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Supporting Information Text

The supplementary material is organized as follows. In Sec. 1 we show the 2D lattice Hamiltonians of QAHI and p+ ip TSC
we use for calculations of entanglement entropy change in the QAHI-TSC-QAHI junction and conductance in the Corbino
junction. Sec. 2 gives the details of entanglement entropy numerical calculation for a QAHI-TSC-QAHI junction lattice model
during the evolution of an incident electron above the fermi sea. Sec. 3 reviews the generalized Landauer-Büttiker formula for
two-terminal conductance of a superconducting junction, while Sec. 4 shows the numerical calculation for σ12 oscillation of a
Corbino junction in a 2D lattice as a function of the gate voltage VG. Sec. 5 shows that the nonzero chemical potential on
QAHI edges induces a phase shift to φG in the formula of σ12 in the Corbino junction. Finally, in Sec. 6, we provide a Bloch
sphere illustration of the single qubit quantum gate that we propose to implement by the Corbino junction.

1. Model Hamiltonian for simulation

In this section, we present the 2D lattice model Hamiltonian that we will use for later numerical calculations. The structures
that we study in the main text consists of a quantum anomalous Hall insulator (QAHI), where we add s-wave superconductivity
pairing to induce p+ ip chiral topological superconductor (TSC) or add voltage gate to change the chemical potential of edge
states. The lattice model Hamiltonian for QAHI we adopt is as follows:

HQAH =
∑

k

c†k[(A sin kxσx +A sin kyσy + (M −B(cos kx + cos ky))σz − µ]ck, [1]

where ck = (ck↑, ck,↓)T are fermion operators in momentum space and σx, σy and σz are Pauli matrices. We work in the
dimensionless unit with lattice constant a = 1 and set A = 1, B = 5/2, M = 4 and µ = 0. The band parameters are chosen
such that the the valence band has a non-trivial Chern number and therefore describe a QAHI. In the calculation for the
QAHI-TSC-QAHI junction or the Corbino junction, we write the above Hamiltonian in the real space with an open boundary
condition at the edges between the junction and the vacuum.

The p+ ip TSC is realized by adding an s-wave superconductivity pairing
∑

r
1
2 ∆(r)cTr iσycr + h.c into the Hamiltonian

Eq.(1), where cr = (cr↑, cr,↓)T are fermion operators in the real space. We choose to set ∆(r) = ∆ = 2 in the superconducting
regions, which drives the regions into a p+ ip TSC. We model the static electrical potential induced by voltage gate with a
chemical potential term

∑
r V (r)c†rcr, where V (r) = VG inside the gated region V (r) = 0 outside. The full model Hamiltonian

can be summarized as
H = HQAH +

∑
r

1
2 [∆(r)cTr iσycr + h.c] +

∑
r

V (r)c†rcr. [2]

In all simulations, the model Hamiltonian will be kept at the fixed parameters where a = 1, A = 1, B = 5/2, M = 4, µ = 0
and ∆ = 2. Several useful quantities are the Fermi velocity vF of the edge modes, which is equal to 1 at zero chemical potential.
The energy gap is Eg = 2 for the QAHI regions, and is 1 in the TSC regions.

2. Entanglement entropy during the propagation of γi

In this section, we discuss the entanglement entropy change of the QAHI-TSC-QAHI junction during the propagation of an
incident electron from lead 1. In the case of the Majorana zero mode(MZM), if one splits a system into two subsystems A and
its complement Ac, the braiding of one MZM in subsystem A with another MZM in subsystem Ac creates an entanglement
entropy log 2 for the subsystem A. This is also expected to be true in our case of propagation of chiral Majorana fermion
wave packets. Indeed, a nonvanishing increment in the value of entanglement entropy is a generic signature of non-Abelian
transformations (gate operations).

