Supplemental Figure 1: A) Image of scaffolds taken from the EVOS microscope depicting slicing, hatching, and cylinder size with their respective change in distance and cylinder sizes from 2PP at 10% intensity and 15 ms using an EVOS RFP light cube. B) Control samples of PEGDMA without rhodamine B at 10% intensity and 15 ms, (no fluorescence detected). C) An example of the loss of fluorescence of a single scaffold over time (0-48 h). Full sets of scaffolds have a scale bar of 400 μ m (A, B), while single scaffolds have a scale bar of 200 μ m (C).

Supplemental Figure 2: Standard curve of rhodamine B concentrations loaded on PEGDMA printed 5mm discs. A standard curve was constructed from printed PEGDMA discs containing different concentrations of rhodamine B. n=3.

Supplemental Table 1. Goodness of fit measures for the release profiles shown in Figure 1 using five different mathematical drug release models. Fit line parameters for the most accurate model are also given.

			Rod Size	Rod Size (µm)			
Model	Equation		5	10	15		
Zero Order	$Q = Q_0 + kt$	R ²	0.604	0.471	0.580		
Zero Order	2 20 1 100	Sy.x	9.54	13.17	12.03		
First Order	$Q = Q_0 e^{-kt}$	R ²	0.798	0.928	0.869		
	$\delta = \delta 0 c$	Sy.x	6.73	4.52	6.27		
Higuchi	$Q = k\sqrt{t}$	R ²	0.456	0.00	0.267		
Inguem	$Q = \kappa \sqrt{2}$	Sy.x	10.55	16.11	14.17		
Hixson-Crowell	$0^{1/3} = kt + 0^{1/3}$	R ²	0.487	0.429	0.524		
Thrson-crowen	$Q = \kappa t + Q = 0$	Sy.x	10.5	12.4	11.7		
		\mathbb{R}^2	0.790	0.969	0.972		
Korsmeyer-Peppas	$Q = kt^n$	Sy.x	6.70	2.92	2.84		
	$Q = \kappa \iota$	k	13.6	26.2	23.3		
		n	0.220	0.137	0.165		
Q is the relative amount of drug released over time, t; k and n are release rate constant and exponent, respectively.							

			Spacing (µm)	1
Model	Equation		5.00	9.29
Zero Order	$Q = Q_0 + kt$	R ²	0.834	0.498
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sy.x	6.06	11.7
First Order	$Q = Q_0 e^{-kt}$	$\mathbb{R}^2$	0.861	0.921
	$\delta = \delta^0 c$	Sy.x	5.18	4.37
Higuchi	$Q = k\sqrt{t}$	R ²	0.885	0.299
Inguem	$Q = \kappa \sqrt{c}$	Sy.x	4.50	12.5
Hixson-Crowell	$Q^{1/3} = kt + Q^{1/3}$	R ²	0.775	0.437
IIIX30II-CIOWCII	$Q = \kappa t + Q = 0$	Sy.x	6.44	11.4
		$\mathbb{R}^2$	0.935	0.896
Korsmeyer-Peppas	$Q = kt^n$	Sy.x	3.47	4.91
icorsine yer-r eppas	$Q = \kappa \iota$	k	6.44	18.7
		n	0.352	0.174

**Supplemental Table 2.** Goodness of fit measures for the release profiles shown in Figure 2 using five different mathematical drug release models. Fit line parameters for the most accurate model are also given.

*Q* is the relative amount of drug released over time, *t*; *k* and *n* are release rate constant and exponent, respectively.

**Supplemental Table 3.** Goodness of fit measures for the release profiles shown in Figure 3 using five different mathematical drug release models. Fit line parameters for the most accurate model are also given.

			Slicing Distance (µm)			Hatching Distance (µm)		
Model	Equation		0.05	0.10	0.15	0.05	0.10	0.15
Zero Order	$Q = Q_0 + kt$	R ²	0.736	0.715	0.666	0.737	0.622	0.530
Zero order	2 20 1	Sy.x	8.50	7.99	10.0	8.25	9.81	13.7
First Order	$Q = Q_0 e^{-kt}$	R ²	0.943	0.829	0.842	0.936	0.902	0.939
That Older	$\delta = \delta 0 \epsilon$	Sy.x	3.67	5.85	6.49	3.82	4.67	4.64
Higuchi	$Q = k\sqrt{t}$	R ²	0.850	0.581	0.550	0.840	0.547	0.478
	$Q = \pi \sqrt{2}$	Sy.x	5.71	8.73	10.5	5.77	9.60	12.9
Hixson-Crowell	$Q^{1/3} = kt + Q^1 6^3$	R ²	0.850	0.581	0.550	0.840	0.547	0.479
		Sy.x	5.71	8.73	10.5	5.77	9.60	12.9
		$\mathbb{R}^2$	0.966	0.960	0.960	0.952	0.949	0.912
Korsmeyer-Peppas	$Q = kt^n$	Sy.x	2.79	2.78	3.18	3.22	3.28	5.44
		k	9.02	14.4	17.0	8.73	15.0	19.0
		n	0.309	0.215	0.208	0.310	0.212	0.205
<i>Q</i> is the relative amount of drug released over time, <i>t</i> ; <i>k</i> and <i>n</i> are release rate constant and exponent, respectively.								

**Supplemental Table 4.** Goodness of fit measures for the release profiles shown in Figure 4 using five different mathematical drug release models. Fit line parameters for the most accurate model are also given.

			Slicing Distance (µm)			Hatching Distance (µm)		
Model	Equation		0.05	0.10	0.15	0.05	0.10	0.15
Zero Order	$Q = Q_0 + \kappa t$	R ²	0.616	0.560	0.640	0.651	0.662	0.734
		Sy.x	11.1	13.8	13.2	10.3	11.5	10.1
First Order	$Q = Q_0 e^{-kt}$	R ²	0.890	0.907	0.823	0.870	0.874	0.813

		Sy.x	5.56	5.96	9.03	5.85	6.51	7.90
Higuchi	$Q = k\sqrt{t}$	$\mathbb{R}^2$	0.494	0.386	0.575	0.464	0.512	0.627
		Sy.x	11.4	14.6	13.4	11.4	12.3	10.7
Hixson-Crowell	$Q^{1/3} = kt + Q^{1/3}_0$	$\mathbb{R}^2$	0.552	0.495	0.521	0.603	0.606	0.673
	$q = \pi t + q_0$	Sy.x	11.0	13.5	14.5	10.0	11.3	10.2
		$\mathbb{R}^2$	0.960	0.938	0.852	0.968	0.989	0.959
Korsmeyer-Peppas	$Q = kt^n$	Sy.x	3.25	4.72	8.06	2.85	1.85	3.62
		k	18.3	22.8	17.9	18.7	20.6	17.6
		n	0.199	0.184	0.236	0.190	0.197	0.223
<i>Q</i> is the relative amount of drug released over time, <i>t</i> ; <i>k</i> and <i>n</i> are release rate constant and exponent, respectively.								