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Supplementary Methods 

Regulated Metabolic Branch Analysis (RuMBA) 

Metabolic regulation is a rapid means to redirect flux in a metabolic network, while transcriptional 

regulation and regulation of enzyme abundance are processes that act on a longer time scale. 

Therefore, it is expected that following a shift to a new growth condition, allosteric regulation and 

post-translational enzyme modification will redirect flux at important branch points. The rationale 

for this response is that, in vivo, there are regular fluctuations in the cellular microenvironment and 

frequent environmental changes (1–3). It would be advantageous for the cell to have a means to 

rapidly regulate metabolic pathway usage using reversible mechanisms while slower and more 

permanent regulatory mechanisms are being activated. The relative costs and timescale of a few 

types of regulation are given in SI Appendix, Fig. S1. 

Two methods have been developed to predict which enzymes will require significant changes in 

activity level following a change in carbon substrate for shorter and longer timescales, called these 

RuMBA and FSS, respectively. Code, compatible with the COBRA Toolbox is provided at 

doi:10.7303/syn15667323. 
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FSS has been used previously (4–6).  Another method similar to FSS has also been published, 

showing its conceptual accuracy (7). A brief discussion of FSS provides a conceptual basis to 

understand RuMBA. Constraint-based modeling, the framework upon which both RuMBA and FSS 

are based, uses the metabolic network topology to define a space of possible phenotypes by adding 

a series of known biologically-relevant governing constraints (e.g., uptake rates for media 

components, by-product secretion rates, growth rates, etc.) (8, 9). This space of possible 

phenotypes represents all possible combinations of metabolic steady-state pathway usage that a 

cell can use in the given growth conditions. Assuming the constraints are accurate, the actual steady 

state flux distribution (or pathway usage) should be within the in silico solution space (SI Appendix, 

Fig. S2.a). The range and distribution of flux through each reaction within these solution spaces are 

dependent on the constraints, such as reaction thermodynamics, metabolite uptake rates, etc. 

Therefore, the space is condition-specific, i.e., the various dimensions of the space might move 

when the model is simulated under two different growth conditions. For example, as shown in SI 

Appendix, Fig. S2.b-c, the flux may be significantly higher in the second growth condition (reaction 

2), or show no significant change between the two growth conditions (reaction 1). 

The predicted changes in pathway usage from FSS represent the changes that lead to the optimal 

pathway usage in different growth conditions. However, to achieve this optimality, the activity of 

numerous enzymes must be fine-tuned, and often, many proteins need to be up- or down-regulated 

to meet this requirement. These adjustments require significant changes in transcription and 

translation, which can take a generation or two for entire pathways. On a shorter time scale, when 

changes in enzyme level are either less efficient (e.g., protein degradation) and/or not feasible to 

obtain, a more reasonable adaptive response involves a temporary suppression of the activity of an 

enzyme to avoid sending metabolites down less efficient pathways, or to boost the activity of 

present enzymes that will be needed in the new growth conditions. Thus, regulation at metabolic 

branch-points becomes of great importance, so that metabolites can be shuttled down the most 

efficient pathways. 

RuMBA leverages this idea to compute the shift of the solution space for short-time scale changes in 

metabolic pathway activity at metabolic branch points. To do this, Markov chain Monte Carlo 

sampling of the metabolic solution space is used to obtain a uniformly distributed assessment of 

feasible flux values each reaction can have at steady state. To assess each branch point metabolite 

in the network, all reactions that can produce or consume it are identified. For example, aconitase 

produces isocitrate, while isocitrate dehydrogenase and isocitrate lyase both consume it (SI 

Appendix, Fig. S3a). Flux through each branch point metabolite in the network with a connectivity 

less than 30 is assessed. For each sample point in the solution space (SI Appendix, Fig. S3b), all 

incoming fluxes are summed up, as are all outgoing fluxes. Then, for each ith reaction, the fraction 

of total flux through the metabolite, vmet, that is contributed by the reaction of interest, is computed 

as follows: 
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where vi is the flux through reaction i and fi is the fraction of all flux passing through the metabolite 

of interest, that is passing through reaction i. Since this is done for many random feasible sets of 

flux values through all of the reactions at the branch point, a distribution of fi fractions is computed 

for each reaction for the two growth conditions of interest (SI Appendix, Fig. S3a). Therefore, a p-

value can be computed that measures the overlap of the fi values for that reaction under the given 

growth condition, thus quantifying how significantly the flux changes from one enzyme to another 

when environmental conditions change (SI Appendix, Fig. S3b-d). The function of a phosphorylation 

event can subsequently be predicted if the change in phosphorylation is also known (SI Appendix, 

Fig. S4a). 

A small fraction of reactions can show miniscule, but significant changes due mostly to slight 

differences in predicted growth rates. Thus, the list of the regulated reactions and their associated 

enzymes is filtered to focus on the more significant results. Reactions that change their predicted 

magnitude of flux by less than 50% are filtered out from the list of reactions requiring regulation. 

This was done by simulating changes in reaction flux occurring in a shift between two conditions, as 

done previously (4, 5). 

Once the flux values were normalized, the changes of fluxes between two conditions were 

determined as previously described (5). Briefly, calls on differential reaction activity were made 

when the distributions of feasible flux states (obtained from MCMC sampling) under two different 

conditions did not significantly overlap. For each metabolic reaction, a p-value was obtained by 

computing the probability of finding a flux value for a reaction in one condition that is equal to or 

more extreme than a given flux value in the second condition. Significance of p-values was adjusted 

for multiple hypotheses (FDR = 0.01). When the magnitude of flux changed less than 50% of the 

initial flux magnitude, these reactions were filtered out from the set of predicted sites of regulation 

and excluded from further analysis. However, results were robust for a wide range of filter levels. 

To test if this method can predict the function of PTMs, three E. coli enzymes were identified from 

the literature, that undergo differential protein phosphorylation between growth on glucose and 

acetate. RuMBA was employed to predict the effect of phosphorylation on these three enzymes (SI 

Appendix, Fig. S4a). At late log phase, enolase has been shown to have seven times higher 

phosphorylation when E. coli was grown on glucose than when grown on acetate (10). In silico, 

RuMBA predicts that enolase will have a reduced flux level on acetate. Therefore, one may predict 

that the phosphorylation event would activate its forward flux. It was determined that when 

treated with acid phosphatase, enolase was inhibited (10). Similarly, RuMBA predicts that on 

acetate, the flux through isocitrate dehydrogenase (ICDHyr) decreases, while the flux through 

isocitrate lyase (ICL) should increase. Experimentally, the phosphorylation of ICDHyr increases and 

may increase for ICL (phosphorylation is high when grown on acetate, but has not been rigorously 

tested on glucose). Thus, it is predicted that phosphorylation of ICDHyr inhibits enzyme activity, 

while it activates ICL. Both of these predictions are consistent with published data (11, 12). 

Markov chain Monte Carlo sampling 

The distribution of feasible fluxes for each reaction in the models used here were determined using 

Markov chain Monte Carlo (MCMC) sampling (13), as previously described (5, 14), and was 
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implemented with the COBRA Toolbox v2.0 (15). Uptake rates were used to constrain the models as 

detailed above. To model more realistic growth conditions (16), suboptimal growth was modeled. 

Specifically, the biomass objective function (a proxy for growth rate) was provided a lower bound 

of 90% of the optimal growth rate as computed by flux balance analysis (17). Thus, the sampled flux 

distributions represented sub-optimal flux-distributions, while still modeling fluxes relevant to cell 

growth and maintenance. 

MCMC sampling was used to simulate thousands of feasible flux distributions (referred to here as 

“points”) using the artificially centered hit-and-run algorithm with slight modifications, as 

described previously (5, 14). Briefly, a set of non-uniform points was generated. Each point was 

subsequently moved in random directions, while remaining within the feasible flux space. To do 

this, a random direction is first chosen. Next, the limit for how far the point can travel in the 

randomly-chosen direction is calculated. Lastly, a new random point on this line is selected. This 

process is repeated until the set of points approaches a uniform sample of the solution space, as 

measured using the mixed fraction metric, which measures uniformity by measuring how many of 

the sample points pass through the middle line of the solution space (18). A mixed fraction of 

approximately 0.50 was obtained, suggesting that the space of all possible flux distributions is 

nearly uniformly sampled. 

The distributions of sampled fluxes for each reaction were compared between two media 

conditions. First, flux magnitudes were normalized between each pair of media conditions (media A 

and B). To do this, a ratio of total flux through the metabolic network was computed and used to 

normalize each sample point. To compute this ratio, each sample point was taken and the 

magnitudes of all n non-loop-associated reaction fluxes were summed to acquire a value for the 

total network flux. For both media conditions, the median total network flux was taken and used to 

normalize each reaction flux for all sample points in medium B, as follows: 

 

where v*i,j,B, is the normalized flux through reaction i in sample point j under media condition B, 

obtained after multiplying the sampled flux vi,j,B, by the ratio of the median total flux magnitude for 

the reaction for all p sample points under growth on medium A to the median total flux magnitude 

for the reaction for all p sample points under growth on medium B. Code for RuMBA is available in 

the COBRA Toolbox 3.0 (19) and at doi:10.7303/syn15667323. 

Metabolic model parameterization 

The genome-scale metabolic model of E. coli was used with published uptake and secretion rates 

(20). A few irreversible reactions were removed because they had reversible duplicates in the 

model. These include: GLCtexi, URIt2pp, URAt2pp, THMDt2pp, KAT1, INSt2pp, INDOLEt2pp, 

ICHORSi, CYTDt2pp, and ADNt2pp. 

To identify all possible simulated media formulations in E. coli (SI Appendix, Dataset S4), glucose 

uptake was set to zero in the model, and flux balance analysis was used to find which of all other 
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carbon sources could support growth in M9 minimal media. For each of the 174 growth-supporting 

carbon sources, an uptake rate was set, which was consistent with uptake rate of glucose in the 

published model (i.e., 8 mmol gDW-1 hr-1), normalized by the number of carbons in the metabolite. 

