Genome Mining of *Micromonospora yangpuensis* DSM 45577 as a Producer of an Anthraquinone-fused Enediyne

Xiaohui Yan,^{†,||} Jianjun Chen,^{†,||} Ajeeth Adhikari,[†] Dong Yang,^{†,§} Ivana Crnovcic,[†] Nan Wang,[†] Chin-Yuan Chang,[†] Christoph Rader,[⊥] and Ben Shen.^{*,†,‡,§}

[†]Department of Chemistry, [‡]Department of Molecular Medicine, [§]Natural Products Library

Initiative at the Scripps Research Institute, [⊥]Department of Immunology and Microbiology, The

Scripps Research Institute, Jupiter, FL 33458, USA

*Correspondence to: E-mail: shenb@scripps.edu,

Tel: (561) 228-2456; Fax: (561) 228-2472

^{II} These authors contributed equally

Supplementary Information (SI)

Experimental	procedures	S3
Table S1	Predicted functions of ORFs in the ypm gene cluster	S5
Table S2	Comparison of the <i>ypm</i> gene cluster with the <i>tnm</i> and <i>ucm</i> gene clusters	S6
Table S3	¹ H NMR Data of Compounds 1–5	S7
Table S4	¹³ C NMR Data of Compounds 1–5	S8
Figure S1	GNN analysis of the 137 distinct enediyne gene clusters	S9
Figure S2	HRESIMS analysis of YPM A–E (1–5)	S10
Figure S3	UV spectrum of YPM A (1) in comparison with TNM A and UCM	S11
Figure S4	¹ H NMR spectrum of YPM A (1)	S11
Figure S5	¹³ C NMR spectrum of YPM A (1)	S12
Figure S6	¹ H- ¹ H COSY spectrum of YPM A (1)	S12
Figure S7	HSQC spectrum of YPM A (1)	S13
Figure S8	HMBC spectrum of YPM A (1)	S13
Figure S9	ROESY spectrum of YPM A (1)	S14
Figure S10	¹ H NMR spectrum of YPM A (1) in DMSO- <i>d</i> ₆	S14
Figure S11	¹ H NMR spectrum of YPM B (2)	S15
Figure S12	¹³ C NMR spectrum of YPM B (2)	S15
Figure S13	Proposed pathway for formation of 2 and 3 from 1	S16
Figure S14	ROESY spectrum of YPM B (2)	S16
Figure S15	'H-'H COSY spectrum of YPM B (2)	S17
Figure S16	HSQC spectrum of YPM B (2)	S17
Figure S17	HMBC spectrum of YPM B (2)	S18
Figure S18	H NMR spectrum of YPM C (3)	S18
Figure S19	^{1°} C NMR spectrum of YPM C (3)	S19
Figure S20	'H-'H COSY spectrum of YPM C (3)	S19
Figure S21	HSQC spectrum of YPM C (3)	S20
Figure S22	HMBC spectrum of YPM C (3)	S20
Figure S23	ROESY spectrum of YPM C (3)	S21
Figure S24	'H NMR spectrum of YPM D (4)	S21
Figure S25	¹³ C NMR spectrum of YPM D (4)	S22
Figure S26	'H-'H COSY spectrum of YPM D (4)	S22
Figure S27	HSQC spectrum of YPM D (4)	S23
Figure S28	HMBC spectrum of YPM D (4)	S23
Figure S29	ROESY spectrum of YPM D (5)	S24
Figure S30	H NMR spectrum of YPM E (5)	S24
Figure S31	¹³ C NMR spectrum of YPM E (5)	S25
Figure S32	'H-'H COSY spectrum of YPM E (5)	S25
Figure S33	HSQC spectrum of YPM E (5)	S26
Figure S34	HMBC spectrum of YPM E (5)	S26
Figure S35	ROESY spectrum of YPM E (5)	S27
Figure S36	Cytotoxicity assay of YPM A (1)	S28
Supplementa	ry References	S29