We design the Hamiltonian defined in Eq.(2) for a QAHI-TSC-QAHI junction on a lattice as shown in Fig. S1. The length
of each QAHI region in x direction is LQAHI while the length of TSC region in x direction is LTSC . A cut along y direction in
the TSC region is made at a distance Lcut to the boundary of TSC and the left QAHI. We define subsystem A as the subsystem
to the left of the cut and we denote its compliment AC in Fig. S1. The entanglement entropy of subsystem A is given by

SE = −Tr(ρA log ρA) , [3]

where ρA is the reduced density matrix of the quantum state of subsystem A. With the BdG Hamiltonian adopted, the system
consists of non-interacting fermionic quasiparticles. We denote the annihilation operators of the BdG quasiparticle eigenstates
as αm, m = 1, ..., n. The many-particle state for the fermi sea of the system is then |0〉 satisfying αm|0〉 = 0.

We then consider the evolution of an electron wave packet state injected from lead 1, given by |Ψ(t)〉 = β†(t)|0〉, where
β†(0) is a chosen creation operator of an electron wave packet at time t = 0 located near lead 1 on the QAHI edge, and
β†(t) = eiHtβ†(0)e−iHt is its time evolution. The wave packet is restricted within an energy window [0, vF∆p], which is smaller
than the minimal bulk gap of the system.

The entanglement entropy of the noninteracting fermion states (i.e., Slater determinant states) |Ψ(t)〉 and |0〉 are given by
(1, 2)

SE(t) = −
∑
α

Cα(t) logCα(t) , SE0 = −
∑
α

C0
α logC0

α, [4]
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Fig. S1. The geometry of a QAHI/TSC/QAHI junction. We align the QAHI regime, TSC regime and the other QAHI regime in the x direction. The length of each QAHI regime in
x direction is LQAHI while the length of TSC regime in x direction is LT SC . A cut along y direction at the TSC regime is made at a distance Lcut to the boundary of TSC
and the left QAHI. We define subsystem A as the subsystem to the left of the cut and we denote its compliment AC . For illustration purpose, we only label the compliment
subsystem AC . The position of the initial wave packet is centered at a distance Xc to the boundary of vacuum and the left QAHI. The simulation of Fig. 1E in the main text is
run at the geometry parameters LQAHI = 30, LT SC = 20, Xc = 10 and Lcut = 10.

respectively, where Cα(t) and C0
α are eigenvalues of the correlation matrices defined as follows:

Cis,js′ (t) =
(
〈Ψ(t)|cisc†js′ |Ψ(t)〉 〈Ψ(t)|ciscjs′ |Ψ(t)〉
〈Ψ(t)|c†isc

†
js′ |Ψ(t)〉 〈Ψ(t)|c†iscjs′ |Ψ(t)〉

)
,

C0
is,js′ =

(
〈0|cisc†js′ |0〉 〈0|ciscjs′ |0〉
〈0|c†isc

†
js′ |0〉 〈0|c†iscjs′ |0〉

)
. [5]

Here cis is the electron annihilation operator on site i in the subsystem A, while s, s′ are the spin indices. The correlation
matrix C0 of the fermi sea can be calculated from the eigenstate operators αm. Once the commutators of cis, c†is with the β(t),
β†(t) are determined, the correlation matrix C(t) of the wave packet state can be calculated based on C0, and the entanglement
entropy can be calculated numerically.

We calculate the time evolution of the entanglement entropy SE(t)−SE0 using geometry parameters LQAHI = 30, LTSC = 20,
Xc = 10 and Lcut = 10. We set the wave packet to contain quasiparticle states in an energy window [0, 0.75]. The wave packet
is created by projecting an electron wave packet onto the quasiparticle states in this energy window. Summary of the geometry
parameters is given in Fig. S1, and the evolution of the entanglement entropy is plotted in Fig. 1E of the main text. We can
clearly that after t = 60 when the wave packet has left the TSC regime, the entanglement entropy increase of subsystem A is
quantized at log 2.

3. Calculation of the two terminal conductance

In this supplementary section, we briefly review the calculation of the two terminal conductance for the Corbino junction. The
two terminal conductivity from the lead 1 to the lead 2 can be obtained from the generalized Landauer-Buttiker formula(3):

Ii = e2

h
[(1−Ri +RiA)(Vi − VSC)−

∑
j 6=i

(T ji − T jiA )(Vj − VSC)], i = 1, 2, [6]

where Ii is the current flowing out of the lead i, Vi is the voltage of the lead i, and Tij , T ijA are the normal transmission and
Andreev transmission probabilities from leads i to j (j 6= i), while Ri and RiA are the normal reflection and Andreev reflection
from the lead i back to itself, respectively. As a consistency check, the conductance σ12 of the Corbino junction calculated this
way should agree with our prediction in the main text based on chiral Majorana fermion propagations.