For example, since glucose has 6 carbons, the uptake rate of glycerol, with 3 carbons, was set as 16 

mmol gDW-1 hr-1, which is similar to the actual reported glycerol uptake rate in M9 minimal media 

(21). While this was used to standardize the media conditions, variations in carbon uptake rates did 

not significantly impact the results presented in this work (SI Appendix, Fig. S16). 

Clustering of reaction changes 

An m x n matrix with m gene-reactions pairs (predicted to be regulated in at least one media shift; 

m = 1814) and n total media shifts (n = 15,051) was made, detailing in which shifts each gene-

reaction pair is predicted to require regulation (FDR < 0.01). All gene-reaction pairs with at least 

one significantly regulated enzyme were subjected to k-means clustering (k = 3). Clustering was 

repeated 100 times with different seed values to find consensus clusters. 

Determination of expressed genes 

For the analysis in Figure 2b, expression profiles were obtained from previous studies (22–25). The 

Affymetrix CEL files were normalized using GCRMA, implemented in R. Genes were considered not 

expressed if they did not have a mean expression level across biological replicates that were 

significantly higher than the five highest-expression non-E. coli negative control probe sets on the 

array (1-tail t-test; FDR = 0.05). The sets of expressed genes from each study were used to estimate 

the number of expressed proteins. 

Gene expression profiling on glucose and acetate minimal media 

Gene expression profiling data were generated from cultures of exponentially-growing E. coli under 

aerobic conditions on glucose, or acetate M9 minimal media. E. coli K12 MG1655 was grown and 

expression profiled on 0.2% (w/v) glucose M9 minimal media or 0.2% (w/v) acetate M9 minimal 

media at 37°C. Expression profiling was done using Affymetrix E. coli Genome 2 Arrays. Each 

experimental condition was tested in triplicate in the respective carbon sources using independent 

cultures and processed following the manufacturer-recommended protocols. Cultures were grown 

to mid-exponential growth phase aerobically (OD600 = 0.3) in minimal media, supplemented with 

the appropriate carbon source. Three ml of culture was added to 2 volumes of RNAprotect Bacteria 

Reagent (Qiagen) and total RNA was then isolated using RNeasy columns (Qiagen) with DNase I 

treatment. cDNA synthesis, fragmentation, end-terminus biotin labeling, and array hybridization 

were performed as recommended by the Affymetrix standard protocol. 

The Affymetrix CEL files were normalized using GCRMA (version 2.20.0) implemented in R (version 

2.11.1). Genes were considered not expressed if their median expression level across replicates was 

lower than the median value of intergenic (IG) probes. Genes were subsequently removed from 

further analysis if they were not expressed in any conditions. Differentially expressed genes were 

determined using the Serial Analysis of Microarrays (SAM) method followed by false discovery rate 

(FDR) P-value adjustment (FDR = 0.01). Data can be acquired from NCBI/GEO, Accession number 

GSE108871. 
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Residue conservation analysis 

All protein sequences of 1057 prokaryotic species were acquired from the KEGG database (Release 

58.0). Homologs to all E. coli proteins containing at least one known PTM were identified by using 

the Smith-Waterman algorithm. SSEARCH35 of the FASTA suite (26) was used to determine a PID 

conservation for each post-translationally modified iAF1260 gene in all other genomes. The flags 

used in SSEARCH35 were ‘–m9 –E 1 –q –H'. When more than two proteins in one species had the 

same percent identity, the protein with the lowest e-value was chosen. In the rare case in which 

multiple proteins from a species had identical % identity scores and e-values, all qualifying proteins 

were included. 

Each metabolic E. coli protein with a PTM (n=109) was then grouped with its homologs (median 

number of homologs for a protein = 911, 25th percentile = 706, 75th percentile = 1000), and the 

pairwise Smith Waterman alignment between the individual E. coli protein and each of the 

homologs was used to quantify the conservation of post-translationally modified residues, as 

calculated (i.e., the percent of pairwise comparisons where the aligned residue was identical in the 

homolog).  Conservation of non-modified residues for these amino acids was calculated in an 

identical fashion. Relative conservation of the PTM residues on each protein was calculated by 

comparing their conservation to the conservation of non-PTM residues on the same protein, and a 

statistically significant enrichment of higher conservation was seen for PTM sites on proteins that 

were predicted to be regulated by RuMBA. From this we found that PTM residues on RuMBA-

regulated proteins are highly conserved across the 1057 prokaryotic genomes (compared to non-

modified S/T/Y/K residues in the same proteins, p = 0.0041; rank-sum test), suggesting that many 

PTMs are biologically important and therefore conserved. 

Salt bridge prediction and measurement of distance from PTMs to active site 

residues 

Protein structures for modified enzymes were obtained from the Protein Data Bank. Potential salt 

bridges that could be disrupted by a PTM were determined by finding all residues within 4Å of a 

lysine or serine that could form a salt bridge. Potential new salt bridges were found by searching for 

basic residues within 8Å of a phosphorylated serine, threonine, or tyrosine. Distances between 

modified residues and all other amino acids were calculated between centroids of each amino acid. 

These were used to compare distance between random residues and modified residues with 

distances between modified residues and functional residues. Functional residues are defined as 

active sites on proteins, substrate binding sites, and residues which modulate enzyme activity if 

replaced, and were all acquired from Ecocyc, Uniprot, and the literature. An analysis of the PTMs on 

62 proteins with available crystallographic structures (SI Appendix, Dataset S3) showed many 

PTMs were within 10Å of catalytic site residues (SI Appendix, Fig. S4d-e), and more than half of the 

62 metabolic proteins have PTMs that potentially disrupt or create salt bridging interactions (SI 

Appendix, Dataset S3).  

Mutant Growth assays 

Wild type E. coli and several mutants missing kinases, phosphatases, or acetyltransferases (ΔaceK, 

ΔcobB, ΔpphA, ΔyeaG, ΔyfiQ, ΔyiaC, ΔyihE, and ΔynbD) were obtained from the Keio collection (27). 

Gene deletion was verified by PCR of the scar region, and strains were subsequently grown 
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overnight M9 media, supplemented in 2g/L glucose, L-lactate, or inosine in a seeding culture. An 

aliquot of culture was returned to fresh media such that the OD600 was ~0.03. Cultures were 

subsequently grown at 37°C with constant stirring. Turbidity was periodically measured at OD600 

as a proxy for cell count, and growth rates were computed from OD measurements at mid-

exponential phase. 

Strains and culture condition for MAGE 

The EcNR2 strain (28) used here was a mutant of WT MG1655 E. coli in which the λ prophage with 

the bla gene was introduced via P1 transduction at the bioA/bioB gene locus and selected on 

ampicillin. In the strain, mutS was also replaced with a chloramphenicol resistance gene (cmR 

cassette). To enhance electroporation efficiency, EcNR2 was grown in LB-Lennox medium, a low 

salt LB-min medium with 10 g tryptone, 5 g yeast extract, 5 g NaCl, dissolved in 1 L ddH2O, with 

50 µg/ml carbenicillin. For growth screens following MAGE, M9 minimal media was used (Teknova, 

catalog #M8005), supplemented with 0.1 μM biotin and carbon sources of 1.77 g/L glucose, 4 g/L 

NaAc*3H2O, or 1.58 g/L inosine. For growth selection, Azure media was also acquired from 

Teknova (catalog #3H5000) and supplemented with 1.77 g/L glucose. LB-Lennox was used for all 

LB experiments. 

Oligonucleotide design for MAGE 

A panel of phosphorylation and acetylation sites were identified from previous studies (29–31), and 

codons for the phosphorylation sites on serine and threonine or lysine acetylation were changed. 

Serine and threonine were changed to glutamate to mimic the phosphorylation and an asparagine 

to mimic the unphosphorylated residue. Lysine was converted to glutamine to mimic the acetylated 

state and arginine to inhibit acetylation. Codons were selected to require at least two point 

mutations to the gene sequence in order to ensure that subsequent sequencing of the wild-type and 

mutant forms would not be masked by sequencing errors. All 90-mer MAGE oligonucleotide 

sequences are provided for the subset of genes studied (SI Appendix, Datasets S5-S6). MAGE 

oligonucleotides were synthesized by Integrated DNA Technologies with standard purification. 

Oligos were designed to target the lagging strand and to minimize secondary structure. MAGE 

Oligonucleotides also contained four phosphorothioate bases at the 5’ end to enhance efficiency as 

described previously (28). Additional primers were designed to validate a subset of the targets 

using MASC-PCR (SI Appendix, Dataset S9). Two sets of primers were designed to enable a two-step 

amplification and library preparation for amplicon sequencing and barcoding of libraries for each 

sample (SI Appendix, Dataset S10-11). Specifically, the first set of primers were designed to amplify 

99 regions containing all mutation sites targeted in our screen. At the 5’ end, each forward primer 

also contained the sequence 5’-CCTACACGACGCTCTTCCGATCTNNNN-3’ and each reverse primer 

contained the sequence 5’-GAGTTCAGACGTGTGCTCTTCCGATCT-3’. The second set of primers were 

designed to add the remaining sequenced needed for barcoding and next-generation sequencing. 

MAGE 

MAGE was conducted as previously described (28). Specifically, cultures were initially inoculated 

with EcNR2 cells into 3 mL of LB-Lennox medium, and cells were grown in sterilized 10-ml 

polystyrene tubes at 30℃ in a rotating incubator under gentle agitation until they reached an OD of 

0.4 at 600nm. Cells were then heat shocked at 42℃ in a shaking water bath (300 rpm) for 15 
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minutes. The cells were then chilled at 4℃ to make them electrocompetent. One mL of cells was 

subsequently gently washed through several rounds of centrifugation, buffer exchanges with ice-

cold ddH2O, and resuspension. The washed cell suspension was then mixed with 50μL single-

stranded MAGE oligos (total concentration of 10μM), which were then electroporated into cells in a 

1 mm gap conductive cuvette with the following setup: 1.8 kV, 200 Ω, and 25 μF. The cells were 

then resuspended with LB-Lennox media in preparation for further rounds of MAGE. Four rounds 

of MAGE were conducted. Multiplex allele-specific colony PCR (MASC-PCR) was used as previously 

described (32) to verify mutations and to identify specific mutants for phenotyping. 

