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Cationic Oligospermine-Oligonucleotide
Conjugates Provide Carrier-free Splice
Switching in Monolayer Cells and Spheroids
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We report the evaluation of 18-mer 20-O-methyl-modified
ribose oligonucleotides with a full-length phosphorothioate
backbone chemically conjugated at the 50 end to the oligosper-
mine units (Sn-: n = 5, 15, 20, 25, and 30 [number of spermine
units]) as splice switching oligonucleotides (SSOs). These con-
jugates contain, in their structure, covalently linked oligoca-
tion moieties, making them capable of penetrating cells
without transfection vector. In cell culture, we observed effi-
cient cytoplasmic and nuclear delivery of fluorescein-labeled
S20-SSO by fluorescent microscopy. The SSO conjugates con-
taining more than 15 spermine units induced significant car-
rier-free exon skipping at nanomolar concentration in the
absence and in the presence of serum. With an increasing
number of spermine units, the conjugates became slightly
toxic but more active. Advantages of these molecules were
particularly demonstrated in three-dimensional (3D) cell cul-
ture (multicellular tumor spheroids [MCTSs]) that mimics
living tissues. Whereas vector-complexed SSOs displayed a
drastically reduced splice switching in MCTS compared with
the assay in monolayer culture, an efficient exon skipping
without significant toxicity was observed with oligosper-
mine-grafted SSOs (S15- and S20-SSOs) transfected without
vector. It was shown, by flow cytometry and confocal micro-
scopy, that the fluorescein-labeled S20-SSO was freely diffusing
and penetrating the innermost cells of MCTS, whereas the vec-
tor-complexed SSO penetrated only the cells of the spheroid’s
outer layer.
Received 11 September 2018; accepted 15 September 2018;
https://doi.org/10.1016/j.omtn.2018.09.027.

Correspondence:Mitsuharu Kotera, Laboratoire V-SAT, Université de Strasbourg,
CNRS, CAMB UMR 7199, LabEx MEDALIS, Faculté de Pharmacie, 67400 Illkirch,
France.
E-mail: m.kotera@unistra.fr
Correspondence: Jean-Serge Remy, Laboratoire de Chimie Biofonctionnelle,
Université de Strasbourg, CNRS, CAMB UMR 7199, LabEx MEDALIS, Faculté de
Pharmacie, 67400 Illkirch, France.
E-mail: remy@unistra.fr
INTRODUCTION
Splice switching oligonucleotide (SSO) is one of the most advanced
families of therapeutic oligonucleotides, being extremely valuable for
the treatment of genetic diseases including Duchenne muscular
dystrophy and spinal muscular atrophy.1–6 SSOs are 15- to 30-mer
oligonucleotide analogs that bind specifically and tightly to pre-
mRNA targets, thus inducing an alternative splicing. A wide variety
of chemically modified oligonucleotides is commercially available,
possessing several desired properties for SSO drugs, for example,
enhanced hybridization against RNA and improved stability against
chemical and enzymatic degradations. In particular, SSOs based on
the phosphorodiamidate morpholino oligonucleotide (PMO) and
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the 20-methoxyethyl phosphorothioate oligonucleotide (20-MOE/
PS) led to the first approvals of SSO drugs by the US Food and
Drug Administration (FDA) in 2016, even though further improve-
ments are still required to increase their efficacy.7–10 Contrary to
classical drugs of low molecular weight (MW < 500), SSOs are
macromolecular compounds (MW > 6 kDa) with high polarity.
Their efficacy is mainly limited by their poor delivery to the target
cells, and the development of an efficient, reliable, and less toxic de-
livery method remains the main challenge in this area. Our approach
is to link covalently SSOs to a well-defined cationic vector by solid-
phase chemistry.

We already reported the use of DMT-spermine phosphoramidite
(Figure 1) as a versatile reagent compatible with solid-phase oligonu-
cleotide synthesis for the attachment of the desired number of sper-
mine moieties to oligonucleotides,11,12 which allowed us to synthesize
a variety of oligospermine-oligonucleotide conjugates (zip nucleic
acids [ZNAs]). When ZNAs are hybridized to their complementary
strands, the cationic oligospermine tail acts as a zipper to neutralize
the polyanionic internucleotidic phosphates, thus enhancing binding
affinity and binding kinetics.13 These biophysical properties can be
finely tuned according to the number of attached spermine units,
making ZNA a versatile PCR probe.14,15 ZNA is commercially
available (number of spermine units <10) and used in numerous
nucleic-acid-based diagnostic applications.16 Cationic oligosper-
mines covalently attached to oligonucleotides can also act similarly
to the polyamine-type delivery vectors. We described small inter-
fering RNA (siRNA)-oligospermine conjugates containing 30 sper-
mine units that induced an efficient carrier-free luciferase gene
silencing.17–20 Locked nucleic acid (LNA)-oligospermine conjugates
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Figure 1. Solid-Phase Synthesis of Oligospermine-Oligonucleotide

