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1 Proofs of theorems

Under the null model with the NIG prior, the conditional distribution of y given τ is a
multivariate normal with mean 0 and covariance matrix τ−1(WVaW

t + In). We integrate
out τ to obtain Bayes factor

BF = |In+(WVaW
t+In)−1LVbL

t|−1/2
{
κ2 + yt(WVaW

t +LVbL
t + In)−1y)

κ2 + yt(WVaW t + In)−1y

}−(n+κ1)/2
.

Define the projection matrix P = In −W (W tW )−1W t. By Woodbury identity and the
idempotence of P , as V −1a vanishes,

lim
V −1
a →0

(WVaW
t + In)−1 = P ,

lim
V −1
a →0

(WVaW
t +LVbL

t + In)−1 = P −X(X tX + V −1b )−1X t,
(A1)

where X = PL. By Sylvester’s determinant identity and the idempotence of P , |In +
PLVbL

t|−1/2 = |Ip +X tXVb|−1/2. Now letting κ1, κ2 → 0, we obtain (3) in the main text.
The easier case of known error variance can be solved by direct computation using (A1).

Let HF be the hat matrix for the ordinary least square estimate of b, and HB be the
hat matrix for the posterior mean for b,

HF
def
= X(X tX)−1X t, HB

def
= X(X tX + V −1b )−1X t. (A2)

Then BF = |Vb|−1/2|X tX + V −1b |−1/2{1 + ytHBy/y
t(P −HB)y}n/2. Define two compo-

nents in the expression so that BF = T ·R, with

2 log T
def
= − log |VbX tX + Ip|, 2 logR

def
= n log

{
1 +

ytHBy

yt(P −HB)y

}
. (A3)
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Since only R depends on y, it will be our focus in the proof of the theorems. For comparison,
assuming X has full rank, the likelihood ratio test statistic is

2 logL = 2 log
supa,b,τ p(y|H1,a, b, τ)

supa,τ p(y|H0,a, τ)
= n log

{
1 +

ytHFy

yt(P −HF )y

}
. (A4)

Lemma 1. Recall p is the number of columns of L and X, q the number of columns of
W , and n the number of samples. Without loss of generality, assume HB defined in (A2)
has rank p. HB is positive semi-definite and its spectral decomposition is

HB = UΣU t =

p∑
i=1

λiuiu
t
i

where Σ = Diag(λ1, . . . , λp, 0, . . . , 0) with λ1 ≥ · · · ≥ λp, and U = (u1, . . . ,un) where ui is
the ith eigenvector. Then, for some orthonormal vectors k1, . . . ,kn−p−q,

(a) (spectral decomposition) P −HB =
∑p

i=1(1− λi)uiuti +
∑n−p−q

j=1 kjk
t
j;

(b) (spectral decompositions) HF =
∑p

i=1 uiu
t
i and P −HF =

∑n−p−q
j=1 kjk

t
j;

(c) for T defined in (A3), we have 2 log T =
∑p

i=1 log(1− λi).

Proof. To prove (a), first since P is an orthogonal projection matrix, it has n − q eigen-
values equal to 1 and q zero eigenvalues. Therefore, we only need to show that ui, . . . ,up
and k1, . . . ,kn−p−q are eigenvectors for both P and HB. HB starts with X = PL, which
combinesHBui = λiui to give Pui = ui. Now let k1, . . . ,kn−p−q be the rest n−p−q eigen-
vectors of P with unit eigenvalues. They are orthogonal to every ui and thus must lie in the
null space of HB, i.e., HBki = 0. To prove (b), notice that HF is an orthogonal projection
matrix, and HF and HB have the same null space. Hence (ui, . . . ,up,k1, . . . ,kn−p−q) is
also a set of eigenvectors forHF . To prove (c), notice that λi is also an eigenvalue of the ma-
trix (X tX+V −1b )−1X tX with the corresponding eigenvector (X tX+V −1b )−1X tui. With
simple matrix computation one can show that the eigenvalues of Vb(X

tX) are λi/(1− λi)
(i = 1, . . . , p), which proves (c). Lastly, these eigenvalues must be non-negative since they
are also the eigenvalues of (X tX)1/2Vb(X

tX)1/2, a positive semi-definite matrix. So for
i = 1, . . . , p, λi ∈ [0, 1) and λi ∈ (0, 1) if X has full rank.