Screen for PTM mutation fitness 

We used pooled screens to assess any changes in cell fitness for each of the 268 genetic changes 

across multiple media conditions (e.g., LB, Azure defined rich + glucose, Glucose M9, Acetate M9, 

and Inosine M9) at 30℃ as well as for two oscillating conditions (Azure and glucose M9, or glucose 

and acetate M9). The screens were sampled at 2-4 time points (SI Appendix, Dataset S12) and allele 

frequencies were quantified by amplifying the genes with PTM sites from the genomic DNA and 

sequencing the amplicons with next-generation sequencing (NGS). To obtain the final pool with all 

MAGE mutants, MAGE was conducted in 5 batches, each with approximately 46 different MAGE 

oligos. MAGE oligos were grouped to ensure that no two oligos targeted within 100 base pairs of 

each other, to avoid competition between oligos in any one pool. The batches of mutants were 

combined and subjected to phenotypic selections. 

Measurements of the allele frequency were made at three hours after electroporation and pooling 

and overnight storage at 4°C. Cells pellets were subsequently washed with the medium used in the 

screen. Cells were maintained at 30°C at exponential growth by serial dilution at regular intervals 

(about every three doublings; see SI Appendix, Dataset S12 for values). Aliquots were saved at each 

dilution, and time points were selected for subsequent sequencing and allele frequency analysis at 

each PTM site.  

In addition, oscillatory experiments were designed to test the fitness of the mutants when subjected 

to periodic changes in the nutritional environment. The oscillating conditions tested here were (i) 

glucose M9 and glucose-supplemented Azure chemically defined rich media and (ii) glucose M9 and 

acetate M9 minimal media. The experimental details are as follow. After the initial expansion of 

cells after the final electroporation and pooling of MAGE batches, the 24 hour time point cells were 

washed with the starting medium for the oscillation and allowed to grow to an OD of 0.3 at 600nm. 

At that point, the cell pellet was washed with the second medium and grown therein. Media were 

then periodically alternated after every 1-2 doublings (see SI Appendix, Dataset S12 for details).  

More data on doubling times and the results from MAGE screen are found in SI Appendix, Datasets 

S12-16. 

Sequencing, alignment and quantification of variants 

Cells were pelleted and DNA was isolated with the MasterPure DNA purification kit (Epicentre), and 

quantified using Qubit Fluorometric quantification. Sequencing libraries were prepared as follows. 

Genomic regions targeted by the MAGE oligos were amplified by PCR with KAPA HiFi HotStart DNA 

polymerase and primers in SI Appendix, Dataset S10. Amplicons were gel-quantified using ImageJ. 
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For each sample, amplicons were pooled and a second set of PCR primers added barcodes to each 

sample (SI Appendix, Dataset S11). Samples were gel purified, Qubit quantified, and paired-end 

sequenced on a HiSeq 2500. 

We developed a custom DNA sequence aligner tailored to our MAGE sequencing data to map the 

reads to the genome and to quantify the MAGE mutants. This was done with our algorithm called K-

meR-based Alignment for Multiple mismatchEs per Read (KRAMER; see code at 

doi:10.7303/syn15667323). This Python-based DNA sequence aligner allows the alignment of 

sequencing reads with high mismatch frequency to be aligned to a predetermined set of genomic 

loci. The aligner takes in these loci as input and aligns k-mers derived from each sequencing read. 

That is, each sequencing read is broken into a set of k-mers of length k (default = 8). Of these k-

mers, m (default = 8) must map to a particular locus in order for that read to be mapped. The reads 

can be broken into overlapping k-mers by specifying o (default = no overlap).  For the results 

shown here, values for k and m were varied to provide the best results; k=8 and m=8 were chosen 

after sensitivity analysis 

After assigning a locus to each sequencing read, each read is compared to the wild type locus to 

determine if a particular target site in the locus perfectly matches a site in the read. Specifically, in 

this study, we used MAGE to change at least one codon in each gene. Thus, we searched for perfect 

matches surrounding the site of the modified codon, and then also looked to see if the site of the 

modification had the WT codon (Ser,Thr, or Lys), the codon for the PTM mimic (Glu or Gln), or the 

codon for the amino acid that cannot be post-translationally modified (Asp or Arg).  The algorithm 

uses a parameter called targetsize t (default = 9), which is specified to be the length of the stretch of 

target DNA that will be matched; in this implementation, t is an odd number from 5 to 43 (e.g., t = 5 

would have the target codon with one flanking nucleotide on both ends). To aid in quality control 

assessment, reads that map to the E. coli genome but that do not map to the targeted loci are saved 

to a separate file, thus allowing further analysis and identification of potential contaminants. 

Similarly, reads that do not map to the E. coli genome or MAGE target sites are written to a file for 

quality assessment. The implementation provided in this work allows for other optional arguments: 

-h, --help                       display arguments 

-k K                                       Length of k-mer (default = 8) 

-m NUMBERMATCHES          How many k-mers must align for read to map (default = 8) 

-t TARGETSIZE                          Size of mutation region to map (default = 9) 

-o OVERLAP                                Should k-mers overlap within a read (default = n) 

-d DIRECTORY                           Directory of fastqfiles (default = cwd) 

-l LOGFILE                    Creates a logfile with runtime information 

-c NUMCORES                            Number of cores (default = 4) 

After quantifying the allele frequency for each sample, the allele frequencies were median-

normalized, and fold change in frequency was determined by log transforming the allele 

frequencies and after subtracting the mean frequencies of the control samples (hour 3, pre and post 

incubation at 4°C). 
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Identification of covariates modulating the impact of loss of PTM switching 

We first identified several biological features for each experiment, gene, and modification site for 

the MAGE screens. These included the following phenotypic features for experimental samples: 1) 

whether the experiment was a steady growth condition or oscillating, 2) if the media included 

glucose or an alternative poor carbon substrate, 3) if the media was M9 minimal media or a rich 

medium, and 4) the number of doublings seen by the sample after the start of the time course. In 

addition, we considered, for each PTM, if the modification was phosphorylation or acetylation, and 

if the modification was on a gene that is predicted to be essential for the given growth condition, 

based on flux balance analysis simulations (9). 

GEE analysis of MAGE screen data 

To identify features that best explained the variation in phenotypic impacts of the MAGE mutations, 

the generalized estimating equation was used with Markov correlation structure using the 

GEEQBOX package in MATLAB (33). This model identified features that best explained the variation 

in phenotypic impacts of the MAGE mutations. This model was used to control for the multiple 

measurements of each experiment while controlling for variation in number of doublings across the 

samples. 

A univariate pre-screening was conducted to assess the contribution of each experimental and 

biological feature. Since each sample was measured at multiple time points, the generalized 

estimating equation was used with the Markov correlation structure (34) to account for correlation 

between time points. Biological features that were not significant in the univariate pre-screening 

were eliminated from further analysis. Significant variables were subsequently assessed for 

multicollinearity to eliminate redundant variables. Following the pre-screening, a few features 

were identified as providing a significant contribution to fitness of mutants in the screen. These 

included 1) whether the cells were grown in a single growth condition or oscillating media, 2) 

whether the media contained glucose or a poor carbon source, 3) whether the media was rich or 

minimal media, 4) if the PTMs were on essential genes for the given growth condition, 5) the 

proximity of the PTM to active site residues, and 6) whether the PTM is predicted to modulate salt 

bridges. The significant media conditions were multicollinear and two models were analyzed 

including only one of the two correlating features. In the final models, analyses comparing poor vs. 

rich carbon sources and minimal vs. complex media were correlated and therefore were analyzed 

in separate models. 

Molecular Dynamics Simulations 

Classical molecular dynamics simulations were performed starting from the crystal structure of all 

proteins. The individual mutations were manually changed according to the post-translational 

modification of interest. Parameters for the phosphorylated amino acids were based on the 

parametrization of Homeyer et al. (35). Using PROPKA (36–38) we estimated that all of the residues 

adopt the default protonation states. All other non-standard parameters (i.e. for substrates) were 

calculated per procedures used for the generation of the parm99 parameters and recommended in 

the AMBER manual. RESP (39–41) charges were generated by performing a three stage RESP fit on 

two HF/6-31G* optimized structures. Simulations were performed for both substrate-bound and 

substrate-free states. Each structure was solvated with TIP3P water and, depending on the total 
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charge of the system, either 14, 7, 20, Na+ ions, achieved system neutrality, (for apo serine 

hydroxymethyltransferase (GlyA), transaldolase and enolase, respectively), in an orthothrombic 

periodic box (dimensions for GlyA: 94 × 95 × 114 Å; dimensions for transaldolase: 89 x 74 x 75 Å; 

dimensions for enolase: 110 x 101 x 89 Å). The particle mesh Ewald (PME) method (42, 43), with a 

nonbonded cutoff of 12 Å, was used with periodic boundary conditions and the Langevin piston 

Nosé–Hoover method (44–46) to ensure constant pressure and temperature conditions. For each 

system, GPU-enabled PMEMD molecular dynamics was performed (47), using the AMBER 99sb 

force field (48, 49) for 50-120 ns per protein state (i.e., substrate-bound versus substrate-free in 

wild-type or modified variant proteins).  
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Supplementary Analysis 
Comparison of competitive and allosteric regulation 

The RuMBA algorithm aims to identify the enzymes that must be suppressed or activated to divert 

flux from one pathway to another when the environment shifts from one primary nutrient to a 

second. Decades of detailed biochemical research has shown that this shift of flux can be achieved 

through the regulation of metabolic enzymes by small metabolites. Thus, RuMBA should be able to 

predict the enzymes that must be regulated to adapt quickly to common metabolic shifts. Consistent 

with this hypothesis, when RuMBA is applied to study the glucose-acetate diauxy, the enzymes that 

are predicted to be regulated for the shift are significantly enriched in known metabolite-mediated 

regulation. Indeed, RuMBA predicts twice as many known metabolite-mediated regulated enzymes 

than expected by chance (p = 6.5 x 10-10; SI Appendix, Fig. S3g). This provides an additional 

validation of the algorithm. Here we further test the ability for RuMBA to capture more nuanced 

differences between modes of metabolite-mediated regulation. First, we describe the differences 

between competitive and allosteric regulation.  