We simulate the time evolution of an electron wave packet initialized inside the lead 1 region using the Hamiltonian from Eq.
(2). At the time when the wave packet reflects (transmits) to the lead 1 (lead 2) neighbourhoods, we stop the time evolution
and compute the probability of reflection and transmission, namely Tij , T ijA , Ri and RiA, from the wave function. Note that if
we connect the electron source directly across leads 1 and 2, we also have an additional constrain:

I1 = −I2 = I. [7]

From Eq. (6) and Eq. (7), we can then solve for two terminal conductivity σ12 = (V1 − V2)/I.

4. Decoherence effect from non-monochromaticity

In the main text, we have discussed the decoherence effect from the non-monochromaticity of the incident electron wave packet.
The non-monochromaticity is described by the momentum uncertainty ∆p of the electron wave packet together with a length
scale characterizes the length difference ∆L of the four chiral Majorana modes γi (1 ≤ i ≤ 4). In this section, we shall discuss
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the precise definition of these parameters in simulation and the method to study the dependence of oscillation amplitude on
them.

As shown in Fig. S2, we put the Corbino junction on a cylindrical lattice with left and right vertical dashed lines identified,
which is equivalent to the Corbino geometry. We can consider an incident electron wave packet from the lead 1. In simulation,
we obtain a wave packet of momentum uncertainty ∆p in the following way. We initialize an electron wave packet broader
than ~/∆p. Then we project this wave function onto the energy eigenspace of Hamiltonian from Eq.(2) in the energy window
vF [−∆p/2,+∆p/2] and normalize the projected wave function as ψ(0). We shall define ψ(0) as the initial electron wave packet
with momentum uncertainty ∆p. Notice that this initial condition is slightly different from the calculation for entanglement
entropy in section 2 because the negative energy state represents a hole of quasiparticle which is impossible to generate from
ground state with no quasiparticles at zero temperature. Here we are considering the non-monochromaticity of electron wave
packet from the finite temperature effect and this initial condition is physical.

TSC TSC TSCQAHI QAHI

lead 1

lead 2

Voltage Gate

LQAHI LTSC
(1)

LTSC
(2) /2 LTSC

(2) /2

LGate

x

y

Fig. S2. Illustration of chiral Majorana interferometry: A band of QAHI with two TSC regimes induced by proximity to a s-wave superconductor. The lengths of of QAH regimes,
TSC regimes and the voltage gate regime are denoted as LQAHI , L(1)

T SC
, L(2)

T SC
and LGate, respectively. If one consider an incident electron wave packet from the lead 1,

we can decompose it into a superposition of two Majorana fermions. Two red lines are paths for those Majorana fermions to travel from the lead 1 to the lead 2 while two blue
lines are paths for those Majorana fermions to travel back to the lead 1. The probability for a charge from the lead 1 to transmit/reflect is contributed by the red/blue paths. The
path difference of two transmitted/reflected paths from the lead 1 is ∆L = |L(1)

T SC
− L(2)

T SC
|.

A suitable perspect is to consider the electron wave packet as a superposition of wave packets of two Majorana fermions.
Upon time evolution, the fate of the two Majorana fermions is either recombination to a particle/hole at the lead 1 or at the
lead 2. For the process that the wave packet ends up back at the lead 1, the probability is contributed by two paths shown as
two blue lines in Fig. S2. In a precise fashion, this can be interpretted as a interferometry of chiral Majorana fermions: the
electron wave packet passes through a "beam splitter" , travels through two arms as through the chiral Majorana mode and
recombines at the lead 1. The length difference of the two arms of the interferometry is ∆L(1) = |L(1)

TSC + L
(2)
TSC − 2Ly| and

we can expect the interference effect in the probability of propagating back to be measurable when ∆L(1)∆p < h. For the
process that the wave packet transmits to the lead 2, similarly, the probability is contributed by two paths shown as two red
lines in Fig. S2. The length difference of the two paths is ∆L(2) = |L(1)

