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SI Methods 

Strains, media, and oligonucleotides used in this study. All genetic work was performed in a MATa 

ku80-Δ NHEJ-deficient background derived from K. lactis CBS2359 (1, 2) and in a MATa his3Δ1 leu2Δ0 

lys2Δ0 ura3Δ0 background of S. cerevisiae (BY4741) (3). Other yeast species used were obtained from 

the ARS Culture Collection (NRRL) in Peoria, IL, including K. marxianus Y-8281, K. nonfermentans Y-

27343, Ko. pastoris Y-1603, Ko. pseudopastoris Y-27603, and Lachancea waltii Y-8285. Lachancea 

thermotolerans Y-8284 was provided by Gilles Fischer. For growth experiments in S. cerevisiae using 

BY4741-derived strains, a synthetic complete (SC) defined medium lacking uracil was used to maintain 

the pRS426 vector and its derivatives. The basic growth medium contained 5g/L ammonium sulfate, 

1.72g/L yeast nitrogen base, 2g/L synthetic drop-out mix minus uracil, and 20g/L glucose (all reagents 

from US Biological Life Sciences). The same medium was used for K. lactis growth experiments, except 

the drop-out mix contained uracil. The rich, undefined YPD medium contained 10g/L yeast extract, 20g/L 

peptone, and 20g/L glucose (all reagents from US Biological Life Sciences). A complete list of strains 

and oligonucleotides used can be found in Supporting Tables 1 and 2. 

Kluyveromyces lactis targeted gene replacement. The KanMX4 cassette was amplified from the PCR 

template pUG6 (4) and fused to 250-bp PCR products directly flanking the gene of interest on both sides 

using splicing-by-overlap extension PCR. Oligonucleotides were purchased from Integrated DNA 

Technologies and can be found in Table S2. The resulting PCR products were electroporated into K. lactis 

using an Eppendorf Eporator and electroporation cuvettes with a 0.2cm gap width. Preparation of 

electrocompetent cells was performed as described previously, but without HEPES buffer in the pre-

electroporation incubation step (1). Cells were plated directly onto YPD following electroporation and 

grown overnight at 30°C before replica plating onto YPD plates containing 200 mg/L G418 (US 

Biological Life Sciences). Complementation of mutants was performed by amplifying the complete 

intergenic regions surrounding the coding sequences (CDS) of interest, fused to 250-bp PCR products 

directly flanking the KlURA3 gene, followed by electroporation, overnight growth at 30oC and replica 

plating onto SC plates containing 1 g/L 5’-FOA and 50 mg/mL additional uracil (US Biological Life 

Sciences). Constitutive gene expression of PUL1 and PUL2 was performed by cloning each CDS flanked 

by the EgTEF1 (also known as MX) promoter-terminator pair into the multiple cloning site of pIL68, a 

vector containing a replication sequence functional in K. lactis (5), followed by transformation into the 

appropriate strain and selection on SC plates lacking uracil.    

Saccharomyces cerevisiae targeted gene replacement. The KanMX4 cassette was amplified from the 

PCR template pUG6 (4) using oligonucleotides containing 40bp of homology immediately upstream and 

downstream the CDS of the target gene. Cells were transformed using standard lithium acetate/ssDNA 

chemical transformations (6), and selected on YPD plates containing 200 mg/L G418. Complementation 

of mutants was performed by amplifying the complete intergenic regions surrounding the CDS of interest 

using oligonucleotides with 40bp of homology at the 5’-end to the SmaI site of pRS426, followed by co-

transformation with SmaI-digested pRS426 (7) and selection on SC plates lacking uracil.  

Pulcherriminic acid extraction. Extraction of pulcherriminic acid was performed similarly to classic 

protocols (8), with a few modifications. A strain of Metschnikowia sp., yHQL305, isolated from leaves 

from the Standish-Hickey State Recreational Area in California using established protocols (9), was 

grown to saturation in 50mL minimal medium with 2% (w/v) glucose and 100µM FeCl3. The whole 

culture was treated with 50% (w/v) KOH to reach a final concentration of 5%(w/v) KOH. The mixture 

was centrifuged at 1,800xg for 10 minutes at 20°C to remove cellular debris and precipitate iron. 45mL of 

cleared supernatant was transferred to a fresh container, to which 100µL 3.3M FeCl3 was added, followed 

by 5.5mL of concentrated (36.5-38%) HCl to neutralize the KOH and reduce the pH to approximately 1. 