There are two fundamental differences between competitive inhibition and allosteric regulation. 

First, as its name implies, competitive inhibition only inhibits, while allosteric regulation can 

activate or repress an enzymatic activity. Second in competitive inhibition, the Vmax (i.e., the 

maximum reaction rate) is not affected. Rather the dissociation constant, Kd, increases (i.e., there is 

a decrease in the affinity of the primary substrate to the enzyme). Thus, in a network in which flux 

is going through the network, a competitive inhibitor might weakly divert flux, but the inhibition 

will likely increase substrate concentration which will partially or completely overcome the 

inhibition eventually. Therefore, competitive inhibition is more effective at stabilizing flux through 

an enzyme. 

In allosteric regulation, on the other hand, the binding of an effector molecule occurs at a site that 

the substrate does not bind. This binding event distally modifies the conformation of the enzyme 

active site. Thus, the lack of competition from the normal substrate for the binding site of the 

allosteric makes it such that the Vmax significantly changes (i.e., the maximum reaction rate either 

increases or decreases), and the Km can also change. 

For these reasons allosteric regulation is important in feedback and feedforward regulation. 

Moreover, since a simple increase in the substrate concentration cannot overcome the regulation, it 

is a far better mechanism than competitive regulation in diverting flux to a new steady state flux 

distribution when the cell experiences a change in its nutritional environment. Therefore, 

competitive inhibition likely serves more often as a mechanism to stabilize a current steady state, 

while allosteric regulation may play more of an important role in diverting flux. 

Given the nature of how allosteric regulation differs from competitive inhibition in that allosteric 

regulation is better suited for diverting flux, we anticipate that RuMBA will be better at predicting 

enzymes that undergo allosteric regulation, as opposed to competitive inhibition.  Consistent with 

this, as described in greater detail in the subsequent section, when RuMBA is applied to study the 

glucose-acetate diauxic shift (SI Appendix, Fig. S3), its predicted regulated branch points includes 
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four times as many allosterically-regulated reactions than expected by chance (p = 2 x 10-8). The 

results are also enriched in reactions that are competitively regulated, to a lesser degree (twice as 

many as expected, p = 3 x 10-3). Thus, this provides further support that RuMBA is able to identify 

the enzymes that would need to be regulated to divert flux from one pathway to another following a 

sudden change in the nutritional environment.  

Analysis of glucose-acetate diauxie 

In RuMBA, metabolic network flux is simulated using Markov Chain Monte Carlo (MCMC) sampling 

(13) before and after a change in media. Predicted flux is then analyzed to identify enzymes that, if 

regulated, could rapidly force flux from one pathway to another to achieve the steady-state flux for 

the new nutritional environment. This method predicts immediate regulation of metabolic enzymes 

that could rapidly reroutes flux between pathways, as opposed to slower modes of regulation that 

would aim to change the topology of entire pathways (e.g., transcriptional regulation and protein 

degradation).  

Using RuMBA, we first studied E. coli’s canonical diauxic shift from glucose to acetate metabolism. 

As E. coli grows on glucose, acetate and other fermentation products are secreted; as glucose is 

exhausted, the cells begin metabolizing acetate (50). Under this shift, branch-point enzymes are 

regulated to direct flux toward pathways that increase cell fitness. A key branch point is the split 

between the TCA cycle and the glyoxylate shunt (50, 51), where isocitrate is consumed by isocitrate 

dehydrogenase (ICDH) to synthesize alpha-ketoglutarate or isocitrate lyase (ICL) to synthesize 

glyoxylate (SI Appendix, Fig. S3a). Our model predicts a significant diversion of flux from ICDH to 

ICL during the shift from glucose to acetate metabolism, suggesting that this branch point is likely 

regulated (p << 1x10-5; SI Appendix, Fig. S3e). Consistent with RuMBA predictions, ICDH is used 

predominantly during glucose metabolism, while growth on acetate uses ICL to support 

anaplerosis. In addition to ICDH and ICL, RuMBA predicts that 131 additional proteins could be 

regulated to aid in the diauxic shift (SI Appendix, Dataset S1). We further compared RuMBA 

predictions to 1219 experimentally-validated cases in which metabolites regulate enzymes in E. coli 

(SI Appendix, Dataset S2). Most enzymes predicted to require regulation are regulated allosterically 

by metabolites (SI Appendix, Fig. S3g).  

Characterization of growth conditions associated with PTM-based regulation 

K-means clustering of in silico regulated enzymes 

All reactions with predicted regulation that also had known PTMs were clustered (k = 4) to find 

groups of reactions with similar regulation. For each of these clusters, the 15,051 shifts were also 

clustered (k = 5) to identify groups of environmental shifts that were most similar in which 

reactions they regulate. All k-means clustering was replicated 100 times to identify consensus 

clusters (SI Appendix, Fig. S7). 

Reaction cluster 1 accounts for regulation of glycolysis. The environmental shifts clustered into 

groups that differed in how glycolysis is used and therefore must be regulated. Reaction cluster 2 

accounts for regulation necessary to balance flux between the glyoxylate shunt and the TCA cycle 
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(i.e., primarily between the metabolism of fermentation products and other carbon sources). The 

3rd reaction cluster is more sparse and shows some more complex features. The primary feature is 

that two of the clusters show a clear difference in model-predicted growth rate, following a 

normalization of the total flux through the metabolic network. Growth conditions enriched in the 

1st and 5th environmental clusters show considerably lower growth rates than on the condition 

they are shifted to (90% and 87% of the shifts, respectively).  Several of the substrates in the 

conditions showing much lower growth are known to decrease the growth of E. coli K12 (52). 

An assessment of aerobic vs. anaerobic shifts 

PTMs are particularly enriched among most changes in media carbon source. Are 

aerobic/anaerobic shifts subject to the same level of post-translational regulation? To test this we 

simulated growth under 135 minimal media conditions that could sustain in silico growth under 

micro-aerobic conditions (O2 uptake less than 0.001 mmol gDW-1 hr-1). Shifts between these and 

their aerobic analogues were computed, and regulation was predicted as described above. 

Surprisingly, only 22% of the aerobic/anaerobic shifts were enriched in PTMs (p < 0.01). 

Significantly enriched aerobic/anaerobic shifts are dominant among minimal media with 

nucleotides or common glycolytic sugars, such as fructose and glucose. 

An assessment of reactions that are never predicted to be regulated 

According to RuMBA, 623 reactions are reported to never need regulation across all changes in 

nutritional environment. A comprehensive analysis was done to detail why these reactions are 

predicted to never require regulation. We find that 2% are reactions that are only connected to 

metabolites that are connected to more than 30 reactions and are therefore filtered from this work. 

Furthermore, 10% are reactions that participate in loops and 90% may never participate in flux 

splits (e.g., they mainly occur in linear pathways). 

Correlation of metabolite structural similarity with PTM enrichment 

There is a high level of enrichment of PTMs in most nutritional environment shifts modeled in this 

study. However, the question remains as if some of the shifts fail to show enrichment because the 

primary carbon substrates in the media are similar, thereby requiring flux diversion at few branch 

points. To test this, pairwise Tanimoto coefficients were computed for 154 of the 174 consumable 

carbon substrates in the E. coli iAF1260 model. The remaining 20 metabolites did not have 

appropriate identifiers to unambiguously identify a metabolite structure. Pairwise Tanimoto 

coefficients were calculated using the software tool Pipeline Pilot (Accelrys Software Inc.) with the 

FCFP_6 fingerprint descriptor. A coefficient of zero suggests that the two primary carbon substrates 

are completely different, while a coefficient of 1 suggests that they have the same structure. 

There was a significant correlation between the Tanimoto coefficients of the primary carbon 

substrates in each shift and the PTM enrichment p-value (Rs = 0.18; p = 1x10-178). Subsequently, the 

correlation was computed for subsets of the data to look at local correlation between enrichment of 

PTMs and Tanimoto coefficients. A moving interval was taken, spanning one order of magnitude of 
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the PTM enrichment p-values and the Spearman rank correlation was computed and plotted 

against the geometric mean enrichment p-value (SI Appendix, Fig. S17.a). When the average 

enrichment p-value is greater than 0.1, a significant correlation between the enrichment p-value 

and the Tanimoto correlation emerges (SI Appendix, Fig. S17.b), and the Tanimoto coefficients 

dramatically increase (SI Appendix, Fig. S17.c). Thus, on average, when a shift exhibits a poor 

enrichment of PTMs among the model-predicted regulated enzymes, this results from high 

structural similarity between the primary carbon substrates. This high structural similarity likely 

leads to similarity in how the carbon substrates are metabolized. Therefore, few nodes will require 

significant diversion of flux. 

Deleting genes encoding modifying proteins impacts in vivo cell fitness 

Another way to demonstrate the important role that PTMs play in regulating bacterial metabolism 

is to assess the impact of removing the biological machinery used to modify enzymes. It is widely 

recognized that protein kinases, phosphatases and acetyltransferases are the primary drivers for 

regulation through protein modification (53). To investigate whether different types of nutrient 

environments require the activity of specific kinases, phosphatases, and acetyltransferases, we 

tested the impact of deleting specific modifying enzymes on growth rate in different nutrient 

conditions. 

Mutant strains of E. coli lacking kinases, phosphatases, and acetyltransferases (ΔaceK, ΔcobB, 

ΔpphA, ΔyeaG, ΔyfiQ, ΔyiaC, ΔyihE, and ΔynbD) were grown on M9 minimal media with different 

supplementation (e.g., glucose, L-lactate, or inosine). We find that the cellular fitness of these 

strains depends strongly on the nutrient environment, as certain mutants exhibited faster growth 

(relative to wild-type) in certain nutrient conditions but slower growth on others (SI Appendix, Fig. 