TSC − L
(2)
TSC | and the condition for the interference is

∆L(2)∆p < h. For illustration purpose, we study the case when Ly = L
(1)
TSC so that ∆L(1) = ∆L(2) = ∆L so that a unique

length scale ∆L is defined.
In simulation, we fix the geometry parameters at L(1)

TSC = Ly = 20, LQAH = 30 and LGate = 20 and vary ∆L = L
(2)
TSC−L

(1)
TSC

from 0 to 30. For each L(2)
TSC , we initialize a wave packet at the lead 1 region with momentum uncertainty ∆p/vF ~ = 0.6. We

can simulate the time evolution of the wave packet and obtain σ12 as described in the previous section for VG from 0 to 1. At
∆L = 0 (∆L∆p/~ = 18) and ∆L = 30 (∆L∆p/~ = 18), the dependence of σ12 on VG is shown in Fig. 3A in the main text
with an oscillation feature. We can also observe similar oscillation for other ∆L and the peak-to-valley oscillation amplitude
has a dependence on ∆L∆p/~ shown in Fig. 3A in the main text.

5. Phase shift of φG due to nonzero chemical potential µ

In this section we discuss the phase shift of φG in the two terminal conductance σ12 of the Corbino junction due to chemical
potential and static disorders on the QAHI edges. When the chemical potential µ on a QAHI edge is nonzero, the Hamiltonian
of the corresponding charged chiral edge state ψ is

HF (x) = −i~vFψ†(x)∂xψ(x)− µ(x)ψ†(x)ψ(x) . [8]

Solving the Shrödinger equation yields an electron wave function

ψ(x, t) = exp
[

i

~vF

∫ x

0
µ(x′)dx′

]
ϕ0(x− vF t) , [9]

where ϕ0(x) is an arbitrary function of x. Therefore, a chiral fermion wave packet accumulates a phase φ =
∫ x2
x1

µ(x)dx after
propagation from x1 to x2 which is fixed by the function of chemical potential µ(x). In contrast, a chiral Majorana fermion
always has zero chemical potential as ensured by the particle-hole symmetry of TSC.
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In the Corbino junction as shown in Fig. 2A of the main text, assume charged chiral state ψα (α = A,B,C,D) accumulates
an additional chemical potential induced phase φα during propagation on the corresponding QAHI edge. In the odd fermion
parity subspace {|0A1B〉, |1A0B〉}, the total unitary transformation becomes

|ψf 〉 =
(

e−iφB 0
0 e−iφA

)
ZHRφG

(
e−iφD 0

0 e−iφC

)
ZH|ψi〉 , [10]

which is equivalent to insertion of two additional phase gates. As a result, an initial state |ψi〉 = |1A0B〉 transforms into a final
state

|ψf 〉 = e−i(φG+φD+φC)/2
(
e−iφB cos φG + φ0

2 |0A1B〉+ ie−iφA sin φG + φ0

2 |1A0B〉
)
, [11]

where φ0 = φD − φC . Therefore, the conductance σ12 becomes

σ12 = (1− |〈ψf |ψi〉|2)e
2

h
= 1 + cos(φG + φ0)

2
e2

h
. [12]