Pulcherrimin typically precipitated at this step, but an overnight incubation at 4°C was sometimes 

required. The mixture was centrifuged at 1,800xg for 10 minutes at 20°C to pellet the pulcherrimin, which 

was then washed with 1M HCl, dH2O, and finally 100% ethanol. The pulcherrimin was then allowed to 

completely dry before weighing. Pulcherriminic acid was re-dissolved to the desired concentration by 

adding the proper amount of 5%(w/v) KOH, centrifuging the insoluble iron, and transferring the cleared 

supernatant to a fresh container; aliquots were then stored at -20°C for future experiments. 

Growth experiments and PA-treatment. Growth experiments were performed in 96-well plates on a 

FLUOstar Omega plate reader (BMG Labtech). Experiments using only S. cerevisiae and K. lactis were 

performed at 30°C, while experiments using several yeast species were performed at 22°C to permit the 

growth of species that prefer cooler temperatures. For K. lactis experiments, cells were precultured in 

YPD overnight, OD was normalized across all cultures using fresh YPD, and cells were added to 

individual wells at a final OD of 0.05. For S. cerevisiae experiments, cells were precultured in SC without 

uracil overnight, OD was normalized across all cultures using fresh SC without uracil, and cells were 

added to individual wells at a final OD of 0.05. OD595 readings were measured over the course of 40-48 

hours at 15- or 30-minute intervals and normalized against corresponding uninoculated wells. For PA-

treated SC medium, pulcherriminic acid in 5% KOH was added to the medium to a final concentration of 

20µM in SC medium (with or without uracil), followed by addition of 0.9 equivalents of 1M HCl. 

Conditions lacking PA treatment were treated with a blank 5% KOH solution, followed by addition of 0.9 

equivalents 1M HCl. Ferric iron supplementations were performed by the addition of FeCl3 (VWR Life 

Science) to 20µM to demonstrate that PA-treatment was ineffective if excess iron was supplemented 

(Figure S5C).  

Multi-species growth experiments. For comparisons of species that contain or lack PUL3 and PUL4, 

two species from each of five genera were selected; species containing both genes are listed first, while 

those lacking PUL3 or both genes are listed second: Saccharomyces cerevisiae and Saccharomyces 

mikatae; Kluyveromyces marxianus and Kluyveromyces nonfermentans; Lachancea thermotolerans and 

Lachancea waltii; Metschnikowia fructicola and Metschnikowia bicuspidata; Komagataella pastoris and 

Komagataella pseudopastoris. For growth assays of multiple species, cells were precultured in YPD for 

two days at room temperature, individual wells were inoculated at a dilution of 2µl culture per 150µL 

final volume. OD595 readings were measured over the course of 40-48 hours at 15- or 30-minute intervals 

and normalized against corresponding uninoculated wells. 

Analysis of growth curve data. Growth data from plate reader experiments was analyzed using the grofit 

package in R under the ‘logistic’ model of growth (10). For instances of negligible growth, grofit was 

unable to calculate parameters for a logistic growth model; therefore, the spline-fitted values were used 

for these instances. Where technical replicates were performed on a single plate, the median values were 

used for the biological replicate. Values described in the Results section are mean values of at least three 

biological replicates. Representative growth curves used in figures were the biological replicates that most 

closely resembled the mean maximum growth rates and lag times of the three (or more) biological 

replicates. Growth curve plots were generated using ggplot2 in R (11). Statistical comparisons of growth 

rates and/or lag phase durations generated in grofit were performed using paired Student’s t-tests for a 

minimum of three biological replicates. All paired comparisons were grown concurrently on the same 

plate using the same reagents. For the multi-species statistical test, mean growth rate ratios of PA-

treated:untreated SC media for three biological replicates of each species were compared between the two 

groups (containing PUL3 and PUL4 vs. lacking PUL3 or both). A paired Student’s t-test was performed, 

using species paired within each genus. 