Conjugates (S)n-[X]

Table 1. Oligospermine-Oligonucleotide Conjugates

Name Sequence (50 to 30)
Yield
(nmol)

[MH]+calc
(Da)

[MH]+obs
(Da)

[ON705]
CCU CUU ACC UCA GUU
ACdA

72 6,068 6,069

S5-[ON705]
S5-CCU CUU ACC UCA
GUU ACdA

90 8,111 8,123

S15-[ON705]
S15-CCU CUU ACC UCA
GUU ACdA

61 12,197 12,225

S20-[ON705]
S20-CCU CUU ACC UCA
GUU ACdA

50 14,239 14,523

S30-[ON705]
S30-CCU CUU ACC UCA
GUU ACdA

66 18,324 ND

S15-
[ON705mis]a

S15-CCU CUU ACA UCA
GUU ACdA

55 12,220 12,311

S15-
[ON705scr]

S15-ACU ACC CGA UAU
CUC CUdC

120 12,195 ND

S15-[ON119]
S15-UGA GAC UUC CAC
ACU GAdT

97 12,313 ND

[ON705]-F
CCU CUU ACC UCA GUU
ACA-F

300 6,685 6,690

S20-[ON705]-F
S20-CCU CUU ACC UCA
GUU ACA-F

40 14,855 14,880

All capital letters in the sequences refer to 20-O-methylribonucleotides. dN, 20-deoxyri-
bonucleotides; -F, fluorescein label at the 30 end; ND, not determined.
aMismatch is underlined.
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with nine spermine units were also reported as active cell-permeable
oligonucleotides for antisense and antigene inhibition of gene expres-
sion.21 More recently, the oligospermine with 15 spermine units was
attached to cyclic RGD (cRGD)-siRNA conjugate, thus enhancing the
tumor cell-specific delivery.22

In this article, we used the same chemistry to prepare a series of oli-
gospermine-SSO conjugates (Sn-SSOs, n = 5–30) and evaluated their
splice switching efficacy without delivery vector. First, we studied
time-course and concentration dependence of carrier-free cellular up-
take of S20-SSO labeled with fluorescein at the 30 end. Then, we stud-
ied the exon-skipping activity (duration and efficacy) of Sn-SSOs
without vectors on a model cell line HeLa pLuc/705.23,24 Our studies
showed that the SSO conjugated to 20 spermine units was efficiently
transfected into monolayer cells without any vector, and that the
Sn-SSOs with more than 15 spermines units (n > 15) induced a
sequence-specific exon skipping that restored luciferase expression
at a significant level even 5 days after a single transfection. We finally
investigated Sn-SSOs properties using multicellular tumor spheroids
(MCTSs); they correspond to three-dimensional (3D) cell culture
that has been suggested as a model for assessing oligonucleotide
in vivo delivery.25 On the one hand, unconjugated SSOs transfected
with a vector displayed a drastically reduced activity in MCTS as
compared with the assay in monolayer culture. On the other hand,
oligospermine conjugates, S15- and S20-SSOs, repeatedly induced
high levels of carrier-free splice switching that surpassed the level of
the cationic vector formulation. Cellular uptake of these conjugates
in MCTS was also studied by flow cytometry and confocal
microscopy.
484 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
RESULTS
In this study, all assays were performed in HeLa pLuc/705 cells. This
cell linewas developed byKole and colleagues23,24 and used for thefirst
time to demonstrate that appropriate oligonucleotide analogs (20-O-
methyloligoribonucleotide phosphorothioate) induce alternative
splicingwhen delivered in cells. HeLa pLuc/705 cells were stably trans-
fected with a recombinant plasmid (pLuc/705) carrying the luciferase
gene (reporter gene) interrupted by amutated human b-globin intron
2 (IVS2-705). The mutation in the intron causes aberrant splicing of
luciferase pre-mRNA, preventing translation of luciferase. Efficient
delivery of appropriate SSOs overlapping the 705 splice site induces
correct splicing, and thus restores luciferase activity.

Oligonucleotide-Oligospermine Conjugates Synthesis

Structures of 18-mer oligonucleotide-oligospermine conjugates used in
thepresent studyarepresented inFigure 1 and their sequences are listed
in Table 1. They were synthesized as 20-O-methyloligoribonucleotide
phosphorothioate using essentially the same procedure as previously
reported.20 The spermine units at the 50 end of the oligoribonucleotide
were introduced by efficient coupling (coupling yields >95%) of DMT-
spermine phosphoramidite. Final conjugates were characterized by
MALDI-TOF (Figures S3–S10) and/or SDS-PAGE (Figure S1).

