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1 Proofs of theorems

Under the null model with the NIG prior, the conditional distribution of y given 7 is a
multivariate normal with mean 0 and covariance matrix 7' (WV, W' + I,,). We integrate
out 7 to obtain Bayes factor
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Define the projection matrix P = I,, — W(W'!'W)~'W'. By Woodbury identity and the
idempotence of P, as V,~! vanishes,
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where X = PL. By Sylvester’s determinant identity and the idempotence of P, |I,, +
PLV,LY™Y? = |I, + XX V;|7Y/2. Now letting k1, k3 — 0, we obtain (3) in the main text.
The easier case of known error variance can be solved by direct computation using (Al).

Let Hr be the hat matrix for the ordinary least square estimate of b, and Hp be the
hat matrix for the posterior mean for b,
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Then BF = |V;|7Y2| X' X + V, ' 7Y2{1 + y'Hpy/y' (P — Hp)y}"?. Define two compo-
nents in the expression so that BF =T - R, with
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Since only R depends on y, it will be our focus in the proof of the theorems. For comparison,
assuming X has full rank, the likelihood ratio test statistic is

2log L = 2log
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Lemma 1. Recall p is the number of columns of L and X, q the number of columns of
W, and n the number of samples. Without loss of generality, assume Hpg defined in (A2)
has rank p. Hpg is positive semi-definite and its spectral decomposition is

p
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where ¥ = Diag(A, ..., Ap,0,...,0) with \y > --- > A\, and U = (uy, ..., u,) where u; is
the ith eigenvector. Then, for some orthonormal vectors ky, ..., Ky_p_q,

(a) (spectral decomposition) P — Hg = 37 (1 — N)usuf + 377" kjky;

(b) (spectral decompositions) Hp = Y77 wu; and P — Hp = Y "7 k;k!;
(¢c) for T defined in (A3), we have 2logT = "F_ log(l — \;).

Proof. To prove (a), first since P is an orthogonal projection matrix, it has n — ¢ eigen-
values equal to 1 and ¢ zero eigenvalues. Therefore, we only need to show that w;,...,u,
and ki,..., k,_,_, are eigenvectors for both P and Hp. Hp starts with X = PL, which
combines Hpu, = \;u; to give Pu; = u,;. Now let ky, ..., k,,_,_, be the rest n—p—q eigen-
vectors of P with unit eigenvalues. They are orthogonal to every w; and thus must lie in the
null space of Hg, i.e., Hgk; = 0. To prove (b), notice that Hr is an orthogonal projection
matrix, and Hp and Hp have the same null space. Hence (u;, ..., up, k1,... , ky_p_g) is
also a set of eigenvectors for Hr. To prove (c), notice that )\; is also an eigenvalue of the ma-
trix (X' X +V, 1)1 XX with the corresponding eigenvector (X*X +V,')~! Xtu,;. With
simple matrix computation one can show that the eigenvalues of V,(X*X) are \;/(1 — \;)

(t=1,...,p), which proves (c). Lastly, these eigenvalues must be non-negative since they
are also the eigenvalues of (X!'X)Y2V, (XX )2 a positive semi-definite matrix. So for
i=1,....,p, Ay €[0,1) and \; € (0,1) if X has full rank. O

1.1 Proof of Theorem 1

Proof. We use op(1) to denote a term converging to 0 in probability and Op(1) to denote
a term that is stochastically bounded. Let z = 7Y/%2(y — Wa) as defined in the main
text. Here a and 7 can be interpreted as either the true values (from a Frequentist’s
perspective) or the values that generate y (from a Bayesian perspective). Lemma 1(c)
gives the expression for 2logT. So we only need to deal with 2log R. Since PW = 0,



2log R can always be expressed using z,
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We shall prove a more general result without assuming “under the null”:
If z'Hrz = Op(1), then 2log R = 2! Hpz + op(1).

Theorem 1 is then a special case of the above claim. Later we will also use this claim to
handle the alternative. The conditional distribution of z given b is MVN(7/2Lb, I,,). Ap-
ply the spectral decomposition results given in Lemma 1(a) to get 2! Hpz = > 7 | \;(ulz)?,
and 2'(P — Hp)z = Y 7 7 (Kjz)”> + 37, (1 — \i)(ujz)*. By Lemma 1(a), we have
Pk; = k; and Hgk; = 0, which jointly imply that k'L = 0. Thus we can define Qg =
> (Kjz)? ~ xi_,_, Recall by Lemma 1(b), 2'Hrz = 377, (ufz)* and \; € [0,1).
Hence if 2'Hrz = Op(1), we have 2'Hpz = Op(1) and 2'(P — Hp)z = Qo + Op(1).
Direct calculations show that n~'z!(P — Hpg)z converge to 1 in probability at rate n™!.
By the continuous mapping theorem, its reciprocal also converges to 1 in probability and
thus (2/(P—Hp)z/n)"' = 1+0p(1). Now apply Slutsky’s Theorem and Taylor expansion
to rewrite (A5) into 2log R = nlog{l + n '2'Hpz + 0p(1)} = 2'Hpz + op(1). Lastly,
define @Q; = (u!z)? and we have 2log R = >% | \;Q; + op(1). This finishes the proof of
our general result (when the error variance is known, this claim holds trivially). Under
the null, z is an n-dimensional standardized normal variable. Therefore, Q; ~ x3 and