BLAST search for PUL gene homologs outside Saccharomycotina. Amino acid sequences from K. 

lactis (NC_006039.1) for the PUL1-4 genes were used as query sequences with BLASTp using default 

parameters against the GenBank non-redundant (nr) protein sequence database. The results of this 

manuscript represent searches performed on August 16, 2017. Corresponding nucleotide sequences were 

extracted for each protein entry via the CDS-linked entry. 

Analysis of gene neighborhoods. From the list of BLAST hits for PUL gene homologs, nucleotide 

accession numbers were obtained using NCBI's Entrez Programming Utilities. This list of accession 

numbers was then used to obtain GFF3 files for their corresponding nucleotide sequences. From here, 

only lines pertaining to coding sequences were extracted, and redundant CDS entries for multi-exon genes 

were removed. Five CDS preceding and following the BLAST-derived homolog entry were extracted, 

and protein sequences for these genes were obtained from NCBI's Batch Entrez. To identify PUL gene 

homologs that might have been missed in initial BLAST searches, a local blast database was created 

using these sequences, and all sequences were searched against this database. These BLAST networks 

were visualized using cytoscape (12), and networks containing PUL gene homologs were extracted for 

further use. Gene clusters containing homologs of all four PUL genes are shown in Figure S10. 

Sequence alignment and phylogeny construction The whole-genome phylogeny was constructed from 

the concatenated alignment of 1,037 BUSCO genes. Bootstrap supports for the phylogeny obtained from 

the super-alignment of BUSCO genes were calculated with the MPI version of ExaML (13) under the per-

site rate category model (PSR) and with the memory saving option enabled. For the individual PUL gene 

phylogenies, nucleotide sequences for each of four genes in the PUL cluster were translated, and amino 

acid multiple sequence alignments were constructed using MAFFT (14), MUSCLE (15), and T-Coffee 

(16). Resulting alignments were trimmed using trimAl (17) v1.2 with the “-strict” option on, and all other 

options set to default. Phylogenies were constructed using RAxML (18) v.8.1.20, first identifying the best 

model using “PROTGAMMAAUTO.” The best maximum likelihood tree was obtained from twenty 

maximum likelihood searches, and 1,000 standard bootstrap replicates were performed. Trees were 

visualized for figure generation in FigTree (19) v.1.4.3. 

Topology testing. For Approximately Unbiased (AU) tests, all reasonable tree topologies were generated 

using all possible rearrangements of the individual genera represented in the gene alignment. When 

genera were not monophyletic in the maximum likelihood tree (e.g. Zygotorulaspora spp.), they were 

split up, and when subtrees containing multiple genera had bootstrap support values greater than 70 (e.g. 

Candida auris and Metschnikowia, Lachancea thermotolerans and Kluyveromyces), these were kept 

together to keep the numbers of tested trees manageable. Constrained ML trees were constructed in 

RAxML using the “-g” option to supply a corresponding phylogenetic tree file. Per-site likelihoods were 

calculated in RAxML, and one-sided Kishino-Hasegawa (KH) tests (20) and AU tests were performed 

using CONSEL (21) v.1.20. Significance of the resulting p-values were determined using a Bonferroni-

correction of p < 0.05 for 12 alignments (p < 4.1x10-3). KH test results, AU test results, and an 

explanation of these results can be found in Table S3. 



Supporting Figure 1 – Complete BUSCO maximum likelihood phylogeny from Figure 1 without collapsed nodes, with branch lengths and 

bootstrap support values from 100 replicates. The tree was constructed from a concatenated nucleotide alignment of 1,037 BUSCO genes 

containing 741,755 positions and 100 taxa using RAxML v.8.2.9. Bootstrap supports for the phylogeny obtained from the super-alignment of 

BUSCO genes were calculated with the MPI version of ExaML (12) under the per-site rate category model (PSR) and with the memory saving 

option enabled. All nodes have bootstrap support values of 100, except those labeled. Poorly supported nodes do not involve the four newly 

sequenced species, and alternative topologies are discussed more thoroughly in a recent comprehensive phylogenomic study (21).