Carrier-free Splice Switching with Spermine-Grafted SSOs in

Monolayer Culture

Carrier-free cellular uptake of cationic DNA oligonucleotides
and transfection of spermine-grafted siRNAs have already been



Figure 2. Carrier-free Cellular Uptake of (S)20-[ON705]-(F) in Monolayer HeLa pLuc/705 Cells

Fluorescently labeled (S)20-[ON705]-(F) were incubated at the concentrations indicated on the top of images during (A, right panels) 45 min, (B, right panels) 2 hr, and (C, right

panels) 4 hr in serum-free medium. Naked [ON705]-(F) was used as a control in the same conditions (A–C, left panels). Images were taken by fluorescent microscopy using

488-nm laser. (D) Zoom of the right panel in (C).
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reported.17–20 Here, we used two single-stranded fluorescein-labeled
SSOs (20-O-methyloligoribonucleotide phosphorothioate) with and
without spermine units to re-evaluate their cell penetration properties
(Figure 2). No significant cellular uptake in HeLa cells was observed
when unconjugated [ON705]-F was incubated at 0.4 or 1.0 mM for up
to 4 hr. In contrast, cellular uptake of S20-[ON705]-F was already
observed at 0.4 mM in 2 hr. Transfection efficacy was progressively
increased with dose and over time. All cells were transfected at
1.0 mM after 2 hr and at 0.4 mM after 4 hr. Transfected cells appeared
with fluorescent nuclear edge and nucleoli concentration in diffuse
green throughout their cytoplasm, highlighting the efficient cyto-
plasmic and nuclear delivery of S20-[ON705]-F.
Restoration of luciferase expression was studied by harvesting cells at
various times, between 10 and 144 hr after carrier-free transfection of
three Sn-[ON705] (n = 15, 20, and 30) (Figure 3). For all three Sn-
[ON705] tested, luciferase expression increased progressively over
45 hr before decreasing slowly. With S15-[ON705] (0.5 mM), a
15-fold increase in luciferase expression was observed after 45 hr of
incubation compared with the control cells. Best results were obtained
with S20-[ON705] (0.6 mM), resulting in a 22-fold increase in lucif-
erase expression. However, increasing the number of spermine
residues further proved to be detrimental because it resulted in higher
levels of toxicity (see below) and lower increase in luciferase expres-
sion (7-fold for S30-[ON705] at 0.3 mM). Interestingly, with all three
Molecular Therapy: Nucleic Acids Vol. 13 December 2018 485

http://www.moleculartherapy.org


Figure 3. Time-Course Profile of Carrier-free Splice

Switching in Monolayer HeLa pLuc/705 Cells Using

(S)n-[ON705]

(S)n-[ON705] (n = 15, 20, and 30) were added to the cells

initially in serum-free DMEM, and FBS was added to 10%

after 4 hr. Luciferase reporter gene expression levels were

periodically measured as RLU/mg of cell proteins and

normalized against the levels of untreated cells. All data

are presented as mean ± SEM of n = 3 separate experi-

ments.
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Sn-[ON705] (n = 15, 20, and 30), only one transfection was sufficient
to observe significant luciferase expression (3- to 7-fold increase),
even after 5 days. No significant luciferase expression was observed
with S15-[ON705scr] or with S15-[ON119].

Dose-dependent splice switching activities of Sn-[ON705] (n = 15, 20,
and 25) were next examined. These conjugates were initially incu-
bated in the absence of serum for 4 hr (Figure 4A). Luciferase gene
expression was measured after 48 hr (total incubation time), as well
as the total cellular protein measurement. We found that a progres-
sive increase in Sn-[ON705] (n = 15, 20, and 25) concentrations
from 0.3 mM to 0.4 and 0.5 mM resulted in an enhanced restoration
of luciferase expression. For example, luciferase expression increased
by 2-, 3-, and 14-fold at 0.3, 0.4, and 0.5 mM, respectively, compared
with untreated cells, when S20-[ON705] was employed. However,
increasing the concentrations of S15-[ON705] and S25-[ON705]
from 0.5 to 0.6 mM led to no significant change in luciferase expres-
sion level. Interestingly, S20-[ON705] gave better results at 0.6 mM,
with a luciferase expression increased by 40-fold. As mentioned
previously, luciferase expression restoration was also found to be
dependent on the number of conjugated spermine units: levels of
luciferase increased by 3-, 14-, and 23-fold with S15-, S20-, and S25-
[ON705], respectively, at 0.5 mM. However, higher toxicity was
observed with S20-[ON705] and S25-[ON705] under these conditions
via total cellular protein measurement.