Experimental procedures

General materials

The ¹H and ¹³C, and 2D NMR (HSQC, ¹H-¹H COSY, HMBC, and ROESY) spectra were collected with a Bruker Avance III Ultrashield 700 at 700 MHz for ¹H and 175 MHz for ¹³C nuclei. Optical rotation values were measured using an Autopol IV automatic polarimeter (Rudolph Research Analytical). Circular dichroism spectra were collected with a Jasco J-815 Circular Dichroism Spectropolarimeter. UV spectra were recorded with a NanoDrop 2000C spectrophotometer (Thermo Scientific). IR spectra were collected with a Spectrum One FT-IR spectrometer (PerkinElmer). Column chromatography was conducted on Sephadex LH-20 (GE Healthcare, Glies, UK). Semipreparative HPLC was carried out on a Varian liquid chromatography system with a YMC-pack ODS-A (250 mm × 10 mm, 5 µm) column. HPLC-MS analysis was performed on an Agilent 1260 Infinity LC coupled to a 6230 TOF (HRESI) with an Agilent Poroshell 120 EC-C18 column (2.7 µm, 50 mm x 4.6 mm). MPLC purification was conducted on Biotage Isolera One using a Biotage SNAP Catridge KP-C18-HS column (30 g). Fermentation was carried out in New Brunswick Scientific Innova 44 incubator shakers. All common biochemicals and culture media components were purchased from commercial sources.

Virtual survey of enediyne gene clusters from public genome databases

The five proteins from the C-1027 enediyne PKS cassette (SgcE, SgcE3, SgcE4, SgcE5, and SgcE10) were individually used as queries to search potential enediyne gene clusters in the NCBI and JGI genome databases, using a recently published approach.^{S1} The list of strains and gene clusters from the two databases were combined and dereplicated, to afford an initial unique list of potential enediyne gene clusters.

The PKSE sequences from the initial list were aligned with ClustalW and subjected to phylogenetic analysis with MEGA 6.06.^{S2} A maximum likelihood phylogenetic tree was generated using the Jones-Taylor-Thornton (JTT) model of amino acid substitution and 1000 bootstrap replications, with the AziB protein as an outgroup.^{S3} From the phylogenetic and blastP results, PKSE sequence identities with >90% were regarded as duplicates and their gene clusters were duplicate gene clusters. Duplicate gene clusters were dereplicated to generate unique enediyne biosynthetic gene clusters. Protein sequences from the unique gene clusters were collected and analyzed in an all versus all BlastP using Blast+,^{S4} the BLOSUM62 matrix ^{S5} and an *E* value limit of 10⁻⁸. Methods for GNN generation and visualization were the same as previously described.^{S1}

Bacterial strains and culture conditions

Micromonospora yangpuensis DSM 45577 was purchased from DSMZ (Genbank accession number GU002071 for 16S rRNA gene, and FMIA00000000 for whole genome shotgun sequences).^{S6} The strain was revived on the GPHF plate (1% glucose, 0.5% peptone from Casein, 0.5% yeast extract, 0.5% beef extract, 0.074% CaCl₂·2H₂O, 1.5% agar, pH 7.2). After growth on the GPHF plate at 28 °C for 21 days, the spores were collected and cultured in 250-mL baffled flasks containing 50 mL of seed medium (1% fish meal, 3% dextrin, 1% lactose, 0.6% CaSO₄, 0.5% CaCO₃) at 28 °C and 250 rpm for 7 days.

Kocuria rhizophila ATCC 9341 (previously known as *Micrococcus luteus*) was used as the test strain for antibacterial assay of enediyne compounds.^{S7} *E. coli* BR513 was used an indicator for DNA-damage activities (biochemical induction assay, BIA), and the assay was performed according to literature procedures.^{S8}

Fermentation and isolation of YPM A and its congeners

For large-scale fermentation, forty-five 2.5-L baffled flasks each containing 400 mL of production medium (1% maltose, 1% yeast extract, 1% malt extract, 0.001% CuSO₄·5H₂O, 0.0005% Nal, 0.2% CaCO₃, pH 7.2) were inoculated with 40 mL of the vegetative culture and cultured at 28 °C on a rotary shaker at 250 rpm for 7 days. After the fermentation, 1% (v/v) Amberlite resin XAD-16 and 1% Diaion HP-20 resin were added to the fermentation broth and incubated overnight at 28 °C. The cell pellets and resins were collected by centrifuge, dried on air for 2 days, and then extracted three times with 2 L of MeOH each. The extracts were dried in vacuo and washed three times with 1 L of EtOAC : H_2O (1 : 1). Then the organic phase was dried in vacuo and subjected to LC-MS for analysis or to MPLC for preparation.