6. Bloch sphere illustration of the Corbino junction

In this section, we present an illustration for the time evolution of the qubit on its Bloch sphere after injecting an electron wave
packet from lead 1. As shown in Fig. 2 in the main text, the charged chiral fermion modes on the QAHI edges are labeled
as ψA, ψB , ψC and ψD. If we regard the charged chiral edge modes of QAHI region I (ψA and ψC) as the data qubit, and
those of QAHI region III (ψB and ψD) as the ancilla qubit, the junction can be viewed as a series of quantum gates as shown
in Fig. 2B in the main text, with a total unitary evolution |ψf 〉 = ZHRφGZH|ψi〉. The initial state of the wave packet is
|1A0B〉 occupying a ψA fermion state. The electron wave packet will then approach the TSC II region and leave this region as
chiral fermion mode ψC or ψD. If we define the qubit state (|0〉, |1〉) as (|0A1B〉, |1A0B〉) before the wave packet approaches the
TSC II region and (|0C1D〉, |1C0D〉) after the wave packet leaves the TSC II region, the time evolution of such a process can
be viewed as the operator ZH acting on a qubit which is initialized at |1〉 state at north pole of its Bloch sphere. The ZH
operator is a rotation of π/2 along y axis and upon the operation, the qubit rotates to +x direction on the Bloch sphere. After
leaving the TSC II region, the wave packet may enter the voltage gate and the effect of voltage gate is to contribute additional
phase φG to state |0C1D〉 while 0 to state |1CDD〉 and therefore is a rotation of −φG along z axis in the Bloch sphere of qubit
(|0C1D〉, |1C0D〉). Before reaching leads, the wave packet must also approach the TSC IV region and leave this region as chiral
fermion mode ψA or ψB . The time evolution of such a process can be viewed as the operator ZH rotating the qubit by π/2
along y axis on the Bloch sphere if we define the qubit state (|0〉, |1〉) in as (|0C1D〉, |1C0D〉) before the wave packet approaches
the junction and (|0A1B〉, |1A0B〉) after the wave packet leaves the junction. From Fig. S3(A-D), we can clearly see the time
evolution of the qubit on the Bloch sphere of the process that we have described in this paragraph and the final state at polar
angle π − φG and azimuthal angle π/2 on the Bloch sphere. This is an illustrative derivation of Eq. (4) in the main text.

ZHR
G

ZHInitial state

A B C D

Fig. S3. The time evolution of a qubit. (A). The electron wave packet is ejected from the lead 1 and occupies one state of ψA fermion. The qubit at this time is
initialized at |1A0B〉. (B). The effect of the QAHI I–TSC II–QAHI III junction is a rotation of π/2 along y axis on the Bloch sphere if we define the qubit state (|0〉, |1〉) as
(|0A1B〉, |1A0B〉) before the wave packet approaches the junction and (|0C1D〉, |1C0D〉) after the wave packet leaves the junction. (C). The effect of the voltage gate is
a rotation of−φG along z axis state on the Bloch sphere of qubit (|0C1D〉, |1C0D〉). (D). The effect of the QAHI III–TSC IV–QAHI I junction is a rotation of π/2 along y
axis on the Bloch sphere if we define the qubit state (|0〉, |1〉) as (|0C1D〉, |1C0D〉) before the wave packet approaches the junction and (|0A1B〉, |1A0B〉) after the
wave packet leaves the junction.

7. Understanding of the unitary transformation via vortex operators

Hereby we show the propagation of chiral Majorana wave packets on the TSC edges are physically equivalent to the non-Abelian
braiding of π-flux vortices (which trap MZMs) in the TSC bulk.
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The chiral TSC edge is known to be described by the chiral Ising conformal field theory (CFT). By defining z = v−1
F x−(t−iδ)

and z̄ = v−1
F x+ (t− iδ), the edge action takes the form

S =
∫
dxdtγ(x, t)∂̄γ(x, t),

where we use ∂ = ∂z and ∂̄ = ∂z̄ for short. For imaginary time t = −iτ , the above z and z̄ are simply the holomorphic and
antiholomorphic coordinates in the x, τ plane. The equation of motion then indicates γ(x, t) = γ(z). In addition, the chiral
Ising CFT contains the chiral vortex operator σ(x, t) = σ(z), while γ and σ satisfy the Ising fusion rules

σ × σ = 1 + γ, γ × γ = 1, σ × γ = σ. [13]

In particular, two σ fields may fuse into either a bosonic or a fermionic field, thus σ is said to be non-Abelian.
To get a better understanding of the vortex operator σ, we first recall the nonchiral Ising CFT with action

Snonchiral =
∫
dxdt[γ(z)∂̄γ(z) + γ̄(z̄)∂γ̄(z̄)],

which describes the critical point of the 1 + 1D transverse field Ising model, where γ(z) and γ̄(z̄) are the right and left moving
Majorana fermion fields, respectively. The nonchiral vortex operator is simply the Ising spin sz(x, t) = σ(z)σ̄(z̄), which is the
product of the holomorphic vortex σ(z) and the antiholomorphic vortex σ̄(z̄). When we recover the lattice Ising model defined
on sites x = na where n is integral, the right-moving and left-moving Majorana fields γ and γ̄ are well-defined at low energies,
and the Ising spin can be expressed in terms of the Majorana fermion fields via a Jordan-Wigner transformation

sz(x, t) =

[∏
x′<x

iγ̄(x′, t)γ(x′, t)