The same SSOs were re-evaluated by adding the conjugate molecules
directly in the presence of serum (Figure 4B). Under these conditions,
luciferase restoration was slightly less efficient with Sn-[ON705] (n =
15, 20, and 25), even though they were found to be less toxic.

In both experiments in Figure 4, sequence specificity of exon skipping
was clearly demonstrated, as S15-[ON705scr] and S15-[ON119] were
completely inactive (S15-[ON705mis] was also shown to be inactive in
a preliminary study; data not shown). Vector-assisted transfection of
486 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
unconjugated [ON705] induced efficient lucif-
erase expression restoration (106- or 104-fold
increase in the absence or the presence of serum,
respectively) with low toxicity at 0.2 mM.

In summary, data shown in Figures 2, 3, 4, and 5
demonstrate that the oligospermine-grafted
18-mer 20-O-methyloligoribonucleotide phosphorothioates (Sn-
[ON705]; n = 15, 20, and 25) are efficiently delivered in monolayer
cells without vector, and that they induce long-lived splice switching
in the presence and in the absence of serum. Even though unconju-
gated SSOs transfected with a vector were more efficient and less toxic
under these experimental conditions, such nanoparticles should be
less diffusible in vivo than molecular Sn-SSO drugs to attain the target
tissue through interstitial fluid. In order to demonstrate this assump-
tion, 3D cultured cells assays were performed, whose results are
described in the following section.

Carrier-free Splice Switching with Spermine-Grafted SSOs in

MCTS

MCTS is an in vitro 3D culture that can be generated by growing cells
to form complex spherical structures with 200- to 500-mm diameters.
These multicellular spheroids are used as models in drug screening
research because of their complexity level lying between standard
in vitro two-dimensional (2D) monolayer cultures and in vivo tu-
mors.26–29 Here we studied delivery of the oligospermine-conjugated
SSOs (S15- and S20-[ON705]) in 3D cell culture and found that the
cationic SSOs were efficiently penetrating the cells in the inner region
of spheroids to restore luciferase gene expression. Vector-assisted
transfection of unconjugated [ON705] in MCTS was drastically less
efficient than in 2D culture, with their cellular uptake being observed
only in the outer layer of spheroids.

We first prepared HeLa pLuc/705 MCTSs using the hanging drop
method.25,30 About 2,500 cells were simply incubated in a suspended
droplet of medium (25 mL) during 48 hr. The resulting MCTSs were
very homogeneous in size (about 400 mm in diameter) and in shape
(Figure 5). Twelve MCTSs were gathered per wells for assays. Under
these conditions, untreated MCTSs (left photos in Figure 5)
continued to grow over the next 46 hr and formed a chaplet-like
structure by interacting with neighboring spheroids. The darkening
of the central part of each spheroid can be interpreted partly by the



Figure 4. Carrier-free Splice Switching in Monolayer

HeLa pLuc/705 Cells by (S)n-[ON705] (n = 15, 20,

and 25)

Luciferase activity was determined after 48 hr of incuba-

tion. (A) (S)n-[ON705] were incubated for 4 hr in serum-free

conditions; then FBS (10%) was added. (B) (S)n-[ON705]

were added in serum-containing DMEM (10%). The

rhombi indicate the total protein measurement. All data

are presented as mean ± SEM of n = 3 separate experi-

ments. JM, JetMessenger.
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increase of the cell density and partly by the known development of
the central hypoxic and necrotic areas.26 Growth of the spheroids
treated with 0.7 mM S15-[ON705] is shown in the right photos of Fig-
ure 5. These photos are indistinguishable from those of the untreated
spheroids, demonstrating that spermine-grafted SSOs present no
toxicity under these conditions.

Carrier-free deliveries of S15-[ON705] and S20-[ON705] in HeLa
pLuc/705 MCTSs were then evaluated by luciferase gene expression
restoration. Incubation of S15-[ON705] or S20-[ON705] in
increasing concentrations progressively enhanced the luciferase
gene expression (Figure 6). For example, increases in luciferase
expression were 3-, 6-, and 11-fold at 0.4, 0.7, and 1.0 mM, respec-
tively, with S15-[ON705], and 2-, 8-, and 14-fold at 0.4, 0.7, and
1.0 mM with S20-[ON705]. Contrary to the aforementioned 2D cul-
ture assays, the 20-spermine units grafted SSO (S20-[ON705]) was
only slightly better than the 15-spermine units grafted SSO (S15-
[ON705]). As previously mentioned, no significant toxicity was
observed in 3D culture, neither with S15-[ON705] nor with S20-
[ON705], even at 1.0 mM, according to the total protein measure-
ment (rhombi in Figure 6). In 3DMCTS, vector-assisted formulation
of naked [ON705] induced a reduced level of luciferase expression,
as compared with the results obtained in 2D culture. The increase
of luciferase expression was only 4-fold, whereas it was 104-fold un-
der the same conditions in monolayer culture.