Figure S2 – Complementation of pul gene replacement strains were performed by integrating the wild-

type gene into the URA3 locus of K. lactis. All complemented strains turn red on synthetic complete 

medium. 



Figure S3 – Cross-feeding experiments were performed by patching a colony of each genotype nearby to 

one another on SC medium. Strains expressing PUL1 are on the left and stay white during growth, while 

strains expressing PUL2 are on the right and turn pink during growth. Note that, absent this cross-feeding, 

neither pul1Δ, pul2Δ, nor pul4Δ strains produce pigment (Figure 2A). 



Figure S4 – K. lactis pulcherrimin biosynthesis mutants expressing pulcherrimin biosynthesis genes from 

Bacillus subtilis. Left – pul1Δ mutant expressing BsyvmC. Right – pul2Δ mutant expressing BscypX. 

Neither strain shows restoration of pigmentation. 



Figure S5 – A) pul— suppressors forming on SC in the pul3Δ mutant. B) The large white Pul—colonies 
from (A) were re-streaked onto SC agar plates and grew normally without pulcherrimin production. 

Counterclockwise from bottom left: pul3Δ; pul3Δ suppressor-1; pul3Δ suppressor-2; pul3Δ suppressor-3; 

wild-type K. lactis; pul3Δ pul1Δ.  



Figure S6 – A) Representative growth curves of K. lactis pul mutants in synthetic complete medium 
without addition of pulcherriminic acid. The PUL3 strain is a pul3Δ ura3Δ::PUL3 strain complemented 

with the wild-type PUL3 gene. B) Growth of K. lactis complemented pul mutant strains in PA-treated SC 

medium. 



Figure S7 – A) Representative growth curves of S. cerevisiae pul mutants in synthetic complete medium 
without addition of pulcherriminic acid. B) Growth of complemented S. cerevisiae pul mutants in 

synthetic complete medium with addition of pulcherriminic acid. C) Growth of S. cerevisiae pul mutants 

in PA-treated medium, with addition of FeCl3. 



Figure S8 - Gene arrow diagrams of PULcherrimin gene clusters in filamentous fungi and 
basidiomycetes. Gene neighborhoods of PUL1 homologs that contained genes with similarity to a 

cytochrome P450 oxidase, MFS transporter, and transcription factor are shown. 
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Figure S9– Gene trees for PUL1 and homologs. Trees were rooted on branches leading to a 
basidiomycetous homolog for each gene. Bootstrap values for 1000 replicates shown. A) MAFFT 

alignment, B) MUSCLE alignment, C) T-Coffee alignment.  
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Figure S10 – Gene trees for PUL2 and homologs. Trees were rooted on branches leading to a 
basidiomycetous homolog for each gene. Bootstrap values for 1000 replicates shown. A) MAFFT 

alignment, B) MUSCLE alignment, C) T-Coffee alignment. The Aspergillus turcosus/Aspergillus 

thermomutatus/Aspergillus lentulus/Aspergillus fischeri/Aspergillus fumigatus/Aspergillus udagawae 

clade had short branch lengths and poor bootstrap support, so it was collapsed for easier viewing.  
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Figure S11 – Gene trees for PUL3 and homologs. Trees were rooted on branches leading to a 
basidiomycetous homolog for each gene. Bootstrap values for 1000 replicates shown. A) MAFFT 

alignment, B) MUSCLE alignment, C) T-Coffee alignment.  
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Figure S12 – Gene trees for PUL4 and homologs. Trees were rooted on branches leading to a 
basidiomycetous homolog for each gene. Bootstrap values for 1000 replicates shown. A) MAFFT 

alignment, B) MUSCLE alignment, C) T-Coffee alignment. The Fusarium fujikuroi clade and the 

Fusarium oxysporum clade were collapsed for ease of viewing due to short branch lengths and poor 

bootstrap support.  