S18). Although deleting modifying proteins has an overall marginal effect of organism fitness (the 

magnitude of the difference in growth rate is around 7%-9% of the WT growth rate), we observe a 

unique relationship between nutrient condition and the modifying proteins themselves that 

regulate downstream post-translational regulation processes.  

Protein modifications influence in vivo fitness in dynamic environments 

What properties determine whether a PTM influences cellular fitness? To address this, we 

performed a global analysis of the MAGE screen data using a generalized estimating equation (GEE) 

to identify how modifications impact fitness in response to attributes of the modified proteins or 

the environmental conditions. The GEE is a semiparametric regression technique and controls for 

correlation across samples with multiple time points. First, the GEE showed that modifications 

impacting growth rate are often located on proteins that are essential for growth in each medium 

tested (SI Appendix, Fig. S9b). Indeed, the modification of PTM sites associated with essential genes 

impacted growth rate, on average, by 5%, demonstrating that many PTMs locate to proteins that 

directly impact growth (p = 9x10-7). Second, MAGE modifications impacting growth often occur at 

structurally-relevant positions in proteins (e.g., salt bridge residues or near active site residues, p 

<< 1x10-10 and p=9x10-7, respectively), which could impact growth by controlling enzyme activity. 

Modifications of PTM sites associated with salt bridges impacted the growth rate by 5%, and for 
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every 10Å closer a PTM site is to an active site residue, there is an additional 2% impact on growth 

rate.  Thus, on average, the PTM sites are positioned on proteins to be able to regulate growth. 

Modifications should be able to influence the cell’s ability to adapt to environmental shifts. 

Specifically, the effects of modifications were tested within two types of nutrient environments, 

static (a single medium) and oscillating (media conditions were changed periodically, e.g. between 

glucose and acetate). The GEE demonstrated that when MAGE mutations force proteins to remain in 

a single PTM state (thereby preventing transient control at these sites), they more significantly 

impact the growth rate in oscillating environments compared to static environments (SI Appendix, 

Fig. S9b). Specifically, freezing the PTM state with a MAGE mutation decreased the growth rate on 

oscillating conditions by an average of 3% more than in static conditions (p = 3x10-3), with many 

individual sites showing a greater impact. 

Altogether, the genetic screens show that PTMs are functionally relevant and that they regulate 

specific enzymes in vivo. Specifically, the GEE analysis of the MAGE data showed that PTMs are best 

positioned on enzymes in the metabolic network to control cell physiology under the growth 

conditions tested. Furthermore, the modifications impact in vivo cellular fitness most when the 

primary nutrients change, consistent with the computational predictions, wherein PTMs localize to 

model-predicted branch points to facilitate pathway switching when media changes. This reinforces 

the notion that PTMs may be used by the cell to quickly adapt to rapidly changing nutrient 

conditions. 

 

Molecular Dynamics Simulations 

We mainly considered: (i) the availability of PTM data (e.g. proteins with known PTMs); (ii) the 

conservation of the residues that are modified, when comparing to homologous proteins; (iii) 

availability of crystallographic structures; (iv) the number of total shifts where proteins required 

regulation, as predicted by RuMBA. In each case, we performed long-time MD simulations (on the 

order of 100-120 nanoseconds) for (i) the wild-type (WT) protein and (ii) each of the associated 

modified states by phosphorylation or acetylation. Further, we compared the protein 

conformational landscapes for WT and each of the modified proteins, both in the presence and 

absence of bound substrates and cofactors. Information for all three proteins that were simulated in 

this study is provided in SI Appendix, Dataset S7.   

Serine hydroxymethyl transferase 

Starting from the crystallographic structure of SHMT (PDB entry 1DFO), we performed explicit MD 

simulations of wild-type (WT) protein, in both monomeric and dimeric forms (SI Appendix, Fig. 

S11) as well as in substrate-bound and substrate-free complexes. The total number of protein 

atoms 12,241 solvated in 73,359 explicit solvent TIP3P water molecules. In addition, we modeled 

proteins with different post-translationally modified lysines (K54, K250, and K354) to understand 

the effect of these changes with respect to overall structure, ligand binding and dimer formation. To 
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probe local changes in protein structure, we computed intermolecular interaction distances 

between key catalytic residues throughout the combined MD trajectory time of 0.5 μs. 

Large-scale changes in protein structure are seen in the N-terminal domain (residues 1–34), which 

mediates intersubunit contacts and folds into two α-helices and one β-strand (SI Appendix, Fig. 

S11). The second N-terminal domain or the “large” domain (residues 34 to 290), which binds PLP, 

has most of the active site residues and folds into an α–β–α sandwich containing nine α-helices 

wrapped around a seven-stranded mixed β-sheet. RMSD was calculated over 30-120 nanosecond 

throughout molecular dynamic trajectories in both enzyme-substrate complex (PLG and FFO) and 

substrate-free states (SI Appendix, Fig. S11a-b). In each case, the reference frame is taken to be the 

equilibrated protein. 

A Z-score-based analysis was carried out to determine the most significantly shifting interaction 

distances between wild-type and modified proteins. The Z-score calculation was repeated 1,000 

times, and the mean value is reported. Z-scores were computed to determine which shifts in 

intermolecular interaction distances (between wild-type SHMT and modified variants) were ranked 

significant over others (if z-scores are greater than 1.9). We find that acetylation of K54 (in 

substrate-free protein) shifts the interaction distances of H203-K229 (z=4.1) most significantly. 

Furthermore, in the enzyme-substrate complex, we find that acetylation of K308 affects the 

intermolecular distance between H203-T227 (z=3.1), which are key active site residues in the 

vicinity of PLG and FFO (SI Appendix, Fig. S11a). Interestingly, the modification site that most 

influences in vivo and in vitro enzyme activity (K54) shows the greatest shift (2-3 Å, on average) in 

intermolecular interaction distance for the intermolecular interaction between K229 and H203 (SI 

Appendix, Fig. S12a (right plot)). Modification of K54 also completely disrupts a persistent salt 

bridge interaction with E36 of the neighboring subunit. In the WT protein, the interaction distance 

between K54 and E36 is, on average, 3.8 Å, whereas, upon acetylation of K54, it shifts to 7.5Å (SI 

Appendix, Fig. S12b). This shift also influences the orientation of other nearby active site residues, 

H203, H228 and K229 and Y55, which is essential for correct positioning of the covalently-attached 

pyridoxal 5'-phosphate (PLP) cofactor (54). Finally, as SHMT functions as a homodimer, acetylation 

of K54 may also decrease the efficacy of dimerization, which would inhibit catalysis by decreasing 

the affinity of PLP for the enzyme (55).  

Transaldolase 

We examined the crystal structure of transaldolase from Thermoplasma acidophilum (PDB entry 

3S1U) to find that many of the residues surrounding the binding channel were in structurally 

equivalent positions (SI Appendix, Fig. S13a). Most importantly, the outermost C-terminal helix 

(α11), which runs across the barrel of a neighboring subunit packs against helix α2 and partially 

covers the active site. In this organism, the α11 and the α2 form a part of the dimer interface, yet 

the interactions (and locations) of key residues in this interaction network (e.g., P36 and F302 as 

well as K308-D305-S37 in E. coli) are conserved. As shown in SI Appendix, Fig. S13a, the catalytic 

lysine (Lys86, located in strand β4) corresponds to K132 in E. coli and is solvent-accessible and 

points toward the interior of the barrel. As for the case in E. coli, the active site resembles 

previously characterized transaldolases. As discussed previously, the presumed catalytic water is 

bound within hydrogen-bonding distance to Nζ of K86. As illustrated here, the “closed” form is 
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characterized by a narrowing of the substrate channel by up to 4 Å compared to the open form. In 

this conformation, F208 (which belongs to domain-swapping helix α11 of the neighboring subunit 

and corresponds to F302 in E. coli), is found to hydrophobically interact with P29, hindering free 

exchange of the catalytic water with bulk solvent. We also note that the placement of F132 is 

conserved across these organisms (F178 in E. coli), which is found to consistently interact with 

F302 (F208 in T. acidophilum) in the open state. Interestingly, certain post-translational 

modifications appear to induce changes in the intermolecular interaction network such that the 

interactions between F178 and F302 occur more frequently, shifting the state of the enzyme to the 

“open” conformation.  One such modification is the phosphorylation of S226 in E. coli (which 

corresponds to S167 in T. acidophilum).   

To study the effect of several known PTMs on the structure and reactivity of transaldolase, we 

performed 10 independent atomistic simulations for five different post-translational modifications 

and sampled protein conformational space over 50-100 nanoseconds per protein (a combined MD 

simulation time of 1.05 μs for all WT and modified proteins). The total number of protein atoms is 

5,874, which were solvated in 44,760 explicit solvent TIP3P water molecules. We find that the root-

mean-squared deviation (RMSD) relative to the crystallographic (WT) protein varies among 

modified proteins, ranging from 1.7 to 2.6 Å. We observe most deviation resulting from 

complexation with its native substrate, D-sedoheptulose-7-phosphate (s7p). The modified proteins 

with the largest degree of deviation from the crystallographic structure include those with 

modifications on T33 and S37 (SI Appendix, Fig. S13b).   