To isolate YPM and its congeners, the MPLC fractions with UV absorption at 540 nm were further purified by semipreparative HPLC using a 50-min solvent gradient, from 35% solvent A (water) and 65% solvent B (MeCN) to 0% A and 100% B at a flow rate of 3.2 mL per min and with UV detection at 540 nm. The collected fractions were dried *in vacuo* and subjected to Sephadex LH-20 column chromatography, eluted with MeOH, to afford compounds **1** (0.65 mg), **2** (0.4 mg), **3** (1.3 mg), **4** (1.3 mg), and **5** (1.1 mg), respectively.

Physicochemical properties of YPM A and its congeners

YPM A (**1**): $[\alpha]_D^{25}$ +3000 (C = 0.001, CH₃OH), UV (CH₃OH) λ_{max} nm (log ϵ) 234 (4.48), 254 (4.42), 543 (4.09), 581 (4.02); IR v_{max} 3413, 2927, 1603, 1558, 1488, 1373, 1294 cm⁻¹

YPM B (**2**): $[\alpha]_D^{25}$ +1500 (C = 0.002, CH₃OH), UV (CH₃OH) λ_{max} nm (log ϵ) 235 (4.60), 570 (4.30), 612 (4.32); IR v_{max} 3446, 2918, 1592, 1502, 1461, 1376, 1293 cm⁻¹

YPM C (**3**): $[\alpha]_D^{25}$ +1000 (C = 0.001, CH₃OH), UV (CH₃OH) λ_{max} nm (logɛ) 237 (4.81), 568 (4.53), 613 (4.54); IR v_{max} 3420, 2921, 1594, 1497, 1459, 1370, 1280 cm⁻¹

YPM D (**4**): $[\alpha]_D^{25}$ +2000 (C = 0.002, CH₃OH), UV (CH₃OH) λ_{max} nm (log ϵ) 235 (4.32), 568 (4.03), 612 (4.05); IR v_{max} 3415, 2927, 1591, 1501, 1461, 1376, 1294 cm⁻¹

YPM E (**5**): $[\alpha]_D^{25}$ +1000 (C = 0.002, CH₃OH), UV (CH₃OH) λ_{max} nm (log ϵ) 234 (4.84), 568 (4.56), 613 (4.56); IR v_{max} 3414, 2926, 1594, 1505, 1459, 1372, 1288 cm⁻¹

Cytotoxicity Assay of YPM, UCM, and TNM A. The IC_{50} s of YPM A against selected human cancer cell lines, including melanoma (SK-MEL-5), breast (MDA-MB-231 and SKBR-3), central nervous system (SF-295), and non-small cell lung cancer (NCI-H226), with TNM A and UCM as a control, were determined as follows. Suspended cultures of cells were diluted to a concentration of 5 × 10⁴ cells per mL in RPMI 1640 medium supplemented with 10% fetal bovine serum, 100 µg per mL of streptomycin, and 100 U per mL of penicillin. The suspended cultures were dispensed into 96-well plates (100 µL per well), and the plates were incubated for 24 hours at 37 °C in an atmosphere of 5% CO₂, 95% air, and 100% humidity. The original medium was then removed, and 100 µL of fresh medium was added, followed by adding serial dilutions of drugs (1 µL in DMSO with final concentration ranging from 0 to 1000 nM). Plates were incubated under the above conditions for 72 hours. Finally, 20 µL of CellTiter 96[®] AQueous One Solution Reagent (Promega) was added to the plates and incubation continued at 37 °C in a humidified, 5% CO₂ atmosphere for 30 to 60 min. The absorbance at 490 nm was recorded using an ELISA plate reader. Each point represents the mean ± SD of three replicates, and the IC₅₀ was determined by computerized curve fitting using GraphPad Prism (Table 1).