Table S1 – Yeast strains and plasmids used in this study 

Strain Genotype, properties Source or reference 

Kluyveromyces lactis   

   

CBS2359 ku80Δ MATa ku80Δ; NHEJ-deficient strain for 

efficient gene targeting 

Kooistra et al. 2004 

pul1Δ (yHDK46) MATa ku80-Δ pul1Δ::KanMX4 This study 

pul2Δ (yHDK49) MATa ku80-Δ pul2Δ::KanMX4 This study 

pul3Δ (yHDK61) MATa ku80-Δ pul3Δ::KanMX4 This study 

pul4Δ (yHDK58) MATa ku80-Δ pul4Δ::KanMX4 This study 

pul1Δ; PUL1 (yHDK81) MATa ku80-Δ pul1Δ::KanMX4 

ura3Δ::PUL1 

This study 

pul2Δ; PUL2 (yHDK55) MATa ku80-Δ pul2Δ::KanMX4 

ura3Δ::PUL2 

This study 

pul3Δ; PUL3 (yHDK82) MATa ku80-Δ pul3Δ::KanMX4 

ura3Δ::PUL3 

This study 

pul4Δ; PUL4 (yHDK85) MATa ku80-Δ pul4Δ::KanMX4 

ura3Δ::PUL4 

This study 

pul1Δ pul3Δ (yHDK105) MATa ku80-Δ pul1Δ::HygMX 

pul3Δ::KanMX4 

This study 

pul1Δ ura3-Δ [pIL68-

PUL2] (yHDK218) 

MATa ku80-Δ ura3-Δ pul1Δ::HygMX 

[pIL68-URA3-PEgTEF1-PUL2-TEgTEF1] 

This study 

pul2Δ ura3-Δ [pIL68-

PUL1] (yHDK221) 

MATa ku80-Δ ura3-Δ pul2Δ::KanMX4 

[pIL68-URA3-PEgTEF1-PUL1-TEgTEF1] 

This study 

pul4Δ ura3-Δ [pIL68-

PUL1] (yHDK224) 

MATa ku80-Δ ura3-Δ pul4Δ::KanMX4 

[pIL68-URA3-PEgTEF1-PUL1-TEgTEF1] 

This study 

pul4Δ ura3-Δ [pIL68-

PUL2] (yHDK227) 

MATa ku80-Δ ura3-Δ pul4Δ::KanMX4 

[pIL68-URA3-PEgTEF1-PUL2-TEgTEF1] 

This study 

pul1Δ ura3-Δ [pIL68-

BsyvmC] (yHDK230) 

MATa ku80-Δ ura3-Δ pul1Δ::HygMX 

[pIL68-URA3-PEgTEF1-BsyvmC-TEgTEF1] 

This study 

pul2Δ ura3-Δ [pIL68-

BscypX] (yHDK233) 

MATa ku80-Δ ura3-Δ pul2Δ::KanMX4 

[pIL68-URA3-PEgTEF1-BscypX-TEgTEF1] 

This study 

   

Saccharomyces cerevisiae 

 

  

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Brachmann et al. 1998 

   

pul3Δ (yHDK52) MATa his3-Δ1 leu2-Δ0 met15-Δ0 ura3-Δ0 

pul3Δ::KanMX4 

This study 

pul3Δ [pRS426] (yHDK64) MATa his3-Δ1 leu2-Δ0 met15-Δ0 ura3-Δ0 

pul3Δ::KanMX4 [pRS426-URA3] 

This study 

pul3Δ [pRS426-PUL3] 

(yHDK91) 

MATa his3-Δ1 leu2-Δ0 met15-Δ0 ura3-Δ0 

pul3Δ::KanMX4 [pRS426-PUL3-

URA3] 

This study 

pul4Δ (yHDK54) MATa his3-Δ1 leu2-Δ0 met15-Δ0 ura3-Δ0 

pul4Δ::KanMX4 

This study 

pul4Δ [pRS426] (yHDK67) MATa his3-Δ1 leu2-Δ0 met15-Δ0 ura3-Δ0 

pul4Δ::KanMX4 [pRS426-URA3] 