We further examined the delivery of oligospermine-oligonucleotide
conjugates in spheroids by flow cytometry (Figure 7) and confocal
microscopy (Figure 8). MCTSs were treated with vector-complexed
[ON705]-F and S20-[ON705]-F for 48 hr. Fluorescence intensity of
Molecular Therap
spheroid cells treated with [ON705]-F/JM (Fig-
ure 7, yellow) is widely spread over three orders
of magnitude. The corresponding confocal mi-
croscopy images showed a green ring on the
outer spheroid cells indicating that only the
exterior spheroid cells were transfected. As
seen in Figure S2, this vector-assisted transfec-
tion efficiency was not enhanced with higher
concentration. Upon carrier-free transfection
of spheroids with S20-[ON705]-F (Figure 7,
blue), a distinct narrow peak corresponding to
the high fluorescein active population was
observed by flow cytometry. Efficient delivery of S20-[ON705]-F
was confirmed by confocal microscopy because green fluorescein-
active cells were observed everywhere, including in the innermost
part of the spheroids.

DISCUSSION
In this study, we reported a new SSO-delivery method using oligo-
spermine conjugates. An oligospermine-SSO conjugate containing
15–20 spermine units (S15- or S20-SSO) penetrates in HeLa pLuc/
705 cells without vector to induce splice switching that restores lucif-
erase expression, in the absence and in the presence of serum. Our
approach takes advantage of both the cationic vector formulations
and the molecule-scale delivery. Cationic vector formulations are
the most popular and the most studied oligonucleotide delivery stra-
tegies.8,9,31–33 Oligonucleotides are complexed with cationic vectors
to form nanoparticles of typically 100–200 nm and gain enhanced
cell penetration properties driven by electrostatic interactions with
anionic cellular heparan sulfate proteoglycans.34 However, it also
raises several problems, that is, poor colloidal stability, poor bio-
distribution, and toxicity related to the large amount of cationic vec-
tor introduced in cells. The other emerging strategy is to use precise
molecular conjugates of smaller size (<50 nm) to circumvent these
difficulties. Cationic SSOs with in vivo activity were prepared by
linking oligocationic structures (e.g., peptides containing eight argi-
nines35,36 or dendrimer with eight guanidine functions37) to the
PMO that is a neutral oligonucleotide analog. In our approach, oligo-
spermine tails containing an exact number of spermine units were
attached to polyanionic SSOs so that the resulting conjugates may
transfect as a single molecule by forming an intramolecular complex.
Oligospermine moiety will act similarly to the polyethylenimine
y: Nucleic Acids Vol. 13 December 2018 487
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Figure 5. Morphology of HeLa pLuc/705 MCTS

Two-day-old spheroids were incubated with (S)15-

[ON705] 0.7 mM in serum-containing DMEM (10%) for

46 hr. Images were periodically taken by microscopy.

(Left) Untreated spheroids. (Right) Spheroids treated with

(S)15-[ON705].
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(PEI)-type cationic polymer vector, except that the amount of the vec-
tor used is minimized.

Our current study demonstrated efficient carrier-free transfection of
SSO attached to an oligospermine tail containing only 15–20 sper-
mine units. In our previous articles,17–20 we showed that an attach-
ment of oligospermine containing 30 spermine units was necessary
for carrier-free siRNA delivery to induce gene silencing. Required
spermine number in these conjugates can be primarily defined by
N/P ratio (number of amino groups/number of phosphate groups).
We found that a slightly higher N/P ratio was required for SSO deliv-
ery (S20-SSO: N/p = 2.1) as compared with siRNA delivery (S30-
siRNA: N/p = 1.7). This observation may indicate that the S30-siRNA
is structurally better organized than the S20-SSO. In fact, the SSO used
in this study (i.e., [ON705]) is a single-stranded 18-mer oligonucleo-
tide that is an about 15-nm-long chain and folds into various 3D
structures; the attached oligospermine chain (S20) will interact with
the negative phosphate groups and afford overall cationic entities of
reduced size like a ball of wool. In contrast, siRNA is an assembly
of two 21-mer RNA oligonucleotides that form an A-type double he-
lix. The oligospermine (S30) attached to siRNA will wind onto the mi-
488 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
nor and/or the major grove, enhance duplex sta-
bility, and provide a supramolecular structure
like a thread reel.

