetry:

#matrix centering algorithm
WHILE convergence criterion does not meet
FOR i from 1 to number of columns
current mean<-mean of ith column
ith row <- ith row - current mean
ith column <- ith column - current mean
END FOR
END WHILE

The convergence criterion was defined as the maximum of the absolute value of element-wise
difference between matrix returned from previous two consecutive runs. Although there is no
mathematical guarantee of convergence, this approach converged typically after four cycles
with the datasets that we used. After centering the matrix was clustered using the ward.D2
clustering algorithm implemented in the heatmap function in R.
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Supplementary Fig. 1. Differences between ChRO-seq and other run-on assays. (a) Length-
normalized meta plots show the median signal across 8,403 active gene bodies using PRO-seq
(gray), ChRO-seq (blue), leChRO-seq (red), mNET-seq (teal), and Nascent-Seq (purple). (b) The
genome browser shows the signal near the EIF4G3 gene locus in ChRO-seq, PRO-seq, GRO-seq,
and mNET-seq. (c¢) Western blot showing GAPDH and two active forms of Pol Il, defined as
phosphorylated serine 2 (ser2) and serine 5 (ser5) in the carboxy-terminal domain, in the chroma-
tin (C) and supernatant (S) fractions.
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Supplementary Fig. 2. Distribution of signal intensity in the gene body and pause. Violin plot
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Supplementary Fig. 3. Bioanalyzer analysis of RNA isolated from GBM-88-04. The plot reported
by the Bioanalyzer software shows the size of RNA isolated from GBM-88-04 in units of nucleotides
(nt, X-axis) as a function of the relative fluorescence units (RFU, Y-axis). RNA Quality Number (RQN
= 1) shown in the trace denotes extensive RNA degradation. The mode of the distribution of RNA
sizes is shown (125 nt). The Bioanalyzer analysis was performed once.
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Supplementary Fig. 4. Correlation between ChRO-seq and leChRO-seq. (a-f)
Scatterplots show the density of reads mapping in the gene bodies (+1000 to gene
end) (a, ¢, e) or in the promoter proximal pause near the transcription start site (b,
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mapped (RPKM). Spearman’s rank correlation (p) is shown in each plot. The color

scale denotes the density of points.
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Supplementary Fig. 5. Brain biopsies display immunohistochemical markers of high grade
glioma in GBM-15-90. (a) Pseudopalisading borders with necrotic centers. (b) IDH1 staining is
negative. (c) GFAP is stained as positive. (d) Additional markers of high grade glioma between the
tumor include p53-/- and IDH-/- using an IDH-1 positive glioblastoma as a positive control. All images
are representative views from a single patient (GBM-15-90). All scale bars represent 200 um. (e)
Principal component analysis of transcription in the four tumor regions dissected from GBM-15-90 (N
of genes=23,961).
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Supplementary Fig. 8. HOXA, HOXC, and EN1 loci show strong differential expression in primary GBM
and PDX. Browser tracks of ChRO-seq signal in primary GBM, PDX, cultured astrocyte, and non-malignant
brain samples, DNase-| hypersensitivity in normal adult and fetal brain tissues, and H3K27ac peaks in normal
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Supplementary Fig. 9. dREG-HD refines TRE predictions by imputing DNase-l hypersensitiv-
ity. (@ and b) Density scatter plots show a comparison between predicted and experimental
DNase-| hypersensitivity signals in K562 holdout sites that were not used during training (a,
N=303,068) and a complete holdout dataset in GM12878 (b, N=448,128). Points represent the sum
of DNase-| hypersensitivity signals for non-overlapping 80bp windows. (¢) Sensitivity of dAREG-HD
to detect DHSs that intersect dREG regions, paired GRO-cap HMM peaks, and the intersection of
DHSs and GRO-cap pairs. Prediction in K662 and GM12878 are colored in blue and red respec-
tively. The sensitivity analyzed under ‘relaxed’ dREG-HD setting was colored in dark red/blue, and
those under ‘stringent’ setting were colored in light red/blue. The expected false discovery rate of
the ‘relaxed’ and ‘stringent’ settings are indicated above the barplot. (d) Browser track of a region
near the transcription start site of BTG3 in K562 cells. From top to bottom tracks represent: 1)
RefSeq genes showing the transcription start site of BTG3; 2) PRO-seq colored in red (forward)
and blue (reverse); 3) dREG scores and peaks; 4) dREG-HD scores and peaks; 5) DNase-| hyper-
sensitivity signal and peaks; 5) GRO-cap reads. 6) The no-TAP control experiment matched to
GRO-cap signal; 7) Transcription start sites identified using the GRO-cap signal; 8) Potential tran-
scription factor binding detected by ENCODE ChlP-seq. Peak calls are colored in gray and black
and the best match to a transcription factor binding motif is colored in green.
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Supplementary Fig. 10. Metaplots for PRO-seq, chromosome accessibility, and histone
modifications that marks active TREs. Signals of the indicated mark over dREG and dREG-HD
regions are shown in blue and red, respectively. Shadows marks the 25 and 75 percentiles of 1000
samples of 10% of the data (see methods).
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Supplementary Fig. 17. Clustering of taTREs-enriched reference samples. Clustering of refer-