Gene ^a	aa⁵	Putative function	Protein homologue	% ID/ %SI
orf(-1)	638	Molecular chaperone HtpG	AWW66_19385	90/94
			(KXK60353)	
ypmS1	140	Glyoxalase/bleomycin resistance protein/dioxygenase	TnmS1 (AME18020)	44/61
ypmS3	126	Glyoxalase/bleomycin resistance protein/dioxygenase	UcmS3 (AMK92564)	55/69
ypmR4	122	ArsR family transcriptional regulator	AQJ23_20335	63/74
			(KUN23954)	
ypmT5	327	Transporter ATP-ATPase subunit	DynT5 (ACB47076)	54/72
ypmT8	269	ABC-2 transport permease protein	DynT8 (ACB57075)	53/70
ypmJ1	367	Methyltransferase	TnmJ (AME18009)	52/67
			DynA5 (ACB47069)	49/61
ypmU16	157	Uncharacterized conserved protein YndB,	CalU16 (AAM70339)	32/44
		AHSA1/START domain	DynOrf20 (ACB47072)	52/71
ypmM	334	Rieske (2Fe-2S) iron-sulfur protein	UcmM (AMK92573)	56/71
ypmL	365	Cytochrome P450	DynE10 (ACB47071)	56/67
ypmO	163	Putative hydroxylase	TnmO (AME18016)	74/78
ypml	244	Oxidoreductase	Tnml (AME18007)	55/71
ypmK1	477	Secreted hydrolase	TnmK1 (AME18010)	55/68
ypmK2	485	Secreted hydrolase	UcmK1 (AMK92575)	51/63
ypmN	144	Ester cyclase	InmN (AME18015)	69/78
ypmJ2	378	Methyltransferase	InmJ (AME18009)	48/59
ypmR2	436	Putative regulator	UcmR2 (AMK92569)	58/70
ypmP	385	FAD-dependent oxidoreductase	DynE13 (ACB47064)	66/74
ypmR7	259	I ranscriptional regulator	DynR7 (ACB47062)	57/69
уртВ	283	Uncharacterized conserved protein YndB,	DynU16 (ACB47061)	60/70
0		AHSA1/START domain	InmB (AME17995)	46/56
ypmC	509	Ketone reductase	Dynorf17 (ACB47060)	55/62
ypmD	441	PBS lyase HEAT-like repeat protein	Dynoff16 (ACB	87/93
ypm⊢	210	Unknown protein	Dynoff15 (ACB47058)	92/97
ypmG	369	Unknown protein	Dynoff14 (ACB47057)	/0//8
ypm020	1//		DynU20 (ACB47056)	49/58
ypm021	194	Unknown protein		64/76
ypmR3	453	Unknown protein	DynR3 (ACB47054)	70/79
ypmR5	630	AfsR family transcriptional regulator	DynR2 (ACB47053)	51/61
ypmR1	230		DynU8 (ACB47051)	68/80
ypine io	144	Inioesterase	Dyne7 (ACB47049)	74/83
ypnie	1900	Enediyne polyketide synthase	Dyne8 (ACB47048)	00/13
ypmE3	335		$Dy_{113} (ACB47047)$	74/01
ypine4	220	Unknown protein	DynU14 (ACD47046)	12/01
ypines	529	AfaD family transprintional regulator	Dynorf12 (ACD47043)	00/07 49/50
ypiiirco	04	AISA Idining industriptional regulator	ADI 17 17575	40/09 55/60
0/1(+1)	34		(KUJ44940)	55/00

Table S1. Predicted functions of ORFs in the ypm gene cluster

^a *orf(-1)* and *orf(+1)* are predicted to represent the upstream and downstream boundaries of the gene cluster. ^b Number of amino acids.