Z'Hpz =" | Q; ~ X2, which implies 2’ Hpz = Op(1). O

Consider the two special cases of Vj, given in (6) and (7) in the main text. For the
independent prior, V; = ¢2I,, we have \; = 67/(6? + 0, ?) where §; is the ith (sorted)
singular value of X . For g-prior, V, = ¢(X'X )™, we have \; = g/(g+ 1), fori=1,...,p.

1.2 Proof for Corollary 1

Proof. From Theorem 1, the likelihood ratio defined in (A4) becomes 2log L = >7  Q; +
op(1), which is a special case of Wilks’ Theorem [Wilks, 1938]. For p = 1, we have
log BF = Ajlog L + (log(1 — A1))/2 + op(1), which implies pg =~ pp. In addition, 2log BF
can be expressed using the F statistic (F = (n — 1 — ¢)@1/Qo), 2logBF = nlog[l +
FN/H{F(1—=X\)+(n—1-q)}]+log(l—A). Thus the p-value of F-test exactly equals the
p-value for BF. O]

1.3 Proof of Proposition 1

Proof. By the definition of sBF we have Eq[log sBF] = Eq|log BF —Ej[log BF| | = Ey[log BF|—
Eo[log BF] = 0. Also by definition sBF/BF = [¥_, exp(—\;/2)(1 —\;)~/2. Because log(1 —
i) < =i, exp(—A;/2)(1 — X\)™Y2 > 1 and therefore log sBF > log BF. These prove (a).
Because the scaling factor (sBF/BF) is independent of y, BF and sBF have the same
Bayesian p-value and this proves (b). Since permutation simulates the null, logsBF =



Ep[log BF(y) — log BF(y)] where the expectation is with respect to the permutation. By
Jensen’s inequality, sSBF < Ep[BF(y)/BF(y)], which proves (c). O

1.4 Proof of Proposition 3

Proof. Since Ey[logsBF;] = 0 for j = 1,2 by Proposition 2(a). We have Ej[logsBF; —
logsBF,] = 0. Because Proposition 2(a) applies to arbitrary dimension, Eq[logsBF; —
log sBF5] = 0 in fact holds for arbitrary dimension. Due to lack of consistent way to compare
informativeness of covariates of more than one dimension, we focus on one dimension
situation of BF. By calculating the first derivative with respect to c;, it’s straightforward
to show that Ey[2log BF,] = ¢; + log(1 — ¢;) is monotone decreasing in ¢; € (0,1) (we
use ¢, ¢y to denote the values of A; of the two tests). If ¢; > ¢o, we have Eq[log BFy] <
Eo[log BF,]. O

1.5 Proof of Theorem 4

Proof. Consider a sequence local alternatives b = 3/y/n7. Then we have z = 7/2(y —
Wa) ~ MVN(LB/+/n,I,). According to the proof of Theorem 1, we only need to show
z'Hpz = Op(1). We use x2(p) to denote a noncentral chi-squared random variable with
d.f. = p and the noncentrality parameter p. By Lemma 1(a),
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Since for i = 1,...,p, ulP = u! and for i = p+1,...,n, ulP = 0, >.7 (ulLB)* =

P (uiPLB)* =" (ulPLB)*. Since wu; is the singular vector of X, > (u!PLB)* =
(LB)'P(LB) = (XPB)(XB). Because a weakly convergent random sequence is stochas-
tically bounded [Shao, 2003, p127], to show z'Hpz = Op(1) we only need to show that
the noncentrality parameter in (A6), n='(X3)" (X [3), either converges to a constant or
is bounded. Due to projection, (X3)"(X3) < (LB)'LB and thus it is sufficient to show
n~!B!L!LB converges or is bounded, which are the two assumptions in the theorem. Thus,
we have 2log R = 2'Hpz + op(1). The distribution of the quadratic form z'Hpz is