This study 

pul4Δ [pRS426-PUL4] 

(yHDK87) 

MATa his3-Δ1 leu2-Δ0 met15-Δ0 ura3-Δ0 

pul4Δ::KanMX4 [pRS426-PUL4-URA3] 

This study 



   

   

Plasmids 

 

  

pUG6 KanMX4, AmpR Güldener et al. 1996 

pRS426 S. cerevisiae URA3, AmpR Sikorski and Hieter 1989 

pIL68 S. cerevisiae URA3, AmpR, K. lactis ARS Liachko and Dunham 

2014 

 



Oligo Name Sequence 

Amplification of the KanMX4 cassette for OEPCR 

oHRW36 5’-CAGCGACATGGAGGCCCAGAATACCC-3’ 

oHRW37 5’-AGCTCGTTTTCGACACTGGATGGCG-3' 

Amplification of flanking sequence to KlPUL1 for replacement with KanMX4 

oHDK56 5’-TGAACACGCTATGCATCAATTTGACAA-3’ 

oHDK57 5’-GGGTATTCTGGGCCTCCATGTCGCTGTTTTAATTTTCTTGGTGCATGCCATCG-3’ 

oHDK75 5’-CGCCATCCAGTGTCGAAAACGAGCTTAACTAATATTTTTGCCTAGAATCTATATACCA-3’ 

oHDK76 5’-GTGCTCTGCTGTGATTTCTTCTCGACT-3’ 

Amplification of flanking sequence to KlPUL2 for replacement with KanMX4 

oHDK77 5’-CGGTTTGAGGTTATTGTAAAAGACAGG-3’ 

oHDK78 5’-GGGTATTCTGGGCCTCCATGTCGCTGTTCTTTCCTGTTGCGCTTCAATTGTC-3’ 

oHDK58 5’-CGCCATCCAGTGTCGAAAACGAGCTGAAATTTTTTTGAAAGTCTGTGTTGAA-3’ 

oHDK64 5’-ATTGAAGAACGAATGAGCACCTGAAG-3’ 

Amplification of flanking sequence to KlPUL3 for replacement with KanMX4 

oHDK113 5’-ATAGTTTGCCAACTGCATCGAATG-3’ 

oHDK114 5’-GGGTATTCTGGGCCTCCATGTCGCTGTGTTAGCCTTTTGTTCTTATCAGGT-3’ 

oHDK115 5’-CGCCATCCAGTGTCGAAAACGAGCTAGGCAATAAAAGTAGCACCTGATGT-3’ 



oHDK116 5’-CCGTGACACCAAAGGAATTTTTTCC-3’ 

Amplification of flanking sequence to KlPUL4 for replacement with KanMX4 

oHDK121 5’-TATATCCAATTCGGTATCTAGGGAGTGA-3’ 

oHDK122 5’-GGGTATTCTGGGCCTCCATGTCGCTGCAATCAAATGTGCTACACCTAATGTTAGAT-3’ 

oHDK123 5’-CGCCATCCAGTGTCGAAAACGAGCTTCGGACAGCATAACAATTATCATCGATTTA-3’ 

oHDK124 5’-CAAATCGCACCCAGAGAGCTGACT-3’ 

Amplification of the deleted loci for confirmation 

oHDK60 5’-AAAACTCGAGGGTGGAAGTACTTCTAAAAAAACC-3’ 

oHDK79 5’-AAAAGCGGCCGCTTCTTTCCTGTTGCGCTTCAA-3’ 

oHDK61 5’-TTTTGCGGCCGCTCAATCAAATGTGCTACACCTAATA-3’ 

oHDK80 5’-AAAACTCGAGTAACTAATATTTTTGCCTAGAATCTATA-3’ 

oHDK117 5’-ACAGATCTATATTCAATAAGGTTGCAAAGACT-3’ 

oHDK118 5’-AAATCTGTTGACTGCGTCAGATTGATTTTAC-3’ 

oHDK125 5’-GACTGCCTAATCTTTTCTTTTAGTCG-3’ 

oHDK126 5’-CATTTTCAAGACGCCAATGTTAGTGA-3’ 