Gene ^a	aa ^b	Putative function	Protein homolog	% ID/	Protein homolog	% ID/
			in <i>thm</i> gene cluster	%SI	in <i>ucm</i> gene cluster	%SI
UpmC1	140	Chronologo/bloomygin registered protein/diovygerede	Tom \$1 (AME19020)	44/61		11/61
ypins i	140	Giyoxalase/bleomycin resistance protein/dioxygenase	ThmST (AME 18020)	44/01	$U_{\rm cm}$ S_2 (AMK02564)	44/01
ypinoo	120	AreD family transcriptional regulator	THIN53 (AIVIE 18025)	00/IC	UCIII53 (AIVIK92564)	22/69
ypink4	122					
ypini 5	327	A DO 2 transporter A I P-A I Pase subunit				
ypm 18	269	ABC-2 transport permease protein		F0/07		F 4/00
ypmj 1	307	Methyltransierase	ThmJ (AME18009)	52/67	UCINJ (AIMK92576)	54/66
ypm016	157	Uncharacterized conserved protein YndB, AHSA1/START domain		F7/00		F0/74
ypmivi	334	Rieske (2Fe-25) iron-sulfur protein		57/69	UCMINI (AINIK92573)	56/71
ypmL	365	Cytochrome P450	InmL (AME18012)	41/47		70/04
уртО	163	Putative hydroxylase	InmO (AME18016)	/4//8	UcmO (AMK92571)	76/81
ypml	244	Oxidoreductase	Inml (AME18007)	55/71	UcmI (AMK92578)	57/71
ypmK2	477	Secreted hydrolase	TnmK2 (AME18011)	69/77	UcmK2 (AMK92574)	67/77
ypmK1	485	Secreted hydrolase	TnmK1 (AME18010)	51/64	UcmK1 (AMK92575)	51/63
ypmN	144	Ester cyclase	TnmN (AME18015)	69/78	UcmN (AMK92572)	64/75
ypmJ2	378	Methyltransferase	TnmJ (AME18009)	48/59	UcmJ (AMK92576)	47/61
ypmR2	436	Putative regulator	TnmR2 (AME18018)	59/70	UcmR2 (AMK92569)	58/70
ypmP	385	FAD-dependent oxidoreductase	TnmP (AME18017)	52/61	UcmP (AMK92570)	52/62
ypmR7	259	Transcriptional regulator	TnmR7 (AME17994)	41/53	UcmR7 (AMK92581)	41/53
ypmB	283	Uncharacterized conserved protein YndB, AHSA1/START domain	TnmB (AME17995)	46/56	UcmB (AMK92580)	45/54
ypmC	509	Ketone reductase	TnmC (AME17997)	39/47	UcmC (AMK92556)	41/50
ypmD	441	PBS lyase HEAT-like repeat protein	TnmD (AME17998)	82/90	UcmD (AMK92555)	79/88
ypmF	210	Unknown protein	TnmF (AME17999)	80/87	UcmF (AMK92554)	82/88
ypmG	369	Unknown protein	TnmG (AME18000)	56/65	UcmG (AMK92579)	55/65
ypmU20	177	Unknown protein				
ypmU21	194	Unknown protein				
ypmR3	453	Unknown protein	TnmR3 (AME17996)	49/60	UcmR3 (AMK92569)	51/64
ypmR5	630	AfsR family transcriptional regulator				
ypmR1	230	HxIR family transcriptional regulator	TnmR1 (AME18008)	45/61	UcmR1 (AMK92577)	46/61
ypmE10	144	Thioesterase	TnmE10 (AME18002)	63/74	UcmE10 (AMK92559)	46/60
ypmE	1900	Enediyne polyketide synthase	TnmE (AME18003)	51/60	UcmE (AMK92560)	45/54
ypmE5	335	Unknown protein	TnmE5 (AME18004)	61/75	UcmE5 (AMK92561)	56/70
ypmE4	629	Unknown protein	TnmE4 (AME18005)	53/65	UcmE4 (AMK92562)	44/55
ypmE3	329	Unknown protein	TnmE3 (AME18006)	45/54	UcmE3 (AMK92563)	41/50
vnmR6	502	AfsR family transcriptional regulator	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

Table S2. Comparison of the ypm gene cluster with the tnm and ucm gene clusters

^a *orf(-1)* and *orf(+1)* are predicted to represent the upstream and downstream boundaries of the gene cluster. ^b Number of amino acids.