2 Hpz =57 A(ulz)? = 7 \Q; where Q; "™ x2(n~ ! (u!LB)?). O

1.6 Proof of Proposition 5

Proof. Part (a) can be directly derived from Theorem 4. For simple linear regression, the
noncentrality parameter of Q; is 0262 = 1/(A;* —1). We prove part (b) for the multi-linear
regression. The expression of Q; is Q; = (u!z)? where z = 7/2(y — Wa). Under the
alternative b ~ MVN(0, 77'V;), we have z ~ MVN(0, LV, L + I). Using Pu; = u; and
X = PL, we obtain ulz ~ MVN(0, u! XV, X"u; +1). So Q; is a scaled central chi-squared
variable with d.f. = 1 and E[Q;] = ©v! XV, X"u; + 1. Consider the two special cases. First



under the independent prior V; = 071, E[Q;] = 026? + 1 =1/(1 — \;). Second, under the
g-prior V, = g(X'X)™!, we have E[Q;] =g+ 1=1/(1 — \;) as well. O
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2 R code computing BF and sBF

# Function sbf takes 4 arguments and returns a pair of log(BF) and log(sBF).
# W is an n-by-q matrix; L is an n-by-p matrix; y is an n-vector; sigma_b is a scalar.
sbf <- function(W, L, y, sigma_b){

n = nrow(W)

q = ncol(W)

p = ncol(L)

PW = diag(n) - W %*% solve(t(W) %x% W) %x% t(W)
X =PW %*% L

HB = X %xJ solve(t(X) %x*, X + diag(1l/sigma_b/sigma_b,p)) %*% t(X)
log.R = -0.5xn*log(1l - (t(y) %% HB %x% y) / (t(y) %*h PW % y ))
delta = svd(X)$d

lambda = delta”2 / (delta”2 + 1/sigma_b/sigma_b)

log.T = sum(log(l-lambda))/2

# one can check:

# log.T = -0.5x1log(det( t(X) %*% X * sigma_b * sigma_b + diag(p)))
log.bf = log.T + log.R

log.sbf = log.R - 0.5 * sum(lambda)

return(c(log.bf,log.sbf))

## an example
sigma_b = 0.2

W = matrix(rexp(3000),1000,3)
L = matrix(rnorm(5000),1000,1)
y = rnorm(1000) + L %*% rnorm(1,0,0.1)

sbf (W,L,y,sigma_b)



3 Top 20 single SNP associations

SNP Chr Pos MAF log,, BF  log,,sBF —log,,ps
rs12120962 1 10.53 0.384 3.549 (6) 4.624 (5) 5.628 (5)
rs12127400 1 10.54 0.384 3.271(9) 4.346 (9) 5.339 (9)
rs4656461 1 163.95 0.140 5494 (2) 6.424 (2) 7.507 (2)
rs7411708 1 163.99 0.428 3.360 (8) 4.438 (7) 5.434 (8)
rs10918276 1 163.99 0.427 3.258 (10) 4.336 (10) 5.328 (10)
rs7518099 1 164.00 0.140 5.829 (1) 6.758 (1)  7.852 (1)
1s972237 2 125.89 0.119 2.781 (14) 3.674 (17) 4.649 (18)
152728034 3 2.72 0.090 3.584 (5) 4.434 (8) 5.452 (7)
rs7645716 3 46.31  0.254 3.019 (12) 4.045 (11) 5.027 (11)
rs7696626 4 8.73 0.023 3.069 (11) 3.644 (18) 4.698 (16)
rs2025751 6 51.73  0.466 3.443 (7)  4.527 (6)  5.527 (6)
rs1081076 6 132.97 0.022 2.690 (19) 3.260 (44) 4.287 (36)
rs10757601 9 26.18  0.443 2.748 (15) 3.829 (13) 4.797 (13)
rs10778292 12 102.78 0.140 3.738 (4) 4.665 (4) 5.683 (4)
152576969 12 102.80 0.271 2.745 (16) 3.777 (14) 4.745 (14)
rs17034938 12 102.85 0.127 2.953 (13) 3.862 (12) 4.845 (12)
rs1955511 14 3230 0.076 2.684 (20) 3.497 (25) 4.472 (25)
rs12150284 17  9.97 0.353 4.638 (3) 5.707 (3) 6.752 (3)
rs6017819 20 4448 0.069 2.736 (17) 3.524 (24) 4.505 (23)
1s279728 20 4451  0.087 2.704 (18) 3.541 (22) 4.515 (22)

Table S1: The “Pos” column gives the genomic position in megabase pair (reference HG18).
The rankings by the three statistics are given in the parentheses. SNP IDs are in bold if
they are mentioned specifically in the main text. Results were obtained using o = 0.5.