ence samples enriched for taTREs based on the activation of TREs. Active TREs are marked in red;
inactive ones are in white. Row dendrograms are cut down to three trees, each corresponding to the
indicated transcriptional regulatory program (i.e., stem- or fetal-like, immune, and differentiated).
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Supplementary Fig. 18. Transcription factor binding motifs enriched in TREs in the indicated
regulatory program compared with normal brain. Transcription factor binding motifs enriched in
TREs that are members of the immune (1), stem (S), or differentiated (D) regulatory program (top)
compared with TREs active in the normal brain. Spearman's rank correlation (heatmap, left) shows
the correlation in DNA sequence recognition motif. Families of transcription factor and their repre-
sentative motifs are highlighted. The median p value across patients significantly enriched/depleted
(unadjusted p < 0.05, two-sided Fisher’s exact test) in taTREs for each motif (right) are represented
by the radius of the circle and enrichment (red) or depletion (blue) are represented by the color. The
number of taTRESs in each test is shown in Supplementary Table 3.
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Supplementary Fig. 20. Stem program taTREs enriched for POU3F2 ChlIP-seq peaks.
The height of bars shows the fraction of POU3F2 ChIP-seq peaks that intersect with taTRE in
each of the primary GBM / PDX samples. taTREs from differentiated and stem programs are
colored in red and green respectively. Primary GBM / PDX samples in which ChlP-seq peaks
were enriched in stem program taTREs are marked by an asterisk (unadjusted p < 0.05,
one-sided Fisher’s exact test). Sample size for POU3F2 ChlIP-seq peaks overlapped with
each module: differentiated: mean=3.1, sd=1.5; stem: mean=>5.8, sd=3.5; immune: mean=0.5,
sd=0.5.
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Supplementary Fig. 21. Transcription factor binding motifs enriched in TREs up-regulated or
down-regulated in each known molecular subtype. Transcription factor binding motifs enriched in TREs
that were up- or down-regulated in the indicated subtype. The Spearman’s rank correlation heatmap (left)
shows the correlation in DNA binding sites matching each motif. Families of transcription factors and their
representative motifs are highlighted. Right: Enrichment of transcription factor binding motifs in TRE with
biased transcription in the indicated subtype. The unadjusted p values (two-sided Fisher’s exact test) of motifs
are represented by the radius of the circle, and enrichment (red) or depletion (blue) are represented by the
rainbow color scale. The number of subtype-biased TREs in each group is shown in Supplementary Table 4.
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Supplementary Fig. 22. Subtype-biased TREs correlate with the transcription of nearby genes. (a) Violin plots show the
distribution of log, fold change in the transcription of n th closest genes to TREs that were up (red, N=4,960) or down (blue,
N=1,815) -regulated in any subtype. White dots represent the means, while the bars represent standard deviations. (b and d)
Scatter plots show the -log,, two-sided t-test p value testing the null hypothesis that the log, fold change is equal to zero as a
function of nth closest gene to the subtype-biased TRE. Separate plots are shown for up (b, N=4,960) or down (d, N=1,815)
-regulated gene/ TRE pairs. Median log, fold change in transcription is represented using red and blue color scale. (¢ and e) The
rank-ordered version of (¢) and (d) show outliers in change of transcription determined at the inflection point (marked by red).
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Supplementary Fig. 23. Subtype-biased TREs are near a large proportion of subtype specific
genes. Line chart show the percentage of subtype marker genes (Y-axis) positioned n genes from
the closest subtype-biased TREs. Separate lines are shown for up (red, N=4,960) or down (blue,
N=1,815) -regulated gene/ TRE pairs. The enrichment (red) or depletion (blue) over the expected
number of genes is represented by the color, and the unadjusted p values of two-sided Fisher’s
exact test for enrichment is represented by the radius of the circle.
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Supplementary Fig. 24. Barplots show the relationship between transcription factors enriched over
TREs down-regulated in each subtype and their putative target genes. (a) Barplots show the -log,,
Wilcoxon rank sum of p value of having higher correlation among 174 TCGA patients between target
genes for each transcription factor compared with a control set. Barplots are colored by subtype in which
they were found to be enriched (unadjusted p < 0.05, two-sided Fisher’s exact test). (b) Barplot shows the
