Supplementary Figures
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Figure S1. Geometry dependent instabilities in different numerical models of excitable cells, Related to
Figure 3. A) Hodgkin Huxley model of iOS-HEK cells (same as Fig. 3c, repeated here for comparison to
other models). B) Same as (A) with artificially accelerated israpidine unbinding kinetics (1 = 0.005 ms™).
0D features show alternans at intermediate drive frequencies. The 1D near field shows a discontinuous
alternans transition. C) Simulation of the cardiac Noble model (Noble 1962), which also shows geometry-
dependent changes in dynamics.
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Figure S2. Effect of gap junction coupling on dynamics in Hodgkin-Huxley simulations of iOS-HEK cells,
Related to Figure 7. A) Linear scaling of conduction velocity with \/ Jon - B) Linear scaling of depolarized

pulse length, A, with conduction velocity. C) Relation of the alternans decay length to propagating pulse
wavelength at a pacing frequency of 5 Hz, far above the onset of alternans.