MCTS was recently proposed by Juliano and
colleagues25 as a versatile tool to assess oligonu-
cleotide delivery in 3D cells. These authors
described an efficient delivery of 13-nm-size
nanoparticle formulation based on human
serum albumin linked to PMO-RGD peptide
conjugates in MCTS and compared with their
lipoplex and polyplex formulations that are inef-
ficient. Relevance of oligospermine-conjugated
SSO was evidenced by the assays performed in
3D cell culture. MCTS is a heterogeneously
associated spherical cell assembly that is consid-
ered as a rational and cost-effective model to
assess in vivo drug delivery efficacy. In mono-
layer culture cells, carrier-free SSO-oligosper-
mine delivery was less efficient, as compared
with the cationic vector-assisted transfection
of unconjugated SSO. However, S20-[ON705]
induced a higher level of splice switching than
the vector-complexed [ON705] in MCTS.
Reduced activity of SSO formulation in MCTS is related to the nano-
particle size (around 100 nm). Whereas molecular S20-[ON705] may
circulate freely to attain the internal cells of spheroids, [ON705]/
JetMessenger complexes will only penetrate to the outer layer cells.
Indeed, homogeneous distribution of the fluorescently labeled S20-
[ON705]-F in MCTS was proven by flow cytometry and by confocal
microscopy, whereas the vector-complexed [ON705]-F was observed
only as a bright ring by confocal microscopy, indicating local cellular
uptake in accordance with the flow cytometry histogram. It should
also be noted that S20-[ON705] present almost no toxicity in
MCTS, whereas a dose-dependent toxicity was observed for the
same conjugate in monolayer culture. Further studies are still
required to determine the origin of these observations.

Our results open a new scope for oligospermine-oligonucleotide con-
jugates as these molecules were proven to induce splice switching
spontaneously without formulation in cells. Compared with siRNA-
oligospermine conjugates, SSO conjugates are about twice as small,
and fewer steps are required for their manufacturing. Further
improvement of splice switching potency may be achieved by struc-
tural tuning of conjugates.



Figure 6. Carrier-Free Splice Switching in 3D Culture of HeLa pLuc/705

Cells by (S)15- and (S)20-[ON705]

(S)15- and (S)20-[ON705] were added to 2-day-old HeLa pLuc/705 spheroids in

serum-containing DMEM (10%). Luciferase activity was determined after 48 hr of

incubation. The rhombi indicate the total protein measurement. All data are pre-

sented as mean ± SEM of n = 3 separate experiments. JM, JetMessenger.

Figure 7. Delivery of Fluorescently Labeled SSOs in 3D Culture of HeLa

pLuc/705 Cells Analyzed by Flow Cytometry

Untreated spheroids (red, control). [ON705]-(F) (0.2 mM, yellow) complexed with JM

(JetMessenger) and (S)20-[ON705]-(F) (0.7 mM, blue) were added to 2-day-old HeLa

pLuc/705 spheroids in serum-containing DMEM (10%). After 48 hr of incubation,

cellular uptake was analyzed using a 488-nm laser.
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MATERIALS AND METHODS
Synthesis of 20-O-Methyl Oligonucleotide Phosphorothioate-

Oligospermine Conjugates

Oligonucleotide synthesis reagents were purchased from Glen
Research/Eurogentec (Paris, France; reference G.R.). All reagents
including the DMT-spermine phosphoramidite are commercially
available. Oligonucleotides and their oligospermine conjugates
were prepared on an automated Expedite 8900 nucleic acid synthe-
sis system (GMI, USA) at 1-mmol scale using modified procedures
based on the standard instrumental protocol as described previ-
ously.20 Phosphorothioate linkages were introduced using 3-((N,
N-dimethylaminomethylidene)amino)-[3H]-1,2,4-dithiazole-5-thi-
one (DDTT) sulfurizing reagent (G.R. 40-4137-51). 30-(6-FAM)
CPG (G.R. 20-2961-41) was used to introduce fluorescein label.
All oligonucleotides were synthesized with final DMT-ON condi-
tions. Coupling yields were evaluated by measuring the absorbance
at 504 nm of several selected DMT fractions (e.g., the second, the
last, before and after spermine couplings), which were diluted to
100 mL with 3% trichloroacetic acid (TCA) in dichloromethane
as follows: DMT fractions were first diluted to 5 mL (volumetric
flask) with dichloromethane before a 250-mL aliquot of the resulting
solution (pipetted with a Microman, Gilson pipette equipped with a
capillary piston) was transferred into another volumetric flask and
completed to 5 mL with 3% TCA in dichloromethane solution.
Average coupling yields were >97% for nucleotides and about
95% for spermine couplings. For oligonucleotide conjugates, cleav-
age, successive deprotection steps, and purification were performed
according to Glen Research-reported protocols using DNA Glen-
Pak columns (G.R. 60-5000-96) except that a vacuum manifold
apparatus was not used. Solutions were manually added using
1-mL plastic syringes. Overall yields (Table 1) were driven from
the final stock solution concentrations as measured from their
absorption at 260 nm and then calculated using extinction coeffi-
cients estimated by the described empirical formula.38 MALDI-
TOF mass spectra were obtained in positive mode on a Bruker
Ultraflex apparatus with hydroxypicolinic acid or trihydroxyaceto-
phenone combined, with or without diammonium citrate as matrix
(Figures S3–S10).