]
[γ(x, t) + γ̄(x, t)] , [14]

where iγ̄(x′, t)γ(x′, t) gives the fermion parity of site x′ at low energies. Therefore, one can roughly decompose it into the
product of the following holomorphic and antiholomorphic chiral vortex fields:

σ(x, t) =
∏
x′≤x

γ(x′, t) , σ̄(x, t) =
∏
x′≤x

γ̄(x′, t) . [15]

In this way, the chiral vortex fields σ(z) and σ̄(z̄) can be understood as half-infinite strings of chiral Majorana fields γ and γ̄ in
the interval [−∞, x] at time t, respectively. The chiral Ising CFT fusion rule is then easy to understand in the lattice picture:
when the lattice difference |x1 − x2| → 0, the operator product σ(x1, t)σ(x2, t) =

∏
x1<x≤x2

γ(x, t), which is either bosonic or
fermionic depending on (x2 − x1)/a is even or odd. Furthermore, when a Majorana fermion γ is moved around a vortex field σ
in the complex z plane, it necessarily crosses the Majorana string (exchange with a Majorana field on the string) once, and
acquires a sign change. Therefore, σ behaves as a π flux vortex in the complex z plane for γ.

In the setup of our main text Fig. 1A, the complex chiral fermion ψA on the lower left QAH edge is equivalent to two
copies of the chiral Ising CFT with the same chirality, namely, one can define two chiral Majorana fields γ1 and γ2 satisfying
ψA = γ1 + iγ2. Accordingly, their vortex fields σ1 and σ2 can be understood as as half-infinite strings of γ1 and γ2, respectively
(we do not need to worry about boundary conditions since all edges in our setup are open and connected to metallic leads). The
incident qubit A, defined by the occupation number of an electron wave packet at x on edge A and at time t, is then equivalent
to the insertion of two vortices fields, one σ1(x, t) and one σ2(x, t), which together spans a 2D Hilbert space. More explicitly,
the operator product limx→y σ1(x, t)σ2(x′, t) tends to (−1)nF γ1(x), (−1)nF or (−1)nF γ2(x) depending on (x− x′)/a = 1, 0
or −1, respectively, where nF =

∫ x
−∞ iγ1(x′)γ2(x′)dx′ is the fermion number on the left of x. Therefore, σ1 and σ2 fuses into a

2D Hilbert space spanned by two local Majorana operators (wave packets) γ1(x) and γ2(x). The injection of an electron at
lead 1 (state |1A〉) corresponds to injection of σ1 and σ2 in the fermionic fusion channel, and the injection of "nothing" (state
|0A〉) is the insertion of σ1 and σ2 in the bosonic fusion channel. We note that since the injected electron wave packet state is a
charge eigenstate (i.e., carrying a definite charge), it can only be split into one σ1 and one σ2, instead of two σ1 (or two σ2)
vortices. Two σ1 fields will fuse into a Bogoliubov fermion state which is not a charge eigenstate.