1.1 Proof of Theorem 1

Proof. We use oP (1) to denote a term converging to 0 in probability and OP (1) to denote
a term that is stochastically bounded. Let z = τ 1/2(y −Wa) as defined in the main
text. Here a and τ can be interpreted as either the true values (from a Frequentist’s
perspective) or the values that generate y (from a Bayesian perspective). Lemma 1(c)
gives the expression for 2 log T . So we only need to deal with 2 logR. Since PW = 0,

2



2 logR can always be expressed using z,

2 logR = n log

{
1 +

ztHBz

zt(P −HB)z

}
. (A5)

We shall prove a more general result without assuming “under the null”:

If ztHFz = OP (1), then 2 logR = ztHBz + oP (1).

Theorem 1 is then a special case of the above claim. Later we will also use this claim to
handle the alternative. The conditional distribution of z given b is MVN(τ 1/2Lb, In). Ap-
ply the spectral decomposition results given in Lemma 1(a) to get ztHBz =

∑p
i=1 λi(u

t
iz)2,

and zt(P − HB)z =
∑n−p−q

j=1 (ktjz)2 +
∑p

i=1(1 − λi)(u
t
iz)2. By Lemma 1(a), we have

Pkj = kj and HBkj = 0, which jointly imply that ktL = 0. Thus we can define Q0 =∑n−p−q
j=1 (ktjz)2 ∼ χ2

n−p−q. Recall by Lemma 1(b), ztHFz =
∑p

i=1(u
t
iz)2 and λi ∈ [0, 1).

Hence if ztHFz = OP (1), we have ztHBz = OP (1) and zt(P −HB)z = Q0 + OP (1).
Direct calculations show that n−1zt(P −HB)z converge to 1 in probability at rate n−1.
By the continuous mapping theorem, its reciprocal also converges to 1 in probability and
thus (zt(P −HB)z/n)−1 = 1+oP (1). Now apply Slutsky’s Theorem and Taylor expansion
to rewrite (A5) into 2 logR = n log{1 + n−1ztHBz + oP (1)} = ztHBz + oP (1). Lastly,
define Qi = (utiz)2 and we have 2 logR =

∑p
i=1 λiQi + oP (1). This finishes the proof of

our general result (when the error variance is known, this claim holds trivially). Under
the null, z is an n-dimensional standardized normal variable. Therefore, Qi ∼ χ2

1 and
ztHFz =

∑p
i=1Qi ∼ χ2

p, which implies ztHFz = OP (1).

Consider the two special cases of Vb given in (6) and (7) in the main text. For the
independent prior, Vb = σ2

bIp, we have λi = δ2i /(δ
2
i + σ−2b ) where δi is the ith (sorted)

singular value of X. For g-prior, Vb = g(X tX)−1, we have λi = g/(g+ 1), for i = 1, . . . , p.

1.2 Proof for Corollary 1

Proof. From Theorem 1, the likelihood ratio defined in (A4) becomes 2 logL =
∑p

i=1Qi +
oP (1), which is a special case of Wilks’ Theorem [Wilks, 1938]. For p = 1, we have
log BF = λ1 logL + (log(1 − λ1))/2 + oP (1), which implies pB ≈ pF . In addition, 2 log BF
can be expressed using the F statistic (F = (n − 1 − q)Q1/Q0), 2 log BF = n log[1 +
Fλ1/{F (1−λ1) + (n− 1− q)}] + log(1−λ1). Thus the p-value of F-test exactly equals the
p-value for BF.