The single-stranded [ON705] was targeted to the aberrant splice
site.23,39 Oligonucleotides with scrambled sequence ([ON705scr])40

or with one mismatch ([ON705mis]) were used as negative controls.
An oligonucleotide [ON119] targeted to position 119 of b-globin
intron 2 was used as an additional negative control.24

SDS-PAGE of SSOs

Four hundred pmol of single-strand oligospermine conjugates were
loaded on 4%–12% Bis-Tris precast gels (Criterion XT; Bio-Rad).
Electrophoresis was carried out in XT-MES denaturing running
buffer during 2 hr at 75 V. Precast gels were then incubated in
ethidium bromide (0.5 mg/mL) and analyzed.

Cell Culture

HeLa cells transfected with pLuc/705 were kindly provided by Dr. R.
Kole.23,24 Cells were grown in low-glucose DMEM (Sigma-Aldrich,
St. Louis, MO, USA) supplemented with 10% fetal bovine serum
(FBS) (Perbio, Brebieres, France), 100 U/mL penicillin, 100 mg/mL
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Figure 8. Delivery of Fluorescently Labeled SSOs in 3D Culture of HeLa pLuc/705 Cells Analyzed by Confocal Microscopy

To 2-day-old HeLa pLuc/705 spheroids in serum-containing DMEM (10%) was added [ON705]-(F) complexed with JM (JetMessenger) or (S)20-[ON705]-(F). Images were

taken after 48 hr. (A) Fluorescein (488 nm). (B) Nuclei (405 nm). (C) Merge.

Molecular Therapy: Nucleic Acids
streptomycin (Eurobio), and 200 mg/mL hygromycin B (Invitrogen,
Carlsbad, CA, USA).

Cellular Uptake of S20-[ON705] in HeLa pLuc/705 Cells

HeLa pLuc/705 cells (2.5 � 104 per well) were seeded in four-cham-
bered Lab-Tek plates (Ref 155383; Nunc, Rochester, NY, USA) in
500 mL of complete medium the day before their use. Cells were
then incubated with 0.4 and 1.0 mM SSOs [ON705]-F and S20-
[ON705]-F, respectively, both fluorescently labeled with fluorescein.
490 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
Cells were observed after 45 min, 2 hr, and 4 hr in red-phenol-free
DMEM by fluorescent microscopy (Axiovert 25; Zeiss, Germany).

Transfection with Cationic Oligospermine Conjugates

Twenty-four hours prior to transfection, 6 � 103 cells per well were
seeded in 96-well tissue culture plates (Corning, NY, USA) in
100 mL of DMEM containing 10% FBS. The spermine-grafted SSOs
were diluted up to 100 mL in serum-free or serum-containing
DMEM and then added onto HeLa pLuc/705 cells after washing.
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After 4 hr, 10 mL of FBS was added on serum-free transfected cells. As
positive controls, cells were transfected with 0.2 mM [ON705] com-
plexed with JetMessenger (JM; Polyplus-Transfection, Illkirch,
France) according to the supplier’s instructions. All cells were incu-
bated for 48 hr at 37�C in 5% CO2 humidified atmosphere.

Splice-Switching Longevity Study

Twenty-four hours prior to transfection, 5 � 104 HeLa pLuc/705
cells per well were seeded in 24-well tissue culture plates (Corning,
NY) in 0.5 mL of DMEM complete medium. Spermine-conjugated
oligonucleotides S15-[ON705] (0.6 mM), S20-[ON705] (0.5 mM),
S30-[ON705] (0.3 mM), S15-[ON119] (0.6 mM), and S15-[ON705scr]
(0.6 mM) were diluted in 300 mL of serum-free DMEM and added to
cells after washing. After 4 hr, FBS was added up to a final 10% con-
centration. Luciferase reporter gene expression was measured 11,
21, 45, and 69 hr after delivery with spermine-grafted SSOs. After
69 hr, transfected and non-transfected HeLa pLuc/705 cells were
split in new 24-well tissue culture plates at 5 � 104 cells per well
to maintain exponential growth. The restoration of luciferase
gene expression was then determined 95, 118, and 142 hr after
transfection.