Amplification of loci for integration into URA3 of K. lactis 

oHDK97 5’-TACACACATTACTTGCCTCGA-3’ 

oHDK98 5’-GTTCTATTAAGTTTCCTGTATAAGGTGCAACTAATTGACGGGA-3’ 



oHDK99 5’-TCCCGTCAATTAGTTGCACCTTATACAGGAAACTTAATAGAACAAATCAC-3’ 

oHDK100 5’-AGGAAGTTTGAGAGGGCTTATCG-3’ 

oHDK101 5’-GGTGCAACTAATTGACGGGAG-3’ 

oHDK102 5’-TTATACAGGAAACTTAATAGAACAAATCAC-3’ 

oHDK103 5’-GCGTCAATACACTCCCGTCAATTAGTTGCACCTAACTAATATTTTTGCCTAGAATCTATA-3’ 

oHDK104 5’-AAATATGTGATTTGTTCTATTAAGTTTCCTGTATAATCAATCAAATGTGCTACACCTAAT-3’ 

oHDK105 5’-GCGTCAATACACTCCCGTCAATTAGTTGCACCGGTGGAAGTACTTCTAAAAAAACC-3’ 

oHDK106 5’-AAATATGTGATTTGTTCTATTAAGTTTCCTGTATAATTCTTTCCTGTTGCGCTTCAA-3’ 

oHDK119 5’-GCGTCAATACACTCCCGTCAATTAGTTGCACCTCGGACAGCATAACAATTATCATC-3’ 

oHDK120 5’-AAATATGTGATTTGTTCTATTAAGTTTCCTGTATAATATAAAGCAATCCTGGCAATTTAA-3’ 

oHDK127 5’-GCGTCAATACACTCCCGTCAATTAGTTGCACCGAAATTTTTTTGAAAGTCTGTGTTGA-3’ 

oHDK128 5’-AAATATGTGATTTGTTCTATTAAGTTTCCTGTATAATTGTTAGCCTTTTGTTCTTATCAG-3’ 

Amplification of URA3 locus for confirmation 

oHDK129 5’-TACGGAGACAATCATATGGGAGAAGCAATTGGA-3’ 

oHDK130 5’-TCTTGTTGTTCCTTACCATTAAGTTGATCCATTG-3’ 

Amplification of KanMX4 for replacement of PUL3 in S. cerevisiae 

oHDK81 5’-TGCAGCATCTGCTTCTGGTGCTATAGTGTTCAGTTACATCCAGCTGAAGCTTCGTACGC-3’ 

oHDK82 5’-ATATATAGCTGGATTTGGACCAGTATATGTCTAAGGAAATGCATAGGCCACTAGTGGATC-3’ 



Amplification of KanMX4 for replacement of PUL4 in S. cerevisiae 

oHDK83 5’-AGCTTAATCTAAAACTACAAAAGCGTTCGCAACAAGCAGTCAGCTGAAGCTTCGTACGC-3’ 

oHDK84 5’-ATTTCTGAATAAAGTGTCAAAAAATCAGCTAGGAAACGGTGCATAGGCCACTAGTGGATC-3’ 

Confirmation of PUL3 and PUL4 loci in S. cerevisiae 

oHDK85 5’-GTATTCATGCGGCGGTGCAGTGT-3’ 

oHDK86 5’-AAAAGAGGCTGACTTTTTGTCGTCCAAG-3’ 

oHDK87 5’-TGTCATCTAAGATTCAATTAAAGTCGAC-3’ 

oHDK88 5’-CCTACTACCATGTCATATGGATCT-3’ 

Amplification of PUL3 and PUL4 loci for gap repair into pRS426 

oHDK89 5’-AGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTACGAACGCTTTTGTAGTTTTAG-3’ 

oHDK90 5’-CCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGTAACAAAATATCAAGCTG-3’ 

oHDK91 5’-AGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTACGATGTAACTGAACACTATAG-3’ 

oHDK92 5’-CCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTAGATACTAAGTTCTTGTGAC-3’ 