We now show that the propagation of chiral Majorana wave packets on the edges is physically equivalent to the braiding/fusion
of π-flux vortices in the bulk of the TSC, which is extensively studied in the literature. As shown in Fig. S4A, in the 2 + 1D
spacetime of the device, a vortex σ inserted at time t on the TSC boundary can be adiabatically connected with a π flux
vortex in the TSC bulk via a Wilson loop. (In fact, a vortex on the boundary has to continue into the bulk as a Wilson loop
to be a legal object in the bulk topological field theory, and the Wilson loop is nothing but the world line of the vortex.) In
the topological quantum field theory (TQFT) description of the bulk TSC, all the physical processes are determined by the
configuration of Wilson loops in the spacetime. In particular, given two Wilson loops connecting two bulk vortices and two
boundary vortices, exchange of two vortices on the boundary (t, x) sheet or braiding of two vortices in the bulk (x, y) plane
lead to the same change of the Wilson loop configuration, so they are physically equivalent. Similarly in our case, the creation
and fusion of four vortices on the TSC boundary (Fig. S4C, with bulk doing nothing) is equivalent to creation and fusion of
four vortices in the TSC bulk (Fig. S4D, with boundary doing nothing), since they yields the same change of Wilson loop
configuration in the spacetime (from Fig. S4A to Fig. S4B).
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Fig. S4. Equivalence between propagation of edge chiral Majorana fermions and bulk braiding of vortices. (A) The two qubits A and B
are equivalent to four vortex operators σi on the boundary of the TSC at a particular time t. Each vortex on the boundary can be connected with a bulk vortex via a Wilson loop.
(B) The Wilson loop configuration after a bulk vortex braiding and fusion, which is equivalent to that after a boundary evolution as we described in the main text. (C) The
incident states at edges A and B can be viewed as insertion of four vortices σi. (D) By dragging the four vortices into the TSC bulk (along with the incident fermions they trap),
and then braid and fuse the vortices in the bulk, one obtain the same final states as that obtained after propagation of chiral Majorana wave packets on the edges.

Therefore, one can imagine the following process which is equivalent to the propagation of chiral Majorana wave packets
(Fig. S4C and S4D): when an incident electron on QAH edge A encounters the TSC boundary, one can create two vortices σ1
and σ2 at the position of the incident electron, then drag the two vortices into the TSC bulk, and trap the incident electron
into them at the same time. Similarly, we can create two vortices σ3 and σ4 at the corner of QAH edge B and drag them into
the bulk TSC. Then we braid and fuse the vortices as shown in Fig. S4D, and then drag the fused pair of vortices to QAH
edges C and D, respectively. In such a process, the propagation of chiral Majorana fermions on the TSC edge is replaced by
braiding of vortices in the bulk, but the outcome remains the same. This shows the two processes are topologically equivalent.

In the end, we briefly clarify the possible conceptual confusions about MZM, Majorana fermion and Ising anyon (vortex).
First of all, MZMs or Majorana fermions in any other context (e.g., chiral Majorana fermion on 1D edge) are fermions, and
obey fermionic statistics which belongs to Abelian statistics. They satisfy the fusion rule γ × γ = 1, namely, the product of two
neighbouring Majorana fermion operators gives a topologically trivial bosonic operator. In a topological state of matter, the
bosonic operator does not change the topological ground state, thus lives in a 1-dimensional Hilbert space (the ground state),
and this means the Majorana fermion operator γ is Abelian. Besides, the Majorana fermion operator γ satisfy the fermionic
statistics that exchanging two fermions yields a phase factor R1

γγ = −1.
In contrast, the Ising anyons (or vortices) σ are non-Abelian anyons. In the bulk of p + ip chiral TSC, σ is simply a

superconducting vortex where the order parameter ∆ has a 2π phase winding. They satisfy fusion rules σ × σ = 1 + γ,
which means the product of two nearby σ operators can composite into either a bosonic operator 1 or a fermionic operator γ.
Therefore, two σ fields occupy a 2-dimensional Hilbert space, so they obey non-Abelian statistics. In the Ising topological
quantum field theory, the braiding of two σ fields acquires a phase depending on their fusion channel: when two σ are in the
fusion channel 1 and γ, the braiding phases they acquired are R1

σσ = eiθ and Rγσσ = eiθ+iπ/2, respectively. The two fusion
channels thus differ by a eiπ/2 braiding phase.

In the bulk of p+ ip TSC, a vortex σ, namely an Ising anyon, traps a MZM γ at the vortex core, which can be seen by
solving the Bogoliubov-de Gennes Hamiltonian of the TSC. For this reason, in many discussions the Ising anyon σ is not
carefully distinguished with the MZM γ. We emphasize that they are indeed closely related, but are quite different concepts. σ
is a non-Abelian Ising anyon, while γ is Abelian. Their relation can be stated as follows: the fusion of two Ising anyons σ1 and
σ2 yields a single fermion degree of freedom, which can be described by the superposition of MZM operators γ1 and γ2.
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