position	1	2	3	4	5
1	10.28, br s	11.09, br s	10.99, br s	11.08, br s	11.02, br s
7	7.30, dd (7.7, 1.4)	7.20, d (8.4)	7.20, dd (8.4, 0.7)	7.19, d (8.4)	7.19, d (7.7)
8	7.83, t (7.7)	7.75, t (8.4)	7.75, t (8.4)	7.75, t (7.7)	7.75, t (7.7)
9	7.85, dd (7.7, 1.4)	7.81, d (8.4)	7.80, d (8.4)	7.80, d (7.7)	7.79, d (7.7)
14	8.73, s	7.24, s	7.78, s	7.24, s	7.77, s
16		3.44, dd (6.3, 1.4)		3.65, dd (5.6, 1.4)	
17	5.46, d (4.9)	5.17, dd, (7.7, 6.3)	5.11, d (7.0)	5.36, t (7.0)	5.23, d (6.3)
19		7.61, d (7.0)	7.57, d (7.7)	7.61, d (7.0)	7.57, d (7.7)
20	6.04, dd (9.8, 0.7)	7.26, t (7.0)	7.26, td (7.7, 1.4)	7.26, t (7.0)	7.27, t (7.7)
21	5.96, dt (9.8, 1.4)	7.30, t (7.0)	7.29, t (7.7)	7.30, t (7.0)	7.30, t (7.7)
22		7.55, d (7.7)	7.54, dd (7.7, 1.4)	7.56, d (7.0)	7.56, d (7.7)
24	5.14, dd (4.2, 1.4)	5.02, dd (3.5, 1.4)	5.22, d (5.6)	5.05, dd (4.9, 1.4)	5.25, d (4.9)
26	4.55, qd (6.3, 4.9)	3.74, q (6.3)	3.85, q (6.3)	3.60, m	3.70, m
27	1.46, d (6.3)	1.39, d (6.3)	1.56, d (6.3)	4.05, m	4.19, m
				3.89, m	3.90, m
6-OH	12.19, br s	12.33, br s	12.29, br s	12.32, br s	12.29, br s
13-OH	12.59, br s	12.90, br s	12.81, br s	12.89, br s	12.82, br s

Table S3. ¹H NMR Data of Compounds **1–5** (700 MHz, δ in ppm, J in Hz, acetone- d_6)

position	1	2	3	4	5
2	144.6	144.3	144.2	144.3	144.0
3	112.8	106.6	106.5	106.5	106.5
4	191.4	190.5	190.5	190.5	190.6
5	116.1	116.1	116.1	116.1	116.1
6	162.2	162.0	162.0	162.0	162.0
7	122.5	121.3	121.3	121.3	121.3
8	137.1	136.7	136.7	136.6	136.7
9	118.7	118.1	118.1	118.1	118.1
10	135.3	135.9	135.9	135.9	135.9
11	182.2	180.1	180.2	180.1	180.1
12	112.8	111.9	112.1	111.9	112.1
13	156.0	156.6	156.8	156.6	156.7
14	130.6	131.8	130.5	131.8	130.6
15	136.5	137.6	142.1	137.6	141.1
16	64.3	48.7	77.6	48.7	77.7
17	63.9	69.7	74.9	69.9	75.1
18	99.9	136.6	136.2	136.6	136.1
19	90.1	127.7	127.6	127.7	127.7
20	123.1	127.7	127.7	127.8	127.8
21	123.5	128.2	128.3	128.2	128.3
22	87.8	129.1	128.7	129.1	128.6
23	98.4	137.6	137.2	137.6	137.1
24	43.5	55.0	57.3	55.0	57.4
25	76.0	70.7	72.6	70.7	73.2
26	64.9	66.5	67.2	71.0	71.3
27	20.8	16.6	19.7	62.8	63.1

Table S4. ¹³C NMR Data of Compounds 1–5 (175 MHz, δ in ppm, acetone- d_6)

Figure S1. The enediyne GNN consisting of the distinct enediyne gene clusters from the public databases supporting *M. yangpuensis* as a potential producer for anthraquinone-fused enediyne. The GNN was displayed with an *E* value threshold of 10^{-8} .

Figure S2. HRESIMS analysis of YPM A–E (1–5).