Screening pRS426 and pIL68 for proper insertions 

M13F 5’-CCCAGTCACGACGTTGTAAAACG-3’ 

M13R 5’-AGCGGATAACAATTTCACACAGG-3’ 

Cloning PUL1 and PUL2 with EgTEF1 promoter and terminator into pIL68 

oHDK243 5’- CGACGGTATCGATAAGCTTGATATCGAATTCCTGCAGCCCAGATCTGTTTAGCTTGCCTC-3’ 



oHDK244 5’- CCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCTCGACACTGGATGGCGGCGT-3’ 

oHDK167 5’- GGATACAGTTCTCACATCACATCCGAACATAAACAACCATGTACCAACTGCTTTTCCA-3’ 

oHDK168 5’- AAGTTCTTGAAAACAAGAATCTTTTTATTGTCAGTACTGATCAGATTACGAGAGCACCAT-3’ 

oHDK169 5’- GGATACAGTTCTCACATCACATCCGAACATAAACAACCATGTTAGCTGATATATTAATCC-3’ 

oHDK170 5’- AAGTTCTTGAAAACAAGAATCTTTTTATTGTCAGTACTGATCACAATGCAGTTAGTTGAA-3’ 

Cloning BsyvmC and BscypX with EgTEF1 promoter and terminator into pIL68 

oHDK226 5’- CAGTTCTCACATCACATCCGAACATAAACAACCATGACCGGAATGGTAACGGAAAGAAGG-3’ 

oHDK227 5’- TGAAAACAAGAATCTTTTTATTGTCAGTACTGATCATCCTTCAGATGTGATCCGTTTCTC-3’ 

oHDK259 5’- CACATCACATCCGAACATAAACAACCATGAGCCAATCGATTAAATTGTTTAGTGTGCTTT-3’ 

oHDK260 5’- AAACAAGAATCTTTTTATTGTCAGTACTGATTATGCCCCGTCAAACGCAACGAG-3’ 

 

  

  

  

  

  

  

 



Table S3 – Topology tests of the PUL gene trees. 

Gene Alignment 

program 

Trimmed 

alignment length 

One-sided KH 

test p-value 

AU test p-value 

PUL1 MAFFT 321 0.50 1.0 

MUSCLE 377 0.49 0.99 

T-Coffee 356 0.51 1.0 

PUL2 MAFFT 353 0.51 0.93 

MUSCLE 390 0.51 0.92 

T-Coffee 366 0.51 0.92 

PUL3 MAFFT 199 0.015 0.083 

MUSCLE 238 0.14 0.06 

T-Coffee 217 0.096 0.084 

PUL4 MAFFT 144 0.016 0.076 

MUSCLE 342 0.078 0.22 

T-Coffee 250 0.15 0.25 

We tested for HGT within the subphylum by using one-sided Kishino-Hasegawa (KH) tests for 

significant differences between likelihood values for two trees constructed from the same gene alignment: 

in our case the likelihoods of the ML gene tree and a tree constrained by the genome-wide species 

topology (Figure 1). This type of test is generally very liberal: when tests fail to the meet the p-value 

threshold, there is no statistically significant difference between the likelihood values of the two trees, and 

we conclude the GW tree is as good a representation of the data as the gene tree, but tests exceeding the 

p-value threshold do not necessarily indicate significant differences. We further used the Approximately

Unbiased (AU) test to assess the likelihood distribution of a large set of reasonable alternative topologies

to the ML tree, including all possible arrangements of the genera analyzed for each gene tree. For the 12

alignments tested, we used a Bonferroni-corrected p-value cutoff of 4.1x10-3, and none of the alignments

for either test met this threshold, meaning that the genome-wide inferred topology cannot be rejected as a

possible representation of the data. We reason that phylogenetic incongruences in the PUL3 and PUL4

trees within the Saccharomycotina are more likely to be explained by the result of convergent selective

regimes in the conserved, well-aligned regions of the genes.
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