Luciferase Activity

HeLa pLuc/705 cells were rinsed with PBS and were lysed (40 mL/well
for 96-well plates and 100 mL for 24-well plates) with cell culture lysis
buffer (Promega, Madison, WI, USA) at room temperature for
30 min. After collecting and centrifuging the cell lysates, the lucif-
erase enzyme activity was quantified from supernatant lysate after
addition of 50 mL of luciferin solution (Promega) with a Centro
LB960 luminometer (Bertold, Thoiry, France). The protein concen-
tration in the extract was measured by the BCA protein assay kit
(Uptima; Interchim, Montluçon, France). Final luciferase activity
was first measured as relative light units integrated for 10 s per milli-
gram of cell protein (RLU/mg) and then converted to the increase of
luciferase expression relative to the luciferase level of untreated HeLa
pLuc/705 cells.

Generation and Transfection of Multicellular Spheroids

HeLa pLuc/705 MCTSs were generated using the hanging drop
method.30 Starting from a monolayer cell culture, cells were
resuspended in growth medium containing 20% methyl cellulose
(Sigma) at a concentration of 1 � 105 cells/mL. Twenty-five-
microliter drops containing 2.5 � 103 cells were prepared on
90-mm Petri dishes lids (Greiner, Frickenhausen, Germany) and
then inverted to obtain hanging drops that were incubated
at 37�C. After 48 hr, 12 MCTSs per well were transferred in
non-treated 96-well plates. Single-strand oligonucleotides S15-
[ON705], S20-[ON705], S15-[ON119], and [ON705] were prepared
in 100 mL of complete DMEM and added to the spheroids. Control
assays for MCTSs with unconjugated [ON705] transfected with
JetMessenger were performed in the same way as for monolayer
assays. All experiments were done in quadruplicate. After 48 hr,
spheroids were washed with PBS and lysed for quantification of
luciferase activity.
Flow Cytometry

Six 2-day-old spheroids per well were transferred in non-treated
96-well plates. Forty-eight hours after transfection with fluorescently
labeled SSOs ([ON705]-F complexed with JetMessenger and S20-
[ON705]-F), cells were trypsinized and resuspended in PBS. Single-
cell suspensions were analyzed by flow cytometry on a Guava easy-
Cyte HT Cytometer (Merck Millipore) using a 488-nm laser.

Confocal Microscopy

Two-day-old spheroids were transferred in non-treated 96-well plates
for transfection with fluorescently labeled SSOs: [ON705]-F com-
plexed with JetMessenger and S20-[ON705]-F. Cell nuclei were
stained with Hoechst 33258 (Sigma-Aldrich). After fixation in 4%
paraformaldehyde, transfected spheroids were mounted with Kaiser’s
glycerol gelatine (Millipore, Darmstadt, Germany). Pictures were
taken with a Leica TSC SPE confocal microscope (Leica Microsys-
tems, Mannheim, Germany).
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Figure S1. SDS-PAGE of Sn-SSOs. 400 pmoles of single strand oligospermine conjugates were loaded 

on 4-12% Bis-Tris precast gels (CriterionTM XT, Bio-Rad). Electrophoresis was carried out in XT-MES 

denaturing running buffer during 2 h at 75 V. Precast gels were then incubated in ethidium bromide (0.5 

µg/mL) and analyzed. Lane 1, [0N705]. Lane2-5, Sn-[ON705] (n = 5, 15, 20, 30). Lane 6, S15-[ON705scr]. 

Lane 7, S15-[ON119]. Lane 8, [ON705]-F. Lane 9, S20-[ON705]-F. Lane 10, S15-[ON705mis]. 
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Figure S2. Delivery of fluorescently labelled SSOs in 3D culture of HeLa pLuc/705 cells analyzed by 

confocal microscopy. To 2-day old HeLa pLuc/705 spheroids in serum-containing DMEM (10%) was 

added [ON705]-F complexed with JM (JetMessengerTM) or S20-[ON705]-F. Images were taken after 2 h 

and 30 h. a) Fluorescein (488 nm), b) Nuclei (405 nm). 

 
 



Figure S3. MALDI-TOF spectrum of [ON705]

Figure S4. MALDI-TOF spectrum of S5-[ON705]
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Figure S5. MALDI-TOF spectrum of S15-[ON705]

Figure S6. MALDI-TOF spectrum of S20-[ON705]
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Figure S7. MALDI-TOF spectrum of S20-[ON705mis]

Figure S8. MALDI-TOF spectrum of S20-[ON705]-F
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Figure S9. MALDI-TOF spectrum of [ON705]-F

Figure S10. MALDI-TOF spectrum of [ON705]-F (extended)
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