FDR corrected -log,, p value (DESeq2, Wald test, n= 2 [classical] or 3 [other subtypes]) representing
changes in Pol Il abundance detected by (le)ChRO-seq on the gene encoding the indicated transcription
factor. The level of upregulation (blue) and downregulation (yellow) in the subtype indicated by the colored
boxes (below the barplot) is shown by the color scale. The horizontal color bar below the barplot indicates
the corresponding subtype in which the motif shows enrichment in the downregulated TREs. The dashed
line shows the the FDR corrected a at 0.01. (c) Barplot shows the -log, , two-sided Wilcoxon rank sum test
p value denoting differences in the distribution of correlations between the mRNA encoding the indicated
transcription factor and either target or non-target control genes. The blue/ yellow color scale represents
the median difference in correlation between target and non-target genes over 174 mRNA-seq samples.
The dashed line shows the uncorrected a at 0.01
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Supplementary Fig. 25. Barplots show transcription factor binding motifs controlling sur-
vival-related genes in mesenchymal GBMs. The minimum of the two -log, , p values on the
x-axis and y-axis of figure 7a (two-sided Wilcoxon rank sum test) are plotted by the order of motifs
cluster. In total, 196 TCGA patients with microarray data and survival information were used to
calculate the hazard ratio. The dotted red line represents the Bonferroni adjusted a value at 0.05.
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Supplementary Fig. 26. Heatmap shows the clustering of target genes of six transcription
factors with significant survival association. Hierarchical agglomerative clustering groups target
genes of one or more transcription factor. Red indicates the target gene belongs to the putative
targets of the corresponding transcription factor and white indicates otherwise.
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Supplementary Fig. 27. Kaplan—Meier plots show the difference in survival between patients with different
expression levels of transcription factors (a-c) and of their corresponding target genes (d-f). P values and
hazard ratios were calculated by comparing patients of higher expression level (red) with those of lower expression
level (blue) across 196 patients. The mean expression level was used to represent target genes of each transcrip-
tion factor. The optimum cutoff of mean expression level was determined by minimizing the p values (two-sided
Chi-squared test) between survival time. Shaded regions mark the 95% confidence interval of each group.
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Supplementary Fig. 28. Concentric circles visualize the enrichment of overlapping between
target genes of C/EBP, RARG, and NF-kB/RELA. The first three inner circles indicate the combi-
nation of transcription factors (C/EBP, RARG, and NF-kB/RELA) regulating each target gene. The
outer circle is filled by a color scale representing the -log,, of p value (one-sided super exact test)
of the overlap compared with random assignment among 362 genes in proximity to mesenchy-
mal-biased TREs and up-regulated in mesenchymal GBM subtype. In total, 289 genes from three
transcription factors were involved in the test. The exact number of each combination is shown on
the outermost sector. Statistically significant overlap (one-sided super exact test, unadjusted p <
0.01) is marked by an asterisk.
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Supplementary Fig. 29. The Browser track of CCL20 and Kaplan—Meier plots of CCL20 and
ADM. (a) Browser track of the locus encoding the CCL20 gene shows the average of RPM normal-
ized (Ie)ChRO-seq signals and dREG-HD scores in mesenchymal (n= 3) and non-mesenchymal
(n=8) GBMs. Mesenchymal-biased TREs are highlighted in blue. Positions of MES-biased TRE
and motifs of C/EBP, RARG, and NF-kB/RELA transcription factors are shown on the bottom. (b
and c¢) Kaplan—Meier plots show survival rate for patients with 1) lower quartile CCL20 (b) or ADM
(c) expression level (light blue), 2) upper quartile expression level of tumors in the non-mesenchy-
mal subtype (red), and 3) upper quartile gene expression level for tumors in the mesenchymal
subtype (purple). P values were calculated using a two-sided Chi-squared test. Shaded regions
mark the 95% confidence interval of each group.
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Supplementary Fig. 30. Kaplan—Meier plot shows survival rate of IDH wild-type
patients. Kaplan—Meier plot shows overall survival between 104 IDH1 wild-type patients with
high and low average expression level of 26 shared target genes. The cutoff was determined
based on the minimum p value in the difference between survival time using a two-sided
Chi-squared test. Shaded regions mark the 95% confidence interval.