Using a statistical analysis, we find that the interaction distances between F178-D305 and D305-

K132 are anti-correlated in wild-type transaldolase (Pearson coefficient of -0.74), whereas when 

transaldolase is phosphorylated at S226 or T33 or acetylated at K187 or K308, these interaction 

distances are no longer correlated. Furthermore, we find that interaction distances between D305-

K308 and F302-K308 are strongly correlated in wild-type (0.8) and acetylation of K08 strongly 

disrupts the dynamic of these pairs of residues. SI Appendix, Dataset S8 provides a list of all per-

residue interaction distances that are no longer correlated as a result of residue modification. A Z-

score-based analysis was carried out to determine the most significantly shifting interaction 

distances between wild-type and modified proteins. The Z-score calculation was repeated 1,000 

times, and the mean value is reported. Z-scores were computed to determine which shifts in 

intermolecular interaction distances (between wild-type transaldolase and modified variants) were 

ranked significant over others (if z-scores are greater than 2.0). We find that phosphorylation of 

S226 (in substrate-free protein) shifts the interaction distances of P36-F302 (z=3.9), P36-F178 

(z=4.5) and S37-K132 (z=2) most significantly. Furthermore, in the enzyme-substrate complex, we 

find that acetylation of K308 affects the intermolecular distance between F178-D305 (z=2.2), which 

spans the opening of the active site. These interaction distances correspond to characteristic 

intermolecular interactions important in the “open” and “closed” states of the enzyme. The changes 

in intermolecular bonding distances for key residues lining the substrate binding channel are 

plotted in SI Appendix, Fig. S13c (e.g., F178-D305 (left), P36-F178 (center), and P36-F302 (right)). 

Interestingly, the modification site that most influences in vivo and in vitro enzyme activity (S226) 

shows the greatest shift (4-5 Å, on average) in intermolecular interaction distance for two out of 

three of the intermolecular interactions (P36-F178 and P36-F302).  
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Enolase 

We performed six independent atomistic simulations for two different post-translational 

modifications (phosphorylation of T375 and T379), considering substrate-free (apo) and enzyme-

substrate (bound to D-Glycerate 2-phosphate (2pg)) complexes. For all simulations, we simulated 

enolase in its homodimeric state, starting from the crystallographic structure (PDB 3h8a). We 

sampled protein conformational space over 50-100 nanoseconds per protein (a combined MD 

simulation time of .45 μs for all WT and modified enolase proteins). The total number of protein 

atoms is 15,108, which were solvated in 77,244 explicit solvent TIP3P water molecules. To simulate the 

activated complex, we used restraints to maintain the interatomic distances of residues in the active 

site with two magnesium ions. In the substrate-free complex, we used restraints to maintain the 

interatomic distances of residues in the active site with one magnesium ion. We find that the root-

mean-squared deviation (RMSD) relative to the crystallographic (WT) protein ranges from 0.8 to 

1.4 Å, for wild-type and modified enolase variants. We observe minimal deviation resulting from 

phosphorylation of T375 and/or T379 (SI Appendix, Fig. S13) in both apo and complexed states. 

We find that certain PTMs in enolase are likely to modulate activities beyond a protein’s metabolic 

role. An illustrative example is the phosphorylation of two residues, T375 and T379, in enolase. 

Classical molecular dynamics simulations of enolase modified at each of these sites do not show 

significant changes in protein structure or molecular interaction networks with respect to wild-

type protein (SI Appendix, Fig. S14). However, the phosphorylation of these residues likely affect 

the complexation of enolase with RNAse E, which binds in a conserved cleft within the interface 

homodimer (PDB entry 2fym). As shown in SI Appendix, Fig. S10 (bottom panel), T375 is located 

within 5Å of a negatively charged aspartate residue in the conserved RNAse E binding domain. 

Upon phosphorylation, it is likely that the repulsion of these two negatively charged moieties 

impact the binding stability of the RNAse E mediated assembly and, thus, the recruitment of enolase 

via the RNA degradosome (56, 57). Consistent with this hypothesis are the effects of modifying 

T375 in vivo, which appear to positively impact the overall organism’s fitness in certain substrate 

shifts. 

Robustness of metabolic modeling analyses with the addition of novel PTMs 

Shortly after the completion of the MAGE-Seq experiments, a few new phosphoproteomic data sets 

were published that captured serine, threonine, and tyrosine phosphorylation sites (58–60), 

increasing the number of published phosphorylated metabolic enzymes in E. coli by 98. To evaluate 

the robustness of our results, we tested if the addition of these 98 newly identified phosphoproteins 

impacted the conclusions from the RuMBA analysis. Thus, we evaluated the enrichment of post-

translationally modified proteins within the RuMBA predictions across all 15051 nutrient shifts. 

Prior to their addition, we found that 91.8% of the shifts were significantly enriched in enzymes 

were a PTM was detected. When accounting for the 98 additional phosphoproteins, this increased 

slightly to 92.0%. Thus, our results in this study are robust to the addition of additional post-

translationally modified enzymes.  
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Supplementary Figures 

Legend of Supplementary Figures 

Fig. S1: Conceptual categorization of different types of enzyme regulation 

Fig. S2: Conceptual illustration of condition-specific shifts in the flux solution space 

Fig. S3: RuMBA predicts regulatory nodes in metabolism, and predictions are regulated using small 

molecule-based regulation. 

Fig. S4: PTMs enriched on enzymes that are predicted to require regulation  

Fig. S5: Enzymes that are predicted to be regulated are associated with known regulation by 

metabolite-mediated allosteric regulation and measured PTMs  

Fig. S6: Enzymes that are predicted to be regulated are differentially expressed between glucose 

and acetate minimal media 

Fig. S7: Clusters of PTM-associated RuMBA predictions provide insight into environmental shifts 

that are associated with the regulation of different pathways 

Fig. S8: GlyA K54R increased growth rate following the diauxic shift after glucose was exhausted 

Fig. S9: MAGE analysis across conditions 

Fig. S10: Atomistic details for GlyA, transaldolase and enolase  

Fig. S11: Characteristic structural changes in serine hydroxymethyl transferase and modified 

variants (PTMs) 

Fig. S12: Changing intermolecular interaction distances in modified SHMT proteins.  

Fig. S13: Characteristic structural changes in transaldolase and modified variants (PTMs).  

Fig. S14: Characteristic structural changes in enolase and modified variants (PTMs).  

Fig. S15: Enzyme in vitro assays for activity measurements of proteins and modified variants. 

Fig S16: Moderate variations in metabolite uptake rate in the metabolic model have little impact on 

RuMBA predictions 

Fig. S17. Conditions with high metabolite structural similarity are depleted of PTMs.   

Fig. S18. Deletion of kinases, phosphatases, and acetyltransferases can have positive or negative 

impacts on growth, depending on the media.   

Fig. S19. Inclusion of new phosphoproteins shows that PTMs continue to be enriched in RuMBA 

results.  
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Fig. S1. Conceptual categorization of different types of enzyme regulation. The different timescales, and 

the reversibility of different types of regulation conceptually lend themselves to different types of responses. 

Small molecule-mediated competitive inhibition is particularly well-suited to stabilize flux for a given 

metabolic state or temporarily reroute flux. PTMs, however, can rapidly shift flux from one pathway to the 

next by activating or inhibiting enzymes at branch points. This rerouting can be maintained until upstream 

signals cause the removal of the PTM or the enzyme is degraded. The speed of PTMs allow for immediate 

response to add or remove a PTM. Protein degradation and transcriptional regulation take longer to 

implement, are costlier in the sense of bioenergetics and required building blocks, and are irreversible. Thus, 

they are ideal for long and sustained changes in the nutritional environment.  It is anticipated that due to the 

cost of maintaining unnecessary proteins, it is likely that PTMs will more often suppress the activity of highly 

used proteins to divert flux to pathways that show lower levels of expression. 
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Fig. S2. Conceptual illustration of condition-specific shifts in the flux solution space. (a) Constraint-

based modeling employs governing constraints to define a space of feasible phenotypes, which are 

represented by allowable steady-state fluxes for each reaction. When growth conditions change (e.g., a 

change in carbon source, or aerobicity), the space of feasible fluxes can change. (b) For example, reaction 2 

shows a change in the range of feasible flux levels under the new growth condition, which can be shown in the 

metabolic map (c). These changes can be mapped back to the genes and proteins associated with each 

reaction. This approach is further described elsewhere (6). 
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Fig. S3. RuMBA predicts regulatory nodes in metabolism, and predictions are regulated using 

small molecule-based regulation. (a) For the split between isocitrate dehydrogenase (ICDHyr) 

and isocitrate lyase (ICL), RuMBA predicts that different branches will be used under different 

growth conditions. (b) When E. coli is grown on glucose, RuMBA predicts that most of the flux 

through aconitase (ACONT) continues in the TCA cycle through (ICDHyr). However, when switched 

to acetate minimal media, a significant amount of flux is siphoned off into the glyoxylate shunt 

through ICL. (c) RuMBA predicts this shift by using MCMC sampling to compute a uniform sample 

of feasible steady-state flux values (points) for all reactions that produce or consume a metabolite 

of interest, such as isocitrate. (d) The fraction of flux that goes through each branch is computed for 

each point, yielding a distribution of fractional split values for both conditions. RuMBA then 

identifies all reactions where the fractional split values significantly change, suggesting that there is 

a high likelihood that regulation of the enzyme would enable rapid and efficient shifting of the flux 

to a new pathway. (e) Randomly-sampled in silico flux distributions for growth on acetate and 

glucose show that isocitrate dehydrogenase is used for growth on glucose minimal media, while 

flux is diverted to isocitrate lyase when the cell is metabolizing acetate. (f) The RuMBA algorithm 

identifies a rank-ordered list of reactions and their associated enzymes that require significant 

regulation to redirect flux when rapidly shifting from one carbon substrate to another. Many of 

these predictions are enzymes that are known to undergo metabolic regulation (blue; see SI 

Appendix, Dataset S1 for identities of enzymes). (g) The RuMBA predictions are significantly 

enriched in known metabolically-regulated enzymes, particularly for allosteric regulation 

(hypergeometric test). 
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Fig. S4. PTMs enriched on enzymes that are predicted to require regulation.   (a) RuMBA 

results can be compared to experimentally measured changes in enzyme activity for the given 

growth conditions, yielding predictions for the metabolic regulatory function of phosphorylation 

events. When compared to known functional phosphorylation events, RuMBA accurately predicts 

experimentally measured effects. (b) Beyond the three examples with known regulation, the 