1.3 Proof of Proposition 1

Proof. By the definition of sBF we have E0[log sBF] = E0[ log BF−E0[log BF] ] = E0[log BF]−
E0[log BF] = 0. Also by definition sBF/BF =

∏p
i=1 exp(−λi/2)(1−λi)−1/2. Because log(1−

λi) < −λi, exp(−λi/2)(1 − λi)−1/2 > 1 and therefore log sBF > log BF. These prove (a).
Because the scaling factor (sBF/BF) is independent of y, BF and sBF have the same
Bayesian p-value and this proves (b). Since permutation simulates the null, log sBF =
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EP [log BF(y) − log BF(ỹ)] where the expectation is with respect to the permutation. By
Jensen’s inequality, sBF < EP [BF(y)/BF(ỹ)], which proves (c).

1.4 Proof of Proposition 3

Proof. Since E0[log sBFj] = 0 for j = 1, 2 by Proposition 2(a). We have E0[log sBF1 −
log sBF2] = 0. Because Proposition 2(a) applies to arbitrary dimension, E0[log sBF1 −
log sBF2] = 0 in fact holds for arbitrary dimension. Due to lack of consistent way to compare
informativeness of covariates of more than one dimension, we focus on one dimension
situation of BF. By calculating the first derivative with respect to cj, it’s straightforward
to show that E0[2 log BFj] = cj + log(1 − cj) is monotone decreasing in cj ∈ (0, 1) (we
use c1, c2 to denote the values of λ1 of the two tests). If c1 > c2, we have E0[log BF1] <
E0[log BF2].

1.5 Proof of Theorem 4

Proof. Consider a sequence local alternatives b = β/
√
nτ . Then we have z = τ 1/2(y −

Wa) ∼ MVN(Lβ/
√
n, In). According to the proof of Theorem 1, we only need to show

ztHFz = OP (1). We use χ2
p(ρ) to denote a noncentral chi-squared random variable with

d.f. = p and the noncentrality parameter ρ. By Lemma 1(a),

ztHFz =

p∑
i=1

(utiz)2 ∼ χ2
p(

1

n

p∑
i=1

(utiLβ)2) (A6)

Since for i = 1, . . . , p, utiP = uti and for i = p + 1, . . . , n, utiP = 0,
∑p

i=1(u
t
iLβ)2 =∑p

i=1(u
t
iPLβ)2 =

∑n
i=1(u

t
iPLβ)2. Since ui is the singular vector of X,

∑n
i=1(u

t
iPLβ)2 =

(Lβ)tP (Lβ) = (Xβ)t(Xβ). Because a weakly convergent random sequence is stochas-
tically bounded [Shao, 2003, p127], to show ztHFz = OP (1) we only need to show that
the noncentrality parameter in (A6), n−1(Xβ)t(Xβ), either converges to a constant or
is bounded. Due to projection, (Xβ)t(Xβ) ≤ (Lβ)tLβ and thus it is sufficient to show
n−1βtLtLβ converges or is bounded, which are the two assumptions in the theorem. Thus,
we have 2 logR = ztHBz + oP (1). The distribution of the quadratic form ztHBz is

ztHBz =
∑p

i=1 λi(u
t
iz)2 =

∑p
i=1 λiQi where Qi

ind.∼ χ2
1(n
−1(utiLβ)2).

1.6 Proof of Proposition 5

Proof. Part (a) can be directly derived from Theorem 4. For simple linear regression, the
noncentrality parameter of Q1 is σ2

bδ
2
1 = 1/(λ−11 −1). We prove part (b) for the multi-linear

regression. The expression of Qi is Qi = (utiz)2 where z = τ 1/2(y −Wa). Under the
alternative b ∼ MVN(0, τ−1Vb), we have z ∼ MVN(0,LVbL

t + I). Using Pui = ui and
X = PL, we obtain utiz ∼ MVN(0,utiXVbX

tui+1). So Qi is a scaled central chi-squared
variable with d.f. = 1 and E[Qi] = utiXVbX

tui + 1. Consider the two special cases. First
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under the independent prior Vb = σ2
bI, E[Qi] = σ2

bδ
2
i + 1 = 1/(1 − λi). Second, under the

g-prior Vb = g(X tX)−1, we have E[Qi] = g + 1 = 1/(1− λi) as well.