S10

Figure S3. UV spectrum of YPM A (1) in comparison with UCM and TNM A

Figure S5. ¹³C NMR spectrum of YPM A (1) (175 MHz, acetone-*d*₆)

Figure S6. ¹H-¹H COSY spectrum of YPM A (1) (acetone-*d*₆)

Figure S7. HSQC spectrum of YPM A (1) (acetone-*d*₆)

Figure S8. HMBC spectrum of YPM A (1) (acetone-*d*₆)

Figure S9. ROESY spectrum of YPM A (1) (acetone- d_6)

Figure S10. ¹H NMR spectrum of YPM-A (1) (700 MHz, DMSO-*d*₆)

Figure S11. ¹H NMR spectrum of YPM B (2) (700 MHz, acetone-*d*₆)

Figure S12. ¹³C NMR spectrum of YPM B (2) (175 MHz, acetone-*d*₆)

Figure S13. Proposed biogenesis of 2 and 3 from 1 by the Bergman cycloaromatization

Figure S14. ROESY spectrum of YPM B (2) (acetone-d₆)

Figure S15. ¹H-¹H COSY spectrum of YPM B (**2**) (acetone-*d*₆)

Figure S16. HSQC spectrum of YPM B (2) (acetone-*d*₆)

Figure S17. HMBC spectrum of YPM B (2) (acetone-d₆)

Figure S19. ¹³C NMR spectrum of YPM C (3) (175 MHz, acetone-*d*₆)

Figure S20. ¹H-¹H COSY spectrum of YPM C (**3**) (acetone-*d*₆)

Figure S21. HSQC spectrum of YPM C (3) (acetone-d₆)

Figure S22. HMBC spectrum of YPM C (3) (acetone- d_6)

Figure S23. ROESY spectrum of YPM C (3) (acetone-d₆)

Figure S24. ¹H NMR spectrum of YPM D (4) (700 MHz, acetone-*d*₆)

Figure S25. ¹³C NMR spectrum of YPM D (4) (175 MHz, acetone-*d*₆)

Figure S26. ¹H-¹H COSY spectrum of YPM D (4) (acetone-*d*₆)

Figure S27. HSQC spectrum of YPM D (4) (acetone-d₆)

Figure S28. HMBC spectrum of YPM D (4) (acetone-d₆)

Figure S29. ROESY spectrum of YPM D (4) (acetone-d₆)

Figure S30. ¹H NMR spectrum of YPM E (5) (700 MHz, acetone-*d*₆)

Figure S31. ¹³C NMR spectrum of YPM E (5) (175 MHz, acetone-*d*₆)

Figure S32. ¹H-¹H COSY spectrum of YPM E (5) (acetone- d_6)

Figure S33. HSQC spectrum of YPM E (5) (acetone- d_6)

Figure S34. HMBC NMR spectra of YPM E (5) (acetone- d_6)

Figure S35. ROESY NMR spectra of YPM E (5) (acetone- d_6)

Figure S36. Cytotoxicity assay of YPM A in comparison with UCM and TNM A.

Supplementary references

- (S1) Rudolf, J. D.; Yan, X.; Shen, B. J. Int. Microbiol. Biotechnol. 2016, 43, 261–276.
- (S2) Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. *Mol. Biol. Evol.* **2013**, *30*, 2725–2729.
- (S3) Zhao, Q.; He, Q.; Ding, W.; Tang, M.; Kang, Q.; Yu, Y.; Deng, W.; Zhang, Q.; Fang, J.; Liu, W. *Chem. Biol.* **2008**, *15*, 693–705.
- (S4) Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N. Papadopoulos, J.; Bealer, K.; Madden, T. L. *BMC Bioinformatics* **2009**, *10*, 421.
- (S5) Thompson, J. D.; Higgins, D. G.; Gibson T. J. *CABIOS Comput. Appl. Biosci.* **1994**, *10*, 19–29.
- (S6) Zhang, L.; Xi, L.; Ruan, J.; Huang, Y. Int. J. Syst. Evol. Microbiol. 2012, 62, 272–278.
- Huang, T.; Chang, C.-Y.; Lohman, J. R.; Rudolf, J. D.; Kim, Y.; Chang, C.; Yang, D.; Ma, M.; Yan, X.; Crnovcic, I.; Bigelow, L.; Clancy, S.; Bingman, C. A.; Yennamalli, R. M.; Babnigg, G.; Joachimiak, A.; Phillips, G. N.; Shen, B. *J. Antibiot.* **2016**, *69*, 731–740.
- (S8) Zazopoulos, E.; Huang, K.; Staffa, A.; Liu, W.; Bachmann, B. O.; Nonaka, K.; Ahlert, J.; Thorson, J. S.; Shen, B.; Farnet, C. M. *Nat. Biotechnol.* **2003**, *21*, 187–190.