RuMBA algorithm provides a rank-ordered list of additional enzymes that should be regulated to 

redirect flux when rapidly shifting between nutrients. PTMs (salmon) are enriched in RuMBA 

predictions for the glucose-acetate diauxie, and for (c) 92% of the pairwise shifts between 174 

media conditions (color indicates the significance of enrichment of PTMs on proteins in the RuMBA 

predicted list of regulated enzymes). (d) Across 62 metabolic proteins with known structures, 

PTMs were significantly closer to functional residues (i.e., catalytic or substrate binding residues) 

than expected >48% of the proteins, and (e) 37% of the proteins had PTMs closer than 10Å to 

functional residues. 
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Fig. S5. Enzymes that are predicted to be regulated are associated with known regulation by 

metabolite-mediated allosteric regulation and measured PTMs. RuMBA-predicted changes for 

the glucose-acetate diauxie are enriched for known instances of metabolite-mediated allosteric 

regulation. PTMs are also enriched among the most highly regulated enzymes. While there is some 

overlap of enzymes that are regulated by small molecules and PTMs, the two are more 

complementary, with either metabolites regulating the enzyme (yellow outline) or PTMs (red 

outline).  
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Fig. S6. Enzymes that are predicted to be regulated are differentially expressed between 

glucose and acetate minimal media. Proteins with PTMs were enriched among enzymes that 

were predicted to require regulation in the glucose-acetate shift, based on RuMBA. Furthermore, 

the PTMs were found more often on the enzymes that showed the strongest need for regulation 

(near the top of the list, in which each row of the column is a different enzyme-reaction pair). See 

Supplementary SI Appendix, Dataset S1 for list of enzymes and their relative need for regulation).  

Similarly, when comparing gene expression levels of E. coli grown on glucose or acetate minimal 

media, the RuMBA-regulated enzymes were significantly enriched in differentially expressed genes 

(p = 3 x 10-10). However, the differentially expressed genes were not significantly associated with 

the enzymes that had the highest RuMBA scores (p > 0.15). Thus, the PTMs are positioned more 

towards the most critical enzymes, but the cells eventually differentially express most of the 

RuMBA predicted regulated enzymes when shifted from glucose to acetate minimal media. 

 

Fig. S7. Clusters of PTM-associated RuMBA predictions provide insight into environmental 

shifts that are associated with the regulation of different pathways. Clustering of RuMBA 

predictions identifies modules with similar regulation patterns, including glycolysis, the glyoxylate 

shunt, and nucleotide metabolism and the pentose-phosphate pathway. Regulation of nucleotide 

metabolism is particularly high when model-predicted growth rates significantly change between 

two media conditions. Within these clusters, (a) shifts that significantly changed glycolysis included 

shifts between sugars and organic and amino acids. (b) The glyoxylate shunt was usually regulated 

in shifts between fermentation products and amino acids, sugars, or nucleotides. (c) Nucleotide 



28 

 

metabolism and the pentose phosphate pathway were frequently required regulation when shifts 

involved nucleotides and various acids, and often involved significant changes in growth rates 

between the substrates. Purple elements in each heatmap signify that the enzyme (for the 

associated reaction) is predicted by RuMBA to be regulated.  Red boxes to the left signify if the 

enzyme has a known PTM site.  

 

Fig. S8. GlyA K54R increased growth rate following the diauxic shift after glucose was 

exhausted. After ~15 hours, all glucose was exhausted for wildtype and GlyA K54R mutants, and so 

cells shifted to consume the small amount of remaining fermentation products (Figure 3b). At each 

time point following the shift, a growth rate was computed, based on change in OD. For each time 

point growth rates were normalized based on the average growth rate for the wildtype cells at that 

time point (relative growth rate of 1 = average WT growth rate for a given time point). At almost all 

time points, the GlyA K54R showed a higher growth rate than the average WT growth rate after 

glucose was depleted.  

 



29 

 

 

Fig. S9 MAGE analysis across conditions. (a) Many combinations of PTM mutations and media 

conditions showed >2 fold changes in fitness, and 88% of PTM sites showed a phenotype (>2 

standard deviations) in at least one condition. (b) A GEE analysis quantified factors influencing cell 

fitness after MAGE inhibited the change of PTM state. MAGE mutations did not significantly impact 

growth differently on rich or minimal media. In comparison, on average, oscillating media led to a 

5% greater decrease in growth rate (compared to static growth conditions) when the PTM state 

was frozen in the PTM-mimic or PTM-null state. The localization of PTMs near active site residues 

on essential proteins significantly influenced cell growth, especially when predicted to modulate 

salt bridges. Thus, the PTMs are poised to regulate the key proteins to immediately adapt to 

changes in growth condition. (c) Full heatmap showing that most mimic/null preferences were 

condition specific, with oscillating media showing more extensive preferences (only preferences 

with p <0.1 shown). 

  



30 

 

 

 

Fig. S10. Atomistic 

details for GlyA, 

transaldolase and 

enolase. (top) 

Acetylation of K250 of 

serine hydroxymethyl 

transferase (GlyA) 

disrupts a salt-bridge, 

leading to decreased 

THF binding (middle) 

Interactions between six 

active site residues 

determine the 

accessibility of the 

active site in 

transaldolase. A closed 

state involves D305-

K308 and P36-F302 

interactions. In an open 

state, S37 interacts with 

D305 and K308, while 

F302 interacts with 

F178, to allow the 

exchange of catalytic 

water. (bottom) The 

catalytic site of enolase 

(PDB 3h8a) and 

(bottom) enolase in 

complex with a minimal 

binding segment of 

RNase E (PDB 2yfm). 
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Fig. S11. Characteristic structural changes in serine hydroxymethyl transferase and modified variants 

(PTMs). (a) Root-mean squared deviation (RMSD) of the entire protein backbone SHMT and its associated 

post-translationally modified variants, with and without bound substrate. RMSD was calculated from 37-120 

nanosecond molecular dynamic simulations in both enzyme-substrate complex, bound to analogs of 

pyridoxal-5-phosphate and tetrahydrate folate (PLG and FFO, respectively) and substrate-free states. In each 

case, the reference frame is taken to be the equilibrated protein. Acetylation of K250 and K354 undergoes the 

most structural change in free enzyme. (b) RMSD of the N-terminal domain of SHMT and their associated 

post-translationally modified variants (K250/K354 versus K54), with and without bound substrate. In the 

inset is the RMSD plotted for the second N-terminal domain (residues 34 to 290), which bind PLP. (c) 

Interatomic distances between K250 and substrate/cofactor tetrahydrofolate (crystallized as FFO). (a) the 

homodimer protein in complex with PLG and FFO substrates. (b) A zoomed-in view of residue K250 

interacting with the acetic acid group on FFO. (c) Distances are plotted between atoms NZ on K250 and the 

terminal carbon of the acetic acid moiety of FFO throughout the MD trajectory. The average interaction 

distance is 5.8 Angstroms, indicating that for part of the trajectory, K250 and FFO participate in a salt-bridge 

interaction (20% of the time). Such a salt-bridge is disrupted when K250 is acetylated. 
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Fig. S12. Changing intermolecular interaction distances in modified SHMT proteins. (a) Intermolecular 

distances are plotted between H203 and K229 and substrate (PLG) in the active site pocket of wild-type 

SHMT (bottom left). Distances are given between atoms, NZ on K229 (green) vs NE2 on H203 (purple) and 

the carbon of the terminal acetic acid moiety of PLG throughout the MD trajectory for wild-type SHMT. 

(bottom right) When K54 is acetylated, the intermolecular distance between K229 (NZ) and H203 (NE2) 

shifts from 4.9Å, in wild-type, to 7.1Å, in post-translationally modified SHMT, suggesting that acetylation of 

K54 significantly shifts (p < 0.01 using a two-tailed test) the positions of key, conserved, catalytic residues. (b) 

Other changes, upon acetylation of K54, occurring near the active site (which is also the homodimer 

interface) are shifts in the intermolecular distance of K54 and E36, which participate in a strong salt bridge 

throughout the MD trajectory in wild-type SHMT. Distances shift, on average, more than 4 Å in modified 

protein. 



33 

 

 

Fig. S13. Characteristic structural changes in transaldolase and modified variants (PTMs). (a)  The 

crystal structure from Thermoplasma acidophilum (PDB entry 3s1u) shows a conserved set of residues in the 

substrate binding channel and their associated E. coli counterparts (in parentheses). Stacking interaction is 

shown between Pro29 at α2 and Phe208 at the C-terminal helix α11 of the neighboring subunit in the “closed 

conformation”. The essential Lys86 (Lys132 in E. coli), in the active site is also shown. The close interaction 

between residues #5 and #2 has been characterized in the closed conformation in this enzyme. (b) RMSD was 

calculated from 50-100 nanosecond molecular dynamic simulations in both apo (substrate-free) and complex 

(enzyme-substrate complex, where the substrate is taken to be sedoheptulose 7-phosphate (s7p)) states. In 

each case, the reference frame is taken to be the equilibrated protein. Both maximum and average RMSD is 

shown and the apo protein are to the left of the enzyme-substrate complex for all pairs in the plot. (c) 

Significantly shifting molecular interaction distances resulting from post-translational modification. (left) 

Per-residue interaction differences, relative to wild-type, for Phe178--Asp305 across variant transaldolases 

co-complexed with s7p. (center) Interaction differences for Pro36--Phe178, relative to wild-type in 

substrate-free variant transaldolases. (right) Per-residue interaction differences relative to wild-type for 

Pro36--Phe302. In each of the three interaction distance distributions, we find distinct “states” that cluster 

variants based on how different they are from wild-type behavior. Significantly shifted states (p >0.05 in a 

two-tailed test) are found for specific variants, namely k308ace (178__305), s226pho (36__178, 36__302, 