References

J. Shao. Mathematical Statistics. Springer Texts in Statistics. Springer, second edition,
2003. ISBN 9780387953823.

S. S. Wilks. The large-sample distribution of the likelihood ratio for testing composite
hypotheses. The Annals of Mathematical Statistics, 9(1):60–62, 1938.

5



2 R code computing BF and sBF

# Function sbf takes 4 arguments and returns a pair of log(BF) and log(sBF).

# W is an n-by-q matrix; L is an n-by-p matrix; y is an n-vector; sigma_b is a scalar.

sbf <- function(W, L, y, sigma_b){

n = nrow(W)

q = ncol(W)

p = ncol(L)

PW = diag(n) - W %*% solve(t(W) %*% W) %*% t(W)

X = PW %*% L

HB = X %*% solve(t(X) %*% X + diag(1/sigma_b/sigma_b,p)) %*% t(X)

log.R = -0.5*n*log(1 - (t(y) %*% HB %*% y) / (t(y) %*% PW %*% y ))

delta = svd(X)$d

lambda = delta^2 / (delta^2 + 1/sigma_b/sigma_b)

log.T = sum(log(1-lambda))/2

# one can check:

# log.T = -0.5*log(det( t(X) %*% X * sigma_b * sigma_b + diag(p)))

log.bf = log.T + log.R

log.sbf = log.R - 0.5 * sum(lambda)

return(c(log.bf,log.sbf))

}

## an example

sigma_b = 0.2

W = matrix(rexp(3000),1000,3)

L = matrix(rnorm(5000),1000,1)

y = rnorm(1000) + L %*% rnorm(1,0,0.1)

sbf(W,L,y,sigma_b)
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3 Top 20 single SNP associations

SNP Chr Pos MAF log10 BF log10 sBF − log10 pB
rs12120962 1 10.53 0.384 3.549 (6) 4.624 (5) 5.628 (5)
rs12127400 1 10.54 0.384 3.271 (9) 4.346 (9) 5.339 (9)
rs4656461 1 163.95 0.140 5.494 (2) 6.424 (2) 7.507 (2)
rs7411708 1 163.99 0.428 3.360 (8) 4.438 (7) 5.434 (8)
rs10918276 1 163.99 0.427 3.258 (10) 4.336 (10) 5.328 (10)
rs7518099 1 164.00 0.140 5.829 (1) 6.758 (1) 7.852 (1)
rs972237 2 125.89 0.119 2.781 (14) 3.674 (17) 4.649 (18)
rs2728034 3 2.72 0.090 3.584 (5) 4.434 (8) 5.452 (7)
rs7645716 3 46.31 0.254 3.019 (12) 4.045 (11) 5.027 (11)
rs7696626 4 8.73 0.023 3.069 (11) 3.644 (18) 4.698 (16)
rs2025751 6 51.73 0.466 3.443 (7) 4.527 (6) 5.527 (6)
rs1081076 6 132.97 0.022 2.690 (19) 3.260 (44) 4.287 (36)
rs10757601 9 26.18 0.443 2.748 (15) 3.829 (13) 4.797 (13)
rs10778292 12 102.78 0.140 3.738 (4) 4.665 (4) 5.683 (4)
rs2576969 12 102.80 0.271 2.745 (16) 3.777 (14) 4.745 (14)
rs17034938 12 102.85 0.127 2.953 (13) 3.862 (12) 4.845 (12)
rs1955511 14 32.30 0.076 2.684 (20) 3.497 (25) 4.472 (25)
rs12150284 17 9.97 0.353 4.638 (3) 5.707 (3) 6.752 (3)
rs6017819 20 44.48 0.069 2.736 (17) 3.524 (24) 4.505 (23)
rs279728 20 44.51 0.087 2.704 (18) 3.541 (22) 4.515 (22)

Table S1: The “Pos” column gives the genomic position in megabase pair (reference HG18).
The rankings by the three statistics are given in the parentheses. SNP IDs are in bold if
they are mentioned specifically in the main text. Results were obtained using σ = 0.5.
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