Supplementary Table Legends:

Supplementary tables are provided in the associated attached Excel worksheet document.
Please see this document for each supplementary table included with this paper.

Supplementary Table 1. Technical information for all samples used in the experiment.

Supplementary Table 2. Differentially transcribed genes across all 20 primary GBMs
relative to technical replicates of the non-malignant brain detected using DESeq2. The
first 7 columns show the information of the annotated genes. The log2FoldChange shows the
log, of ratio in transcription, measured as primary GBM patients (n=20) over non-malignant
brain (n=2). The padj shows the FDR-corrected p values (Wald test). Genes with padj<0.05
were shown.

Supplementary Table 3. Differentially transcribed genes across each GBM subtype
relative to technical replicates of the non-malignant brain detected using DESeq2. The
first 7 columns show the information of the annotated genes. The last eight columns show the
log, fold change and adjusted p values for each of the four subtypes.
Subtypename.log2FoldChange shows the log, of ratio in transcription, measured as the GBM of
the given subtype ( n= 2 [classical] or 3 [other subtypes]) over non-malignant brain (n=2). The
Subtypename.padj shows the FDR-corrected p values (Wald test) for the change of
transcription in the given subtype. Genes with padj<0.05 in at least one subtype were shown.

Supplementary Table 4. The distribution of taTRE in each patient and each
transcriptional modules.

Supplementary Table 5. The distribution of subtype-biased TRE.

Supplementary Table 6. Clinical statistics of the target genes shared by three survival-
associated transcription factors. P value is calculated by two-sided Chi-squared test for the
survival days of patient with upper quartile expression (N=51) and lower quartile expression
(N=51) of the given gene. Hazard ratio is defined as higher expression / lower expression. NA
value indicates that the gene is not measured by the microarray data.

Supplementary Table 7. Gene ontology analysis of target genes of three survival-
associated transcription factors. Table shows the fold of enrichment and p value (two-sided
Fisher's Exact with FDR multiple test correction) of each gene ontology terms (Sample size:
RELA=127; C/EBP=196; RARG=273).
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