36__132), t33pho (37__178, 37__302) and k187ace (37__178, 37__302). All distances are given in Angstrom. 
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Fig. S14. Characteristic structural changes in enolase and modified variants (PTMs). (a)  RMSD was 

computed (i.e., for the protein backbone atoms) from 50-100 nanosecond molecular dynamic trajectories in 

both enzyme-substrate complex and substrate-free states. In each case, the reference frame is taken to be the 

equilibrated protein. Relatively minimal changes in protein structure occur in the modified enolase proteins, 

compared to wild-type protein. Both the average and maximum RMSD is shown. (b) RMSD computed for all 

atoms in the 5Å vicinity of T375 and T379 residues during 50 nanoseconds, where the reference frame is 

taken to be the equilibrated protein. (c) (left) The biological assembly of enolase, as a homodimer and the 

location of the modified residues, T375 and T379, at the interface of this complex. (center) Enolase in 

complex with a minimal binding segment of RNase E (PDB entry 2yfm). The residues in a natively 

unstructured segment of RNase E. (shown here in green) bind to a cleft in the interface of the enolase dimer, 

less than 6Å from the modification site. (right) A close-up view of the enolase dimer interface and both 

modified residues, T375 and T379, shown in van der Waals representation (red).  
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Fig. S15. Enzyme in vitro assays for activity measurements of proteins and modified variants. 
(a) Comparison of enzyme activity in WT protein with modified serine hydroxymethyl transferase proteins 

(mutated at position 36 and 54 in the protein). The enzyme activity was based on the following reaction: L-

serine + a tetrahydrofolate ↔ glycine + a 5,10-methylene-tetrahydrofolate + H2O.  (b) Comparison of enzyme 

activity in WT transaldolase protein and modified variants (at positions 37 and 226). The enzyme activity was 

based on the following reaction: D-glyceraldehyde 3-phosphate + D-sedoheptulose 7-phosphate ↔ β-D-

fructofuranose 6-phosphate + D-erythrose 4-phosphate. (c) Comparison of enzyme activity in WT enolase 

protein and modified variants (at positions 372 and 342). The enzyme activity was based on the following 

reaction: 2-phospho-D-glycerate ↔ phosphoenolpyruvate + H2O. All activities are reported as percentage of 

wild-type protein activity. 

http://ecocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=GLYOHMETRANS-RXN
http://ecocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=GLYOHMETRANS-RXN
http://ecocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=GLYOHMETRANS-RXN
http://ecocyc.org/ECOLI/NEW-IMAGE?type=REACTION&object=GLYOHMETRANS-RXN
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Fig. S16. Moderate variations in metabolite uptake rate in the metabolic model have little impact on 

RuMBA predictions. In this study, we simulated growth on 174 different minimal media conditions. To 

parameterize the simulations, we set up each media condition to take up 48 mmol carbon equivalents per 

gram DW per hour, which is consistent with published experimental measurements on glucose, lactate, and 

glycerol (21, 24, 61). Given that these were estimates, it was important to test if RuMBA results were sensitive 

to sizable variations in substrate uptake rates. Therefore, RuMBA was run on the glucose-acetate diauxy at 

different glucose and acetate uptake rates, ranging from half of the standard uptake rate to double the rate (4, 

8, and 16 mmol glucose per gDW per hour and 12, 24, and 48 mmol acetate per gDW per hour). RuMBA was 

computed for each pairwise shift (e.g., double glucose vs. half acetate). This heatmap shows the fold change 

relative flux for each reaction and their associated proteins (rows) and each comparison (columns). We have 

plotted all reactions with at least a 10% change in relative flux. As demonstrated here, RuMBA results are 

quite robust against variations in the uptake rates. This is because RuMBA depends less on absolute flux 

levels, and instead the relative flux levels between reactions in a flux split. Thus, even though estimated 

substrate uptake rates were used here, the results in this study should not be strongly affected by the 

assumption of the uptake rates.   
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Fig. S17. Conditions with high 

metabolite structural similarity are 

depleted of PTMs. A subset of substrate 

shifts was predicted to have few enzymes 

that are regulated, and were not enriched 

in PTMs. (a) The Spearman rank 

correlation was computed between the 

enrichment p-values and Tanimoto 

coefficients for the subsets of the shifts 

having a p-value of enrichment of PTMs 

within half of an order of magnitude of 

each point shown. Once the median p-

value within each subset passed p = 0.1, 

there was a clear correlation between the 

enrichment p-value and the Tanimoto 

coefficient, which measures the similarity 

between the primary carbon substrates in 

the two media conditions. (b) The 

correlation of the flux vectors is 

increasingly significant with increasing 

enrichment p-value. (c) This increasing 

correlation is accompanied by a sharp 

increase in Tanimoto coefficient, 

demonstrating that shifts that fail to be 

enriched in PTMs tend to show a high 

structural similarity between the main 

carbon substrates in the media 

formulations participating in the shift. P-

values > 0.01 are highlighted in pink. 
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Fig. S18. Deletion of kinases, phosphatases, and acetyltransferases can have positive or negative 

impacts on growth, depending on the media. Mutant strains of E. coli lacking a kinase, phosphatase, or 

acetyltransferase (ΔaceK, ΔcobB, ΔpphA, ΔyeaG, ΔyfiQ, ΔyiaC, ΔyihE, and ΔynbD) were grown on M9 minimal 

media with glucose, L-lactate, or inosine. Cellular fitness of these strains depends strongly on the nutrient 

environment, as certain mutants exhibited faster growth (relative to wild-type) in certain nutrient conditions 

but slower growth on others. 

 

Fig. S19. Inclusion of new phosphoproteins shows that PTMs continue to be enriched in RuMBA 

results. Three large phosphoproteomic studies were published after the MAGE-Seq screen was conducted. 

Thus, the screen of 15051 simulated nutrient shifts was redone to include the novel phosphoproteins 

identified. For most nutrient shifts (92%), the RuMBA results were enriched in proteins with measured PTMs.  
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Supplementary Datasets (Tables) & Captions 
 
[ Datasets (tables) S1-S16 are found in Supplementary Datasets S1-S17.xlsx ] 

Dataset S1: Genes and reactions predicted by RuMBA to be regulated in the glucose - acetate diauxie. 

Columns are defined as follows: (broken up into 2x3 columns for enzymes that show increased activity in 

glucose or acetate M9 minimal media conditions): the gene and catalyzing reaction name, metabolites 

involved at the branch point reaction, the activity increase (fold increase in flux). 

Dataset S2: Experimentally validated metabolite-mediated metabolic regulation events in E. coli obtained 

from Ecocyc. Columns are defined as follows: the source of the information, the model reaction names, 

uniprot accession number (where available), all genes involved in the reaction, given by Blattner ID (enzyme 

stoichiometry in parentheses), mechanism of regulation, mode of action (+/- for activation or repression, 

respectively), associated metabolite names, associated KEGG identifiers, Pubchem identifiers and SMILES 

format of the metabolites.   

Dataset S3: Structural properties of 62 proteins and their respective PTMs. Columns are defined as follows: 

the gene id (given by Blattner code), uniprot accession number, PDB structure and chain associated with the 

uniprot ID, length of the chain, all chains in the full protein, type of known modification, where the 

modification occurs in the protein, the corresponding location of the residue in the PDB file, residues where 

potential salt-bridging interaction may have been disrupted by the PTM, residues where potential salt-

bridging interaction may have been newly formed by the PTM, any cases that were not computed in distance 

analysis due to missing annotation information. 

Dataset S4: List of different media compositions tested with RuMBA. All media are M9 media, as described 

previously (20), except that glucose is replaced by each of these carbon sources. Metabolite identifiers are 

from the BiGG Models database (62).  

Dataset S5: List of all PTM sites and their corresponding MAGE oligonucleotide sequences. Columns are 

defined as follows: gene identifiers, associated sequence, type of modification (PTM), type of genetic 

modification made in vivo. 

Dataset S6: Genes (Blattner IDs) targeted by the MAGE oligos.   

Dataset S7.  A description of the proteins and their associated post-translationally modified residues (in blue 

are cases selected for analysis with MD simulations). A large percent conservation of the specific residue 

indicates that its role may be pertinent in catalytic function, given a high degree of homology compared to up 

to 1057 species. A z-score analysis was performed to identify whether the percent conservation was 

statistically significant (z > 1.9, given 10-100 degrees of freedom). The number of shifts indicates the number 

of cases that the activity of the protein was significantly altered across changing nutrient environments. We 

probed the three-dimensional (3D) crystallographic structure of the protein, given in the column labeled 

“PDB” to understand whether the residue is likely to participate in salt-bridging interactions with nearby 

negatively charged residues. 
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Dataset S8. Highly correlated interaction distances between two pairs of residues were probed in 

transaldolase and modified variants. Cases highlighted in the table are variant proteins whose per-residue 

interacting distances are no longer correlated as a result of post-translational modification (using Pearson 

correlation, r>0.5). The residue numbers are given for interaction amino acids, in which distances are 

measured between the alpha carbon atoms in Angstroms. The Pearson correlation for the corresponding 

interaction distance in WT is provided.    

Dataset S9: List of primers were designed to validate a subset of the targets using MASC-PCR. Columns are 

defined as follows: gene name, Blattner code, type of PTM, location (amino acid), modification id, direction, 

sequence 

Dataset S10: List of primers designed to enable a two-step amplification and library preparation for 

amplicon sequencing. Columns are defined as follows:  forward primer sequence and reverse primer 

sequence 

Dataset S11: List of PCR primers used to add barcodes to each sample. Columns are defined as follows: 

sample ID, sequence of forward primer with barcode, barcode sequence 

Dataset S12: Number of cell doublings in each sample 

Dataset S13: Fold change of MAGE mutant (PTM-mimic) across all conditions 

Dataset S14: Fold change of MAGE mutant (PTM-null) across all conditions 

Dataset S15: P-value of fold change of MAGE mutant (PTM-mimic) across all conditions 

Dataset S16: P-value of fold change of MAGE mutant (PTM-null) across all conditions 

Dataset S17: PTMs showing differential abundance between glucose and acetate, and comparison to RuMBA 

results. Peptides and fold change taken from